51
|
Bai J, Lu Y, Zhang H. In silico study of the effects of anti-arrhythmic drug treatment on sinoatrial node function for patients with atrial fibrillation. Sci Rep 2020; 10:305. [PMID: 31941982 PMCID: PMC6962222 DOI: 10.1038/s41598-019-57246-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Sinus node dysfunction (SND) is often associated with atrial fibrillation (AF). Amiodarone is the most frequently used agent for maintaining sinus rhythm in patients with AF, but it impairs the sinoatrial node (SAN) function in one-third of AF patients. This study aims to gain mechanistic insights into the effects of the antiarrhythmic agents in the setting of AF-induced SND. We have adapted a human SAN model to characterize the SND conditions by incorporating experimental data on AF-induced electrical remodelling, and then integrated actions of drugs into the modified model to assess their efficacy. Reductions in pacing rate upon the implementation of AF-induced electrical remodelling associated with SND agreed with the clinical observations. And the simulated results showed the reduced funny current (If) in these remodelled targets mainly contributed to the heart rate reduction. Computational drug treatment simulations predicted a further reduction in heart rate during amiodarone administration, indicating that the reduction was the result of actions of amiodarone on INa, IKur, ICaL, ICaT, If and beta-adrenergic receptors. However, the heart rate was increased in the presence of disopyramide. We concluded that disopyramide may be a desirable choice in reversing the AF-induced SND phenotype.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China.
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
52
|
Ye T, Zhang C, Wu G, Wan W, Liang J, Liu X, Liu D, Yang B. Pinocembrin attenuates autonomic dysfunction and atrial fibrillation susceptibility via inhibition of the NF-κB/TNF-α pathway in a rat model of myocardial infarction. Int Immunopharmacol 2019; 77:105926. [PMID: 31704291 DOI: 10.1016/j.intimp.2019.105926] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022]
Abstract
Previous studies indicate that myocardial infarction (MI) may contribute to atrial fibrillation (AF). Emerging evidence has shown that pinocembrin protects myocardial ischemic injury (I/R)-induced cardiac fibrosis and arrhythmias in animals via its anti-inflammatory or antioxidant activities. However, the effects of pinocembrin on MI-induced atrial arrhythmias remain unknown. Thus, this study aimed to investigate the effects of pinocembrin on autonomic dysfunction and AF susceptibility in MI rats and the possible mechanism. In a standard experimental MI model, Sprague-Dawley rats received permanent ligation of the left anterior descending (LAD) coronary artery and were treated with pinocembrin or saline for 6 days. Our results demonstrated that pinocembrin treatment significantly decreased sympathetic activity, augmented parasympathetic activity, improved heart rate variability (HRV), prolonged the atrial effective refractory period (ERP) and action potential duration (APD), shortened activation latency (AL), lowered the indicibility rate of AF, attenuated atrial fibrosis, and decreased concentrations of norepinephrine (NE), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in the serum and the left atrial (LA). Furthermore, pinocembrin treatment significantly increased the expression levels of Cx43 and Cav1.2 and suppressed the phosphorylation of inhibitor-κBα (IκBα) and the activation of nuclear factor-kappa B (NF-κB)subunit p65. In conclusion, the findings indicate that pinocembrin treatment decreases autonomic remodeling, lowers atrial fibrosis, ameliorates atrial electrical remodeling, and suppresses MI-induced inflammatory responses, which suggests a potential novel strategy for atrial arrhythmias.
Collapse
Affiliation(s)
- Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Weiguo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jinjun Liang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
53
|
Martinez-Mateu L, Saiz J, Aromolaran AS. Differential Modulation of IK and ICa,L Channels in High-Fat Diet-Induced Obese Guinea Pig Atria. Front Physiol 2019; 10:1212. [PMID: 31607952 PMCID: PMC6773813 DOI: 10.3389/fphys.2019.01212] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
Obesity mechanisms that make atrial tissue vulnerable to arrhythmia are poorly understood. Voltage-dependent potassium (IK, IKur, and IK1) and L-type calcium currents (ICa,L) are electrically relevant and represent key substrates for modulation in obesity. We investigated whether electrical remodeling produced by high-fat diet (HFD) alone or in concert with acute atrial stimulation were different. Electrophysiology was used to assess atrial electrical function after short-term HFD-feeding in guinea pigs. HFD atria displayed spontaneous beats, increased IK (IKr + IKs) and decreased ICa,L densities. Only with pacing did a reduction in IKur and increased IK1 phenotype emerge, leading to a further shortening of action potential duration. Computer modeling studies further indicate that the measured changes in potassium and calcium current densities contribute prominently to shortened atrial action potential duration in human heart. Our data are the first to show that multiple mechanisms (shortened action potential duration, early afterdepolarizations and increased incidence of spontaneous beats) may underlie initiation of supraventricular arrhythmias in obese guinea pig hearts. These results offer different mechanistic insights with implications for obese patients harboring supraventricular arrhythmias.
Collapse
Affiliation(s)
- Laura Martinez-Mateu
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Ademuyiwa S Aromolaran
- Cardiac Electrophysiology and Metabolism Research Group, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
54
|
Alsina KM, Hulsurkar M, Brandenburg S, Kownatzki-Danger D, Lenz C, Urlaub H, Abu-Taha I, Kamler M, Chiang DY, Lahiri SK, Reynolds JO, Quick AP, Scott L, Word TA, Gelves MD, Heck AJR, Li N, Dobrev D, Lehnart SE, Wehrens XHT. Loss of Protein Phosphatase 1 Regulatory Subunit PPP1R3A Promotes Atrial Fibrillation. Circulation 2019; 140:681-693. [PMID: 31185731 DOI: 10.1161/circulationaha.119.039642] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abnormal calcium (Ca2+) release from the sarcoplasmic reticulum (SR) contributes to the pathogenesis of atrial fibrillation (AF). Increased phosphorylation of 2 proteins essential for normal SR-Ca2+ cycling, the type-2 ryanodine receptor (RyR2) and phospholamban (PLN), enhances the susceptibility to AF, but the underlying mechanisms remain unclear. Protein phosphatase 1 (PP1) limits steady-state phosphorylation of both RyR2 and PLN. Proteomic analysis uncovered a novel PP1-regulatory subunit (PPP1R3A [PP1 regulatory subunit type 3A]) in the RyR2 macromolecular channel complex that has been previously shown to mediate PP1 targeting to PLN. We tested the hypothesis that reduced PPP1R3A levels contribute to AF pathogenesis by reducing PP1 binding to both RyR2 and PLN. METHODS Immunoprecipitation, mass spectrometry, and complexome profiling were performed from the atrial tissue of patients with AF and from cardiac lysates of wild-type and Pln-knockout mice. Ppp1r3a-knockout mice were generated by CRISPR-mediated deletion of exons 2 to 3. Ppp1r3a-knockout mice and wild-type littermates were subjected to in vivo programmed electrical stimulation to determine AF susceptibility. Isolated atrial cardiomyocytes were used for Stimulated Emission Depletion superresolution microscopy and confocal Ca2+ imaging. RESULTS Proteomics identified the PP1-regulatory subunit PPP1R3A as a novel RyR2-binding partner, and coimmunoprecipitation confirmed PPP1R3A binding to RyR2 and PLN. Complexome profiling and Stimulated Emission Depletion imaging revealed that PLN is present in the PPP1R3A-RyR2 interaction, suggesting the existence of a previously unknown SR nanodomain composed of both RyR2 and PLN/sarco/endoplasmic reticulum calcium ATPase-2a macromolecular complexes. This novel RyR2/PLN/sarco/endoplasmic reticulum calcium ATPase-2a complex was also identified in human atria. Genetic ablation of Ppp1r3a in mice impaired binding of PP1 to both RyR2 and PLN. Reduced PP1 targeting was associated with increased phosphorylation of RyR2 and PLN, aberrant SR-Ca2+ release in atrial cardiomyocytes, and enhanced susceptibility to pacing-induced AF. Finally, PPP1R3A was progressively downregulated in the atria of patients with paroxysmal and persistent (chronic) AF. CONCLUSIONS PPP1R3A is a novel PP1-regulatory subunit within the RyR2 channel complex. Reduced PPP1R3A levels impair PP1 targeting and increase phosphorylation of both RyR2 and PLN. PPP1R3A deficiency promotes abnormal SR-Ca2+ release and increases AF susceptibility in mice. Given that PPP1R3A is downregulated in patients with AF, this regulatory subunit may represent a new target for AF therapeutic strategies.
Collapse
Affiliation(s)
- Katherina M Alsina
- Integrative Molecular and Biomedical Sciences (K.M.A., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Mohit Hulsurkar
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Sören Brandenburg
- Cellular Biophysics and Translational Cardiology Research Section, Heart Research Center Göttingen, and Department of Cardiology & Pneumology, University Medical Center of Göttingen, Germany (S.B., D.K.-D., S.E.L.)
| | - Daniel Kownatzki-Danger
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Cellular Biophysics and Translational Cardiology Research Section, Heart Research Center Göttingen, and Department of Cardiology & Pneumology, University Medical Center of Göttingen, Germany (S.B., D.K.-D., S.E.L.)
| | - Christof Lenz
- Institute of Clinical Chemistry, University Medical Center Göttingen, and Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Germany (C.L., H.U.)
| | - Henning Urlaub
- Institute of Clinical Chemistry, University Medical Center Göttingen, and Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Germany (C.L., H.U.)
| | - Issam Abu-Taha
- Institute of Pharmacology, West Germany Heart and Vascular Center (I.A.-T., D.D.), University Duisburg-Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery Huttrop (M.K.), University Duisburg-Essen, Germany
| | - David Y Chiang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.)
| | - Satadru K Lahiri
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Julia O Reynolds
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Ann P Quick
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Larry Scott
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Tarah A Word
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Maria D Gelves
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands (A.J.R.H.).,Netherlands Proteomics Centre, Utrecht (A.J.R.H.)
| | - Na Li
- Integrative Molecular and Biomedical Sciences (K.M.A., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Medicine (Cardiology), Baylor College of Medicine (N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Dobromir Dobrev
- Institute of Pharmacology, West Germany Heart and Vascular Center (I.A.-T., D.D.), University Duisburg-Essen, Germany.,DZHK (German Centre for Cardiovascular Research) site Goettingen (S.E.L.)
| | - Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Research Section, Heart Research Center Göttingen, and Department of Cardiology & Pneumology, University Medical Center of Göttingen, Germany (S.B., D.K.-D., S.E.L.)
| | - Xander H T Wehrens
- Integrative Molecular and Biomedical Sciences (K.M.A., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Medicine (Cardiology), Baylor College of Medicine (N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Pediatrics (Cardiology) (X.H.T.W.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
55
|
Molina CE, Jacquet E, Ponien P, Muñoz-Guijosa C, Baczkó I, Maier LS, Donzeau-Gouge P, Dobrev D, Fischmeister R, Garnier A. Identification of optimal reference genes for transcriptomic analyses in normal and diseased human heart. Cardiovasc Res 2019; 114:247-258. [PMID: 29036603 DOI: 10.1093/cvr/cvx182] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Aims Quantitative real-time RT-PCR (RT-qPCR) has become the method of choice for mRNA quantification, but requires an accurate normalization based on the use of reference genes showing invariant expression across various pathological conditions. Only few data exist on appropriate reference genes for the human heart. The objective of this study was to determine a set of suitable reference genes in human atrial and ventricular tissues, from right and left cavities in control and in cardiac diseases. Methods and results We assessed the expression of 16 reference genes (ACTB, B2M, GAPDH, GUSB, HMBS, HPRT1, IPO8, PGK1, POLR2A, PPIA, RPLP0, TBP, TFRC, UBC, YWHAZ, 18S) in tissues from: right and left ventricles from healthy controls and heart failure (HF) patients; right-atrial tissue from patients in sinus rhythm with (SRd) or without (SRnd) atrial dilatation, patients with paroxysmal (pAF) or chronic (cAF) atrial fibrillation or with HF; and left-atrial tissue from patients in SR or cAF. Consensual analysis (by geNorm and Normfinder algorithms, BestKeeper software tool and comparative delta-Ct method) of the variability scores obtained for each reference gene expression shows that the most stably expressed genes are: GAPDH, GUSB, IPO8, POLR2A, and YWHAZ when comparing either right and left ventricle or ventricle from healthy controls and HF patients; GAPDH, IPO8, POLR2A, PPIA, and RPLP0 when comparing either right and left atrium or right atria from all pathological groups. ACTB, TBP, TFRC, and 18S genes were identified as the least stable. Conclusions The overall most stable reference genes across different heart cavities and disease conditions were GAPDH, IPO8, POLR2A and PPIA. YWHAZ or GUSB could be added to this set for some specific experiments. This study should provide useful guidelines for reference gene selection in RT-qPCR studies in human heart.
Collapse
Affiliation(s)
- Cristina E Molina
- Inserm, UMR-S 1180, University of Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Institute of Pharmacology and Toxicology, Heart Research Center Göttingen, University Medical Center, Georg-August University Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Prishila Ponien
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Istvan Baczkó
- Department Pharmacology and Pharmacotherapy, University of Szeged, Hungary
| | - Lars S Maier
- Department Internal Medicine II, University Heart Center, University Hospital Regensburg, Regensburg, Germany
| | | | - Dobromir Dobrev
- West German Heart and Vascular Center, Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
| | - Rodolphe Fischmeister
- Inserm, UMR-S 1180, University of Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Anne Garnier
- Inserm, UMR-S 1180, University of Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
56
|
Hsieh CS, Huang PS, Chang SN, Wu CK, Hwang JJ, Chuang EY, Tsai CT. Genome-Wide Copy Number Variation Association Study of Atrial Fibrillation Related Thromboembolic Stroke. J Clin Med 2019; 8:jcm8030332. [PMID: 30857284 PMCID: PMC6463198 DOI: 10.3390/jcm8030332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia and is one of the major causes of ischemic stroke. In addition to the clinical factors such as CHADS2 or CHADS2-VASC score, the impact of genetic factors on the risk of thromboembolic stroke in patients with AF has been largely unknown. Single-nucleotide polymorphisms in several genomic regions have been found to be associated with AF. However, these loci do not contribute to all the genetic risks of AF or AF related thromboembolic risks, suggesting that there are other genetic factors or variants not yet discovered. In the human genome, copy number variations (CNVs) could also contribute to disease susceptibility. In the present study, we sought to identify CNVs determining the AF-related thromboembolic risk. Using a genome-wide approach in 109 patients with AF and thromboembolic stroke and 14,666 controls from the Taiwanese general population (Taiwan Biobank), we first identified deletions in chromosomal regions 1p36.32-1p36.33, 5p15.33, 8q24.3 and 19p13.3 and amplifications in 14q11.2 that were significantly associated with AF-related stroke in the Taiwanese population. In these regions, 148 genes were involved, including several microRNAs and long non-recoding RNAs. Using a pathway analysis, we found deletions in GNB1, PRKCZ, and GNG7 genes related to the alpha-adrenergic receptor signaling pathway that play a major role in determining the risk of an AF-related stroke. In conclusion, CNVs may be genetic predictors of a risk of a thromboembolic stroke for patients with AF, possibly pointing to an impaired alpha-adrenergic signaling pathway in the mechanism of AF-related thromboembolism.
Collapse
Affiliation(s)
- Chia-Shan Hsieh
- Department of Life Science, Genome and Systems Biology Degree Program, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - Pang-Shuo Huang
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 640, Taiwan.
| | - Sheng-Nan Chang
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 640, Taiwan.
| | - Cho-Kai Wu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan.
| | - Juey-Jen Hwang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan.
| | - Eric Y Chuang
- Department of Life Science, Genome and Systems Biology Degree Program, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - Chia-Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
57
|
Dilaveris P, Antoniou CK, Manolakou P, Tsiamis E, Gatzoulis K, Tousoulis D. Biomarkers Associated with Atrial Fibrosis and Remodeling. Curr Med Chem 2019; 26:780-802. [PMID: 28925871 DOI: 10.2174/0929867324666170918122502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation is the most common rhythm disturbance encountered in clinical practice. Although often considered as solely arrhythmic in nature, current evidence has established that atrial myopathy constitutes both the substrate and the outcome of atrial fibrillation, thus initiating a vicious, self-perpetuating cycle. This myopathy is triggered by stress-induced (including pressure/volume overload, inflammation, oxidative stress) responses of atrial tissue, which in the long term become maladaptive, and combine elements of both structural, especially fibrosis, and electrical remodeling, with contemporary approaches yielding potentially useful biomarkers of these processes. Biomarker value becomes greater given the fact that they can both predict atrial fibrillation occurrence and treatment outcome. This mini-review will focus on the biomarkers of atrial remodeling (both electrical and structural) and fibrosis that have been validated in human studies, including biochemical, histological and imaging approaches.
Collapse
Affiliation(s)
- Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Tsiamis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
58
|
Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, Dibb KM. Calcium in the Pathophysiology of Atrial Fibrillation and Heart Failure. Front Physiol 2018; 9:1380. [PMID: 30337881 PMCID: PMC6180171 DOI: 10.3389/fphys.2018.01380] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Atrial fibrillation (AF) is commonly associated with heart failure. A bidirectional relationship exists between the two-AF exacerbates heart failure causing a significant increase in heart failure symptoms, admissions to hospital and cardiovascular death, while pathological remodeling of the atria as a result of heart failure increases the risk of AF. A comprehensive understanding of the pathophysiology of AF is essential if we are to break this vicious circle. In this review, the latest evidence will be presented showing a fundamental role for calcium in both the induction and maintenance of AF. After outlining atrial electrophysiology and calcium handling, the role of calcium-dependent afterdepolarizations and atrial repolarization alternans in triggering AF will be considered. The atrial response to rapid stimulation will be discussed, including the short-term protection from calcium overload in the form of calcium signaling silencing and the eventual progression to diastolic calcium leak causing afterdepolarizations and the development of an electrical substrate that perpetuates AF. The role of calcium in the bidirectional relationship between heart failure and AF will then be covered. The effects of heart failure on atrial calcium handling that promote AF will be reviewed, including effects on both atrial myocytes and the pulmonary veins, before the aspects of AF which exacerbate heart failure are discussed. Finally, the limitations of human and animal studies will be explored allowing contextualization of what are sometimes discordant results.
Collapse
Affiliation(s)
- Nathan C. Denham
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | - Katharine M. Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
59
|
Colman MA, Saxena P, Kettlewell S, Workman AJ. Description of the Human Atrial Action Potential Derived From a Single, Congruent Data Source: Novel Computational Models for Integrated Experimental-Numerical Study of Atrial Arrhythmia Mechanisms. Front Physiol 2018; 9:1211. [PMID: 30245635 PMCID: PMC6137999 DOI: 10.3389/fphys.2018.01211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: The development of improved diagnosis, management, and treatment strategies for human atrial fibrillation (AF) is a significant and important challenge in order to improve quality of life for millions and reduce the substantial social-economic costs of the condition. As a complex condition demonstrating high variability and relation to other cardiac conditions, the study of AF requires approaches from multiple disciplines including single-cell experimental electrophysiology and computational modeling. Models of human atrial cells are less well parameterized than those of the human ventricle or other mammal species, largely due to the inherent challenges in patch clamping human atrial cells. Such challenges include, frequently, unphysiologically depolarized resting potentials and thus injection of a compensatory hyperpolarizing current, as well as detecting certain ion currents which may be disrupted by the cell isolation process. The aim of this study was to develop a laboratory specific model of human atrial electrophysiology which reproduces exactly the conditions of isolated-cell experiments, including testing of multiple experimental interventions. Methods: Formulations for the primary ion currents characterized by isolated-cell experiments in the Workman laboratory were fit directly to voltage-clamp data; the fast sodium-current was parameterized based on experiments relating resting membrane potential to maximal action potential upstroke velocity; compensatory hyperpolarizing current was included as a constant applied current. These formulations were integrated with three independent human atrial cell models to provide a family of novel models. Extrapolated intact-cell models were developed through removal of the hyperpolarizing current and introduction of terminal repolarization potassium currents. Results: The isolated-cell models quantitatively reproduced experimentally measured properties of excitation in both control and pharmacological and dynamic-clamp interventions. Comparison of isolated and intact-cell models highlighted the importance of reproducing this cellular environment when comparing experimental and simulation data. Conclusion: We have developed a laboratory specific model of the human atrial cell which directly reproduces the experimental isolated-cell conditions and captures human atrial excitation properties. The model may be particularly useful for directly relating model to experiment, and offers a complementary tool to the available set of human atrial cell models with specific advantages resulting from the congruent input data source.
Collapse
Affiliation(s)
- Michael A Colman
- Leeds Computational Physiology Lab, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Priyanka Saxena
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Kettlewell
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
60
|
Yuan Y, Zhao J, Gong Y, Wang D, Wang X, Yun F, Liu Z, Zhang S, Li W, Zhao X, Sun L, Sheng L, Pan Z, Li Y. Autophagy exacerbates electrical remodeling in atrial fibrillation by ubiquitin-dependent degradation of L-type calcium channel. Cell Death Dis 2018; 9:873. [PMID: 30158642 PMCID: PMC6115437 DOI: 10.1038/s41419-018-0860-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/16/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
Abstract
Autophagy, a bidirectional degradative process extensively occurring in eukaryotes, has been revealed as a potential therapeutic target for several cardiovascular diseases. However, its role in atrial fibrillation (AF) remains largely unknown. This study aimed to determine the role of autophagy in atrial electrical remodeling under AF condition. Here, we reported that autophagic flux was markedly activated in atria of persistent AF patients and rabbit model of atrial rapid pacing (RAP). We also observed that the key autophagy-related gene7 (ATG7) significantly upregulated in AF patients as well as tachypacing rabbits. Moreover, lentivirus-mediated ATG7 knockdown and overexpression in rabbits were employed to clarify the effects of autophagy on atrial electrophysiology via intracardiac operation and patch-clamp experiments. Lentivirus-mediated ATG7 knockdown or autophagy inhibitor chloroquine (CQ) restored the shortened atrial effective refractory period (AERP) and alleviated the AF vulnerability caused by tachypacing in rabbits. Conversely, ATG7 overexpression significantly promoted the incidence and persistence of AF and decreased L-type calcium channel (Cav1.2 α-subunits), along with abbreviated action potential duration (APD) and diminished L-type calcium current (ICa,L). Furthermore, the co-localization and interaction of Cav1.2 with LC3B-positive autophagosomes enhanced when autophagy was activated in atrial myocytes. Tachypacing-induced autophagic degradation of Cav1.2 required ubiquitin signal through the recruitment of ubiquitin-binding proteins RFP2 and p62, which guided Cav1.2 to autophagosomes. These findings suggest that autophagy induces atrial electrical remodeling via ubiquitin-dependent selective degradation of Cav1.2 and provide a novel and promising strategy for preventing AF development.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Jing Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China.,Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, 150001, Harbin, China
| | - Yongtai Gong
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Dingyu Wang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Xiaoyu Wang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Fengxiang Yun
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Zhaorui Liu
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Song Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Wenpeng Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Xinbo Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Li Sun
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Li Sheng
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology, Harbin Medical University, 150081, Harbin, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China. .,Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, 150001, Harbin, China. .,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, 150081, Harbin, China.
| |
Collapse
|
61
|
Romanelli A, Affinito A, Avitabile C, Catuogno S, Ceriotti P, Iaboni M, Modica J, Condorelli G, Catalucci D. An anti-PDGFRβ aptamer for selective delivery of small therapeutic peptide to cardiac cells. PLoS One 2018. [PMID: 29513717 PMCID: PMC5841773 DOI: 10.1371/journal.pone.0193392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Small therapeutic peptides represent a promising field for the treatment of pathologies such as cardiac diseases. However, the lack of proper target-selective carriers hampers their translation towards a potential clinical application. Aptamers are cell-specific carriers that bind with high affinity to their specific target. However, some limitations on their conjugation to small peptides and the functionality of the resulting aptamer-peptide chimera exist. Here, we generated a novel aptamer-peptide chimera through conjugation of the PDGFRβ-targeting Gint4.T aptamer to MP, a small mimetic peptide that via targeting of the Cavβ2 subunit of the L-type calcium channel (LTCC) can recover myocardial function in pathological heart conditions associated with defective LTCC function. The conjugation reaction was performed by click chemistry in the presence of N,N,N',N',N"-pentamethyldiethylenetriamine as a Cu (I) stabilizing agent in a DMSO-free aqueous buffer. When administered to cardiac cells, the Gint4.T-MP aptamer-peptide chimera was successfully internalized in cells, allowing the functional targeting of MP to LTCC. This approach represents the first example of the use of an internalizing aptamer for selective delivery of a small therapeutic peptide to cardiac cells.
Collapse
Affiliation(s)
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Concetta Avitabile
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Silvia Catuogno
- Institute of Experimental Endocrinology and Oncology "G. Salvatore "IEOS-CNR, Naples, Italy
| | - Paola Ceriotti
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Margherita Iaboni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Jessica Modica
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
- Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Geroloma Condorelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Institute of Experimental Endocrinology and Oncology "G. Salvatore "IEOS-CNR, Naples, Italy
- * E-mail: (GC); (DC)
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
- Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
- * E-mail: (GC); (DC)
| |
Collapse
|
62
|
Report on the Ion Channel Symposium : Organized by the German Cardiac Society Working Group on Cellular Electrophysiology (AG 18). Herzschrittmacherther Elektrophysiol 2018; 29:4-13. [PMID: 29313139 DOI: 10.1007/s00399-017-0549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
To support scientific exchange and activity in the field of cardiac cellular electrophysiology, the German Cardiac Society Working Group on Cellular Electrophysiology (AG 18) established a two-day symposium to be held every 2 years. The second Ion Channel Symposium entitled "Göttingen Channels 2017-Of Benches and Beds" took place in Göttingen from September 22nd to 23rd under the auspices of the German Cardiac Society. A group of national and international experts presented scientific advances in cardiac electrophysiology and rhythmology. The symposium's primary focus was the significance of cellular electrophysiology findings for the optimization of diagnostic and therapeutic strategies against cardiac arrhythmias. To this end, speakers, chairpersons and attendees discussed the contribution of specific molecular alterations to the initiation and perpetuation of atrial and ventricular arrhythmias. Furthermore, the meeting highlighted how discoveries in electrophysiological research may lead to novel therapeutic targets. The interdisciplinary assessment of mechanisms and therapeutic strategies of cardiac arrhythmias represented a key feature of the meeting. A unique combination of topics and speakers representing both basic science and clinical electrophysiology ensured the scientific success of the "Göttingen Channels 2017" symposium. The next Ion Channel Symposium is planned to be hosted by the incoming co-chair of the German Cardiac Society Working Group on Cellular Electrophysiology in fall 2019.
Collapse
|
63
|
ICaL and Ito mediate rate-dependent repolarization in rabbit atrial myocytes. J Physiol Biochem 2017; 74:57-67. [DOI: 10.1007/s13105-017-0603-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023]
|
64
|
Rao F, Xue YM, Wei W, Yang H, Liu FZ, Chen SX, Kuang SJ, Zhu JN, Wu SL, Deng CY. Role of tumour necrosis factor-a in the regulation of T-type calcium channel current in HL-1 cells. Clin Exp Pharmacol Physiol 2017; 43:706-11. [PMID: 27119319 DOI: 10.1111/1440-1681.12585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/05/2016] [Accepted: 04/24/2016] [Indexed: 11/29/2022]
Abstract
Increasing evidence indicates that inflammation contributes to the initiation and perpetuation of atrial fibrillation (AF). Although tumour necrosis factor (TNF)-α levels are increased in patients with AF, the role of TNF-α in the pathogenesis of AF remains unclear. Besides L-type Ca(2+) currents (IC a,L ), T-type Ca(2+) currents (IC a,T ) also plays an important role in the pathogenesis of AF. This study was designed to use the whole-cell voltage-clamp technique and biochemical assays to explore if TNF-α is involved in the pathogenesis of AF through regulating IC a,T in atrial myocytes. It was found that compared with sinus rhythm (SR) controls, T-type calcium channel (TCC) subunit mRNA levels were decreased, while TNF-α expression levels were increased, in human atrial tissue from patients with AF. In murine atrial myocyte HL-1 cells, after culturing for 24 h, 12.5, 25 and 50 ng/mL TNF-α significantly reduced the protein expression levels of the TCC α1G subunit in a concentration-dependent manner. The peak current was reduced by the application of 12.5 or 25 ng/mL TNF-α in a concentration-dependent manner (from -15.08 ± 1.11 pA/pF in controls to -11.89 ± 0.83 pA/pF and -8.54 ± 1.55 pA/pF in 12.5 or 25 ng/mL TNF-α group respectively). TNF-α application also inhibited voltage-dependent inactivation of IC a,T, shifted the inactivation curve to the left. These results suggest that TNF-α is involved in the pathogenesis of AF, probably via decreasing IC a,T current density in atrium-derived myocytes through impaired channel function and down-regulation of channel protein expression. This pathway thus represents a potential pathogenic mechanism in AF.
Collapse
Affiliation(s)
- Fang Rao
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China.,Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Mei Xue
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Wei
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Yang
- Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang-Zhou Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shao-Xian Chen
- Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Su-Juan Kuang
- Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie-Ning Zhu
- Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shu-Lin Wu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China.,Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun-Yu Deng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China.,Research Centre of Medical Sciences, Guangdong General Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
65
|
Kanaporis G, Treinys R, Fischmeister R, Jurevičius J. Metabolic inhibition reduces cardiac L-type Ca2+ channel current due to acidification caused by ATP hydrolysis. PLoS One 2017; 12:e0184246. [PMID: 28859158 PMCID: PMC5578678 DOI: 10.1371/journal.pone.0184246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/21/2017] [Indexed: 01/14/2023] Open
Abstract
Metabolic stress evoked by myocardial ischemia leads to impairment of cardiac excitation and contractility. We studied the mechanisms by which metabolic inhibition affects the activity of L-type Ca2+ channels (LTCCs) in frog ventricular myocytes. Metabolic inhibition induced by the protonophore FCCP (as well as by 2,4- dinitrophenol, sodium azide or antimycin A) resulted in a dose-dependent reduction of LTCC current (ICa,L) which was more pronounced during β-adrenergic stimulation with isoprenaline. ICa,L was still reduced by metabolic inhibition even in the presence of 3 mM intracellular ATP, or when the cell was dialysed with cAMP or ATP-γ-S to induce irreversible thiophosphorylation of LTCCs, indicating that reduction in ICa,L is not due to ATP depletion and/or reduced phosphorylation of the channels. However, the effect of metabolic inhibition on ICa,L was strongly attenuated when the mitochondrial F1F0-ATP-synthase was blocked by oligomycin or when the cells were dialysed with the non-hydrolysable ATP analogue AMP-PCP. Moreover, increasing the intracellular pH buffering capacity or intracellular dialysis of the myocytes with an alkaline solution strongly attenuated the inhibitory effect of FCCP on ICa,L. Thus, our data demonstrate that metabolic inhibition leads to excessive ATP hydrolysis by the mitochondrial F1F0-ATP-synthase operating in the reverse mode and this results in intracellular acidosis causing the suppression of ICa,L. Limiting ATP break-down by F1F0-ATP-synthase and the consecutive development of intracellular acidosis might thus represent a potential therapeutic approach for maintaining a normal cardiac function during ischemia.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rimantas Treinys
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
66
|
Hu X, Van Marion DMS, Wiersma M, Zhang D, Brundel BJJM. The protective role of small heat shock proteins in cardiac diseases: key role in atrial fibrillation. Cell Stress Chaperones 2017; 22:665-674. [PMID: 28484965 PMCID: PMC5465041 DOI: 10.1007/s12192-017-0799-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most common tachyarrhythmia which is associated with increased morbidity and mortality. AF usually progresses from a self-terminating paroxysmal to persistent disease. It has been recognized that AF progression is driven by structural remodeling of cardiomyocytes, which results in electrical and contractile dysfunction of the atria. We recently showed that structural remodeling is rooted in derailment of proteostasis, i.e., homeostasis of protein production, function, and degradation. Since heat shock proteins (HSPs) play an important role in maintaining a healthy proteostasis, the role of HSPs was investigated in AF. It was found that especially small heat shock protein (HSPB) levels get exhausted in atrial tissue of patients with persistent AF and that genetic or pharmacological induction of HSPB protects against cardiomyocyte remodeling in experimental models for AF. In this review, we provide an overview of HSPBs as a potential therapeutic target for normalizing proteostasis and suppressing the substrates for AF progression in experimental and clinical AF and discuss HSP activators as a promising therapy to prevent AF onset and progression.
Collapse
Affiliation(s)
- Xu Hu
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Denise M S Van Marion
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Marit Wiersma
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Deli Zhang
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
67
|
Wang Y, Wang S, Lei M, Boyett M, Tsui H, Liu W, Wang X. The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration. Br J Pharmacol 2017; 175:1362-1374. [PMID: 28574147 DOI: 10.1111/bph.13872] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
p21-activated kinase 1 (Pak1) is a member of the highly conserved family of serine/threonine protein kinases regulated by Ras-related small G-proteins, Cdc42/Rac1. It has been previously demonstrated to be involved in cardiac protection. Based on recent studies, this review provides an overview of the role of Pak1 in cardiac diseases including disrupted Ca2+ homoeostasis-related cardiac arrhythmias, adrenergic stress- and pressure overload-induced hypertrophy, and ischaemia/reperfusion injury. These findings demonstrate the important role of Pak1 mediated through the phosphorylation and transcriptional modification of hypertrophy and/or arrhythmia-related genes. This review also discusses the anti-arrhythmic and anti-hypertrophic, protective function of Pak1 and the beneficial effects of fingolimod (an FDA-approved sphingolipid drug), a Pak1 activator, and its ability to prevent arrhythmias and cardiac hypertrophy. These findings also highlight the therapeutic potential of Pak1 signalling in the treatment and prevention of cardiac diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yanwen Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Shunyao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ming Lei
- Department of Pharmacology, The University of Oxford, Oxford, UK
| | - Mark Boyett
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hoyee Tsui
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
68
|
Aromolaran AS, Boutjdir M. Cardiac Ion Channel Regulation in Obesity and the Metabolic Syndrome: Relevance to Long QT Syndrome and Atrial Fibrillation. Front Physiol 2017; 8:431. [PMID: 28680407 PMCID: PMC5479057 DOI: 10.3389/fphys.2017.00431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023] Open
Abstract
Obesity and its associated metabolic dysregulation leading to metabolic syndrome is an epidemic that poses a significant public health problem. More than one-third of the world population is overweight or obese leading to enhanced risk of cardiovascular disease (CVD) incidence and mortality. Obesity predisposes to atrial fibrillation, ventricular, and supraventricular arrhythmias; conditions that are underlain by dysfunction in electrical activity of the heart. To date, current therapeutic options for cardiomyopathy of obesity are limited, suggesting that there is considerable room for development of therapeutic interventions with novel mechanisms of action that will help normalize rhythm in obese patients. Emerging candidates for modulation by obesity are cardiac ion channels and Ca handling proteins. However, the underlying molecular mechanisms of the impact of obesity on these channels/Ca handling proteins remain incompletely understood. Obesity is marked by accumulation of adipose tissue associated with a variety of adverse adaptations including dyslipidemia (or abnormal levels of serum free fatty acids), increased secretion of pro-inflammatory cytokines, fibrosis, hyperglycemia, and insulin resistance, that will cause electrical remodeling and thus predispose to arrhythmias. Further, adipose tissue is also associated with the accumulation of subcutaneous and visceral fat, which are marked by distinct signaling mechanisms. Thus, there may also be functional differences in the outcome of regional distribution of fat deposits on ion channel/Ca handling proteins expression. Evaluating alterations in their functional expression in obesity will lead to progress in the knowledge about the mechanisms responsible for obesity-related arrhythmias. These advances are likely to reveal new targets for pharmacological modulation. The objective of this article is to review cardiac ion channel/Ca handling proteins remodeling that predispose to arrhythmias. Understanding how obesity and related mechanisms lead to cardiac electrical remodeling is likely to have a significant medical and economic impact.
Collapse
Affiliation(s)
- Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare SystemBrooklyn, NY, United States.,Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, United States
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare SystemBrooklyn, NY, United States.,Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, United States.,Department of Medicine, New York University School of MedicineNew York, NY, United States
| |
Collapse
|
69
|
Differential regulation of protein phosphatase 1 (PP1) isoforms in human heart failure and atrial fibrillation. Basic Res Cardiol 2017; 112:43. [PMID: 28597249 DOI: 10.1007/s00395-017-0635-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Protein phosphatase 1 (PP1) is a key regulator of important cardiac signaling pathways. Dysregulation of PP1 has been heavily implicated in cardiac dysfunctions. Accordingly, pharmacological targeting of PP1 activity is considered for therapeutic intervention in human cardiomyopathies. Recent evidence from animal models implicated previously unrecognized, isoform-specific activities of PP1 in the healthy and diseased heart. Therefore, this study examined the expression of the distinct PP1 isoforms PP1α, β, and γ in human heart failure (HF) and atrial fibrillation (AF) and addressed the consequences of β-adrenoceptor blocker (beta-blocker) therapy for HF patients with reduced ejection fraction on PP1 isoform expression. Using western blot analysis, we found greater abundance of PP1 isoforms α and γ but unaltered PP1β levels in left ventricular myocardial tissues from HF patients as compared to non-failing controls. However, expression of all three PP1 isoforms was higher in atrial appendages from patients with AF compared to patients with sinus rhythm. Moreover, we found that in human failing ventricles, beta-blocker therapy was associated with lower PP1α abundance and activity, as indicated by higher phosphorylation of the PP1α-specific substrate eIF2α. Greater eIF2α phosphorylation is a known repressor of protein translation, and accordingly, we found lower levels of the endoplasmic reticulum (ER) stress marker Grp78 in the very same samples. We propose that isoform-specific targeting of PP1α activity may be a novel and innovative therapeutic strategy for the treatment of human cardiac diseases by reducing ER stress conditions.
Collapse
|
70
|
Bond RC, Bryant SM, Watson JJ, Hancox JC, Orchard CH, James AF. Reduced density and altered regulation of rat atrial L-type Ca 2+ current in heart failure. Am J Physiol Heart Circ Physiol 2017; 312:H384-H391. [PMID: 27923791 PMCID: PMC5402008 DOI: 10.1152/ajpheart.00528.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 11/22/2022]
Abstract
Constitutive regulation by PKA has recently been shown to contribute to L-type Ca2+ current (ICaL) at the ventricular t-tubule in heart failure. Conversely, reduction in constitutive regulation by PKA has been proposed to underlie the downregulation of atrial ICaL in heart failure. The hypothesis that downregulation of atrial ICaL in heart failure involves reduced channel phosphorylation was examined. Anesthetized adult male Wistar rats underwent surgical coronary artery ligation (CAL, N=10) or equivalent sham-operation (Sham, N=12). Left atrial myocytes were isolated ~18 wk postsurgery and whole cell currents recorded (holding potential=-80 mV). ICaL activated by depolarizing pulses to voltages from -40 to +50 mV were normalized to cell capacitance and current density-voltage relations plotted. CAL cell capacitances were ~1.67-fold greater than Sham (P ≤ 0.0001). Maximal ICaL conductance (Gmax ) was downregulated more than 2-fold in CAL vs. Sham myocytes (P < 0.0001). Norepinephrine (1 μmol/l) increased Gmax >50% more effectively in CAL than in Sham so that differences in ICaL density were abolished. Differences between CAL and Sham Gmax were not abolished by calyculin A (100 nmol/l), suggesting that increased protein dephosphorylation did not account for ICaL downregulation. Treatment with either H-89 (10 μmol/l) or AIP (5 μmol/l) had no effect on basal currents in Sham or CAL myocytes, indicating that, in contrast to ventricular myocytes, neither PKA nor CaMKII regulated basal ICaL Expression of the L-type α1C-subunit, protein phosphatases 1 and 2A, and inhibitor-1 proteins was unchanged. In conclusion, reduction in PKA-dependent regulation did not contribute to downregulation of atrial ICaL in heart failure.NEW & NOTEWORTHY Whole cell recording of L-type Ca2+ currents in atrial myocytes from rat hearts subjected to coronary artery ligation compared with those from sham-operated controls reveals marked reduction in current density in heart failure without change in channel subunit expression and associated with altered phosphorylation independent of protein kinase A.
Collapse
Affiliation(s)
- Richard C Bond
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Simon M Bryant
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Judy J Watson
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jules C Hancox
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Clive H Orchard
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Andrew F James
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
71
|
Heijman J, Ghezelbash S, Wehrens XHT, Dobrev D. Serine/Threonine Phosphatases in Atrial Fibrillation. J Mol Cell Cardiol 2017; 103:110-120. [PMID: 28077320 DOI: 10.1016/j.yjmcc.2016.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Serine/threonine protein phosphatases control dephosphorylation of numerous cardiac proteins, including a variety of ion channels and calcium-handling proteins, thereby providing precise post-translational regulation of cardiac electrophysiology and function. Accordingly, dysfunction of this regulation can contribute to the initiation, maintenance and progression of cardiac arrhythmias. Atrial fibrillation (AF) is the most common heart rhythm disorder and is characterized by electrical, autonomic, calcium-handling, contractile, and structural remodeling, which include, among other things, changes in the phosphorylation status of a wide range of proteins. Here, we review AF-associated alterations in the phosphorylation of atrial ion channels, calcium-handling and contractile proteins, and their role in AF-pathophysiology. We highlight the mechanisms controlling the phosphorylation of these proteins and focus on the role of altered dephosphorylation via local type-1, type-2A and type-2B phosphatases (PP1, PP2A, and PP2B, also known as calcineurin, respectively). Finally, we discuss the challenges for phosphatase research, potential therapeutic significance of altered phosphatase-mediated protein dephosphorylation in AF, as well as future directions.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shokoufeh Ghezelbash
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine (Cardiology), Pediatrics, Baylor College of Medicine, Houston, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
72
|
Molina CE, Voigt N. Finding Ms or Mr Right: Which miRNA to target in AF? J Mol Cell Cardiol 2017; 102:22-25. [DOI: 10.1016/j.yjmcc.2016.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
|
73
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
74
|
Chiang DY, Heck AJR, Dobrev D, Wehrens XHT. Regulating the regulator: Insights into the cardiac protein phosphatase 1 interactome. J Mol Cell Cardiol 2016; 101:165-172. [PMID: 27663175 PMCID: PMC5154861 DOI: 10.1016/j.yjmcc.2016.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 11/28/2022]
Abstract
Reversible phosphorylation of proteins is a delicate yet dynamic balancing act between kinases and phosphatases, the disturbance of which underlies numerous disease processes. While our understanding of protein kinases has grown tremendously over the past decades, relatively little is known regarding protein phosphatases. This may be because protein kinases are great in number and relatively specific in function, and thereby amenable to be studied in isolation, whereas protein phosphatases are much less abundant and more nonspecific in their function. To achieve subcellular localization and substrate specificity, phosphatases depend on partnering with a large number of regulatory subunits, protein scaffolds and/or other interactors. This added layer of complexity presents a significant barrier to their study, but holds the key to unexplored opportunities for novel pharmacologic intervention. In this review we focus on serine/threonine protein phosphatase type-1 (PP1), which plays an important role in cardiac physiology and pathophysiology. Although much work has been done to investigate the role of PP1 in cardiac diseases including atrial fibrillation and heart failure, most of these studies were limited to examining and manipulating the catalytic subunit(s) of PP1 without adequately considering the PP1 interactors, which give specificity to PP1's functions. To complement these studies, three unbiased methods have been developed and applied to the mapping of the PP1 interactome: bioinformatics approaches, yeast two-hybrid screens, and affinity-purification mass spectrometry. The application of these complementary methods has the potential to generate a detailed cardiac PP1 interactome, which is an important step in identifying novel and targeted pharmacological interventions.
Collapse
Affiliation(s)
- David Y Chiang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Dobromir Dobrev
- Institute of Pharmacology, University Duisburg/Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA; Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
75
|
Gasparova I, Kubatka P, Opatrilova R, Caprnda M, Filipova S, Rodrigo L, Malan L, Mozos I, Rabajdova M, Nosal V, Kobyliak N, Valentova V, Petrovic D, Adamek M, Kruzliak P. Perspectives and challenges of antioxidant therapy for atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:1-14. [PMID: 27900409 DOI: 10.1007/s00210-016-1320-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia associated with significant morbidity and mortality. The mechanisms underlying the pathogenesis of AF are poorly understood, although electrophysiological remodeling has been described as an important initiating step. There is growing evidence that oxidative stress is involved in the pathogenesis of AF. Many known triggers of oxidative stress, such as age, diabetes, smoking, and inflammation, are linked with an increased risk of arrhythmia. Numerous preclinical studies and clinical trials reported the importance of antioxidant therapy in the prevention of AF, using vitamins C and E, polyunsaturated fatty acids, statins, or nitric oxide donors. The aim of our work is to give a current overview and analysis of opportunities, challenges, and benefits of antioxidant therapy in AF.
Collapse
Affiliation(s)
- Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovak Republic, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Slavomira Filipova
- Department of Cardiology, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University of Asturias (HUCA), Oviedo, Spain
| | - Leone Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Ioana Mozos
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Vladimir Nosal
- Clinic of Neurology, Jessenius Faculty of Medicine, Comenius University and University Hospital in Martin, Martin, Slovak Republic
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Vanda Valentova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic, Slovakia
| | - Daniel Petrovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljublana, Ljublana, Slovenia
| | - Mariusz Adamek
- Department of Thoracic Surgery, Medical University of Silesia, Zabrze, Poland
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic. .,2nd Department of Surgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
76
|
Uzun AU, Mannhardt I, Breckwoldt K, Horváth A, Johannsen SS, Hansen A, Eschenhagen T, Christ T. Ca(2+)-Currents in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Effects of Two Different Culture Conditions. Front Pharmacol 2016; 7:300. [PMID: 27672365 PMCID: PMC5018497 DOI: 10.3389/fphar.2016.00300] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) provide a unique opportunity to study human heart physiology and pharmacology and repair injured hearts. The suitability of hiPSC-CM critically depends on how closely they share physiological properties of human adult cardiomyocytes (CM). Here we investigated whether a 3D engineered heart tissue (EHT) culture format favors maturation and addressed the L-type Ca2+-current (ICa,L) as a readout. The results were compared with hiPSC-CM cultured in conventional monolayer (ML) and to our previous data from human adult atrial and ventricular CM obtained when identical patch-clamp protocols were used. HiPSC-CM were two- to three-fold smaller than adult CM, independently of culture format [capacitance ML 45 ± 1 pF (n = 289), EHT 45 ± 1 pF (n = 460), atrial CM 87 ± 3 pF (n = 196), ventricular CM 126 ± 8 pF (n = 50)]. Only 88% of ML cells showed ICa, but all EHT. Basal ICa density was 10 ± 1 pA/pF (n = 207) for ML and 12 ± 1 pA/pF (n = 361) for EHT and was larger than in adult CM [7 ± 1 pA/pF (p < 0.05, n = 196) for atrial CM and 6 ± 1 pA/pF (p < 0.05, n = 47) for ventricular CM]. However, ML and EHT showed robust T-type Ca2+-currents (ICa,T). While (−)-Bay K 8644, that activates ICa,L directly, increased ICa,Lto the same extent in ML and EHT, β1- and β2-adrenoceptor effects were marginal in ML, but of same size as (−)-Bay K 8644 in EHT. The opposite was true for serotonin receptors. Sensitivity to β1 and β2-adrenoceptor stimulation was the same in EHT as in adult CM (−logEC50: 5.9 and 6.1 for norepinephrine (NE) and epinephrine (Epi), respectively), but very low concentrations of Rp-8-Br-cAMPS were sufficient to suppress effects (−logEC50: 5.3 and 5.3 respectively for NE and Epi). Taken together, hiPSC-CM express ICa,L at the same density as human adult CM, but, in contrast, possess robust ICa,T. Increased effects of catecholamines in EHT suggest more efficient maturation.
Collapse
Affiliation(s)
- Ahmet U Uzun
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - András Horváth
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of SzegedSzeged, Hungary
| | - Silke S Johannsen
- Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany; Department of General and Interventional Cardiology, University Heart Center HamburgHamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| |
Collapse
|
77
|
Rusconi F, Ceriotti P, Miragoli M, Carullo P, Salvarani N, Rocchetti M, Di Pasquale E, Rossi S, Tessari M, Caprari S, Cazade M, Kunderfranco P, Chemin J, Bang ML, Polticelli F, Zaza A, Faggian G, Condorelli G, Catalucci D. Peptidomimetic Targeting of Cavβ2 Overcomes Dysregulation of the L-Type Calcium Channel Density and Recovers Cardiac Function. Circulation 2016; 134:534-46. [PMID: 27486162 DOI: 10.1161/circulationaha.116.021347] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND L-type calcium channels (LTCCs) play important roles in regulating cardiomyocyte physiology, which is governed by appropriate LTCC trafficking to and density at the cell surface. Factors influencing the expression, half-life, subcellular trafficking, and gating of LTCCs are therefore critically involved in conditions of cardiac physiology and disease. METHODS Yeast 2-hybrid screenings, biochemical and molecular evaluations, protein interaction assays, fluorescence microscopy, structural molecular modeling, and functional studies were used to investigate the molecular mechanisms through which the LTCC Cavβ2 chaperone regulates channel density at the plasma membrane. RESULTS On the basis of our previous results, we found a direct linear correlation between the total amount of the LTCC pore-forming Cavα1.2 and the Akt-dependent phosphorylation status of Cavβ2 both in a mouse model of diabetic cardiac disease and in 6 diabetic and 7 nondiabetic cardiomyopathy patients with aortic stenosis undergoing aortic valve replacement. Mechanistically, we demonstrate that a conformational change in Cavβ2 triggered by Akt phosphorylation increases LTCC density at the cardiac plasma membrane, and thus the inward calcium current, through a complex pathway involving reduction of Cavα1.2 retrograde trafficking and protein degradation through the prevention of dynamin-mediated LTCC endocytosis; promotion of Cavα1.2 anterograde trafficking by blocking Kir/Gem-dependent sequestration of Cavβ2, thus facilitating the chaperoning of Cavα1.2; and promotion of Cavα1.2 transcription by the prevention of Kir/Gem-mediated shuttling of Cavβ2 to the nucleus, where it limits the transcription of Cavα1.2 through recruitment of the heterochromatin protein 1γ epigenetic repressor to the Cacna1c promoter. On the basis of this mechanism, we developed a novel mimetic peptide that, through targeting of Cavβ2, corrects LTCC life-cycle alterations, facilitating the proper function of cardiac cells. Delivery of mimetic peptide into a mouse model of diabetic cardiac disease associated with LTCC abnormalities restored impaired calcium balance and recovered cardiac function. CONCLUSIONS We have uncovered novel mechanisms modulating LTCC trafficking and life cycle and provide proof of concept for the use of Cavβ2 mimetic peptide as a novel therapeutic tool for the improvement of cardiac conditions correlated with alterations in LTCC levels and function.
Collapse
Affiliation(s)
- Francesca Rusconi
- From Humanitas Clinical and Research Center, Rozzano, Milan, Italy (F.R., P. Ceriotti, M.M., P. Carullo, N.S., E.D.P., P.K., M.-L.B., G.C., D.C.); Institute of Genetic and Biomedical Research UOS Milan National Research Council, Milan, Italy (F.R., P. Carullo, N.S., E.D.P., M.-L.B., D.C.); Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Milan, Italy (M.R., A.Z.); Departments of Life Sciences (S.R.) and Clinical and Experimental Medicine (M.M.), University of Parma, Parma, Italy; University Hospital of Verona, Division of Cardiac Surgery, Verona, Italy (M.T., G.F.); Department of Sciences, University of Roma Tre, Rome, Italy (S.C., F.P.); University of Montpellier, CNRS UMR 5203, INSERM, Department of Neuroscience, Institute for Functional Genomics, LabEx Ion Channel Science and Therapeutics, Montpellier, France (M.C., J.C.); and National Institute of Nuclear Physics, Rome Tre Section, Rome, Italy (F.P.)
| | - Paola Ceriotti
- From Humanitas Clinical and Research Center, Rozzano, Milan, Italy (F.R., P. Ceriotti, M.M., P. Carullo, N.S., E.D.P., P.K., M.-L.B., G.C., D.C.); Institute of Genetic and Biomedical Research UOS Milan National Research Council, Milan, Italy (F.R., P. Carullo, N.S., E.D.P., M.-L.B., D.C.); Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Milan, Italy (M.R., A.Z.); Departments of Life Sciences (S.R.) and Clinical and Experimental Medicine (M.M.), University of Parma, Parma, Italy; University Hospital of Verona, Division of Cardiac Surgery, Verona, Italy (M.T., G.F.); Department of Sciences, University of Roma Tre, Rome, Italy (S.C., F.P.); University of Montpellier, CNRS UMR 5203, INSERM, Department of Neuroscience, Institute for Functional Genomics, LabEx Ion Channel Science and Therapeutics, Montpellier, France (M.C., J.C.); and National Institute of Nuclear Physics, Rome Tre Section, Rome, Italy (F.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Li C, Lim B, Hwang M, Song JS, Lee YS, Joung B, Pak HN. The Spatiotemporal Stability of Dominant Frequency Sites in In-Silico Modeling of 3-Dimensional Left Atrial Mapping of Atrial Fibrillation. PLoS One 2016; 11:e0160017. [PMID: 27459377 PMCID: PMC4961424 DOI: 10.1371/journal.pone.0160017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We previously reported that stable rotors were observed in in-silico human atrial fibrillation (AF) models, and were well represented by dominant frequency (DF). We explored the spatiotemporal stability of DF sites in 3D-AF models imported from patient CT images of the left atrium (LA). METHODS We integrated 3-D CT images of the LA obtained from ten patients with persistent AF (male 80%, 61.8 ± 13.5 years old) into an in-silico AF model. After induction, we obtained 6 seconds of AF simulation data for DF analyses in 30 second intervals (T1-T9). The LA was divided into ten sections. Spatiotemporal changes and variations in the temporal consistency of DF were evaluated at each section of the LA. The high DF area was defined as the area with the highest 10% DF. RESULTS 1. There was no spatial consistency in the high DF distribution at each LA section during T1-T9 except in one patient (p = 0.027). 2. Coefficients of variation for the high DF area were highly different among the ten LA sections (p < 0.001), and they were significantly higher in the four pulmonary vein (PV) areas, the LA appendage, and the peri-mitral area than in the other LA sections (p < 0.001). 3. When we conducted virtual ablation of 10%, 15%, and 20% of the highest DF areas (n = 270 cases), AF was changed to atrial tachycardia (AT) or terminated at a rate of 40%, 57%, and 76%, respectively. CONCLUSIONS Spatiotemporal consistency of the DF area was observed in 10% of AF patients, and high DF areas were temporally variable. Virtual ablation of DF is moderately effective in AF termination and AF changing into AT.
Collapse
Affiliation(s)
- Changyong Li
- Yonsei University Health System, Seoul, Republic of Korea
| | - Byounghyun Lim
- Yonsei University Health System, Seoul, Republic of Korea
| | - Minki Hwang
- Yonsei University Health System, Seoul, Republic of Korea
| | - Jun-Seop Song
- Yonsei University Health System, Seoul, Republic of Korea
| | - Young-Seon Lee
- Yonsei University Health System, Seoul, Republic of Korea
| | - Boyoung Joung
- Yonsei University Health System, Seoul, Republic of Korea
| | - Hui-Nam Pak
- Yonsei University Health System, Seoul, Republic of Korea
| |
Collapse
|
79
|
Berk E, Christ T, Schwarz S, Ravens U, Knaut M, Kaumann AJ. In permanent atrial fibrillation, PDE3 reduces force responses to 5-HT, but PDE3 and PDE4 do not cause the blunting of atrial arrhythmias. Br J Pharmacol 2016; 173:2478-89. [PMID: 27238373 DOI: 10.1111/bph.13525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-HT increases force and L-type Ca(2) (+) current (ICa,L ) and causes arrhythmias through 5-HT4 receptors in human atrium. In permanent atrial fibrillation (peAF), atrial force responses to 5-HT are blunted, arrhythmias abolished but ICa,L responses only moderately attenuated. We investigated whether, in peAF, this could be due to an increased function of PDE3 and/or PDE4, using the inhibitors cilostamide (300 nM) and rolipram (1 μM) respectively. EXPERIMENTAL APPROACH Contractile force, arrhythmic contractions and ICa,L were assessed in right atrial trabeculae and myocytes, obtained from patients with sinus rhythm (SR), paroxysmal atrial fibrillation (pAF) and peAF. KEY RESULTS Maximum force responses to 5-HT were reduced to 15% in peAF, but not in pAF. Cilostamide, but not rolipram, increased both the blunted force responses to 5-HT in peAF and the inotropic potency of 5-HT fourfold to sevenfold in trabeculae of patients with SR, pAF and peAF. Lusitropic responses to 5-HT were not decreased in peAF. Responses of ICa,L to 5-HT did not differ and were unaffected by cilostamide or rolipram in myocytes from patients with SR or peAF. Concurrent cilostamide and rolipram increased 5-HT's propensity to elicit arrhythmias in trabeculae from patients with SR, but not with peAF. CONCLUSIONS AND IMPLICATIONS PDE3, but not PDE4, reduced inotropic responses to 5-HT in peAF, independently of lusitropy and ICa,L , but PDE3 activity was the same as that in patients with SR and pAF. Atrial remodelling in peAF abolished the facilitation of 5-HT to induce arrhythmias by inhibition of PDE3 plus PDE4.
Collapse
Affiliation(s)
- Emanuel Berk
- Department of Pharmacology, Dresden University of Technology, Dresden, Germany.,Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Internal Medicine II, Municipal Hospital Dresden-Friedrichstadt, Dresden, Germany
| | - Torsten Christ
- Department of Pharmacology, Dresden University of Technology, Dresden, Germany.,Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Simon Schwarz
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ursula Ravens
- Department of Pharmacology, Dresden University of Technology, Dresden, Germany
| | - Michael Knaut
- Department of Heart Surgery, Dresden University of Technology, Dresden, Germany
| | - Alberto J Kaumann
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Pharmacology, University of Murcia, Murcia, Spain
| |
Collapse
|
80
|
Zhao Y, Yuan Y, Qiu C. Underexpression of CACNA1C Caused by Overexpression of microRNA-29a Underlies the Pathogenesis of Atrial Fibrillation. Med Sci Monit 2016; 22:2175-81. [PMID: 27341015 PMCID: PMC4924888 DOI: 10.12659/msm.896191] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The objective of this study was to investigate the molecular mechanism of atrial fibrillation (AF), as well as the negative regulatory relationship between miR-29a-3p and CACNA1C. Material/Methods We searched the online miRNA database (www.mirdb.org) and identified the miR-29a-3p binding sequence within the 3′-UTR of the target gene, and then conducted luciferase assay to verify it. The cells were transfected with miR-29a-3p and ICa,L was determined in those cells. Results We validated CACNA1C to be the direct target gene of miR-29a-3p. We also established the negative regulatory relationship between miR-29a-3p and CACNA1C via studying the relative luciferase activity. We also conducted real-time PCR and Western blot analysis to study the mRNA and protein expression level of CACNA1C among different groups of cells treated with scramble control, 30nM miR-29a-3p mimics, and 60nM miR-29a-3p mimics, indicating a negative regulatory relationship between miR-29a-3p and CACNA1C. We next analyzed whether miR-29a-3p transfection in cardiomyocytes produced the effects on the ICa,L induced by electrical remodeling, and found a tonic inhibition of IBa by endogenous miR-29a-3p in atrial myocytes. Conclusions We validated the negative regulation between miR-29a-3p and CACNA1C, and found that miR-29a-3p might a potential therapeutic target in the treatment of AF.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Cardiovascular, No. 7 People's Hospital in Zhengzhou, Zhengzhou, Henan, China (mainland)
| | - Yiqiang Yuan
- Department of Cardiovascular, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Chunguang Qiu
- Department of Cardiovascular, No. 7 People's Hospital in Zhengzhou, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
81
|
Kirchhof P, Goette A, Näbauer M, Schotten U. [AFNET. A translational research network develops into an academic research organization]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016; 59:514-22. [PMID: 26979716 DOI: 10.1007/s00103-016-2323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
"The whole is greater than the sum of its parts" (Aristotle).Atrial fibrillation (AF) is the most common sustained arrhythmia and affects 1-2 % of the population in developed countries, especially the elderly. We expect that the prevalence of AF will double in the next few decades. The last decades have seen important improvements in the management of atrial fibrillation, but many questions remain regarding the optimal diagnosis and management of the condition. The German Atrial Fibrillation NETwork (AFNET) was one of three cardiovascular competence networks in medicine funded by the German Ministry of Education and Research between 2003-2014. AFNET has contributed to the understanding of atrial fibrillation, and AFNET-led studies have led to improved clinical practices and practice guidelines in Germany and in Europe. This work has been expanded and is continuing in the AFNET association (AFNET e. V.). The AFNET association, founded in 2010 and continuing to this day, has developed into a small but fully formed academic research organisation that conducts investigator-initiated clinical trials as the responsible sponsor in Germany, Europe, and beyond. The AFNET association currently cooperates with EHRA (The European Heart Rhythm Association), ESC (The European Society of Cardiology) and DZHK (The German Centre for Cardiovascular Research) and receives funding from the European Union to generate evidence that can in the future lead to better prevention and management of AF.
Collapse
Affiliation(s)
- Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham and SWBH and UHB NHS Trusts, B15 2TT, Birmingham, UK.
- Department für Kardiologie und Angiologie, Universitätsklinikum Münster, Münster, Deutschland.
- AFNET e. V., Münster, Deutschland.
- Kompetenznetz Vorhofflimmern, Mendelstraße 11, 48149, Münster, Deutschland.
| | - Andreas Goette
- AFNET e. V., Münster, Deutschland
- Vincenz-Krankenhaus, Paderborn, Deutschland
| | - Michael Näbauer
- AFNET e. V., Münster, Deutschland
- Klinikum der Ludwig Maximilian Universität, München, Deutschland
| | - Ulrich Schotten
- AFNET e. V., Münster, Deutschland
- Department of Physiology, Maastricht University, Maastricht, Niederlande
| |
Collapse
|
82
|
Liu M, Yang KC, Dudley SC. Cardiac Sodium Channel Mutations: Why so Many Phenotypes? CURRENT TOPICS IN MEMBRANES 2016; 78:513-59. [PMID: 27586294 DOI: 10.1016/bs.ctm.2015.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac Na(+) channel (Nav1.5) conducts a depolarizing inward Na(+) current that is responsible for the generation of the upstroke Phase 0 of the action potential. In heart tissue, changes in Na(+) currents can affect conduction velocity and impulse propagation. The cardiac Nav1.5 is also involved in determination of the action potential duration, since some channels may reopen during the plateau phase, generating a persistent or late inward current. Mutations of cardiac Nav1.5 can induce gain or loss of channel function because of an increased late current or a decrease of peak current, respectively. Gain-of-function mutations cause Long QT syndrome type 3 and possibly atrial fibrillation, while loss-of-function channel mutations are associated with a wider variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, dilated cardiomyopathy, and sick sinus node syndrome. The penetrance and phenotypes resulting from Nav1.5 mutations also vary with age, gender, body temperature, circadian rhythm, and between regions of the heart. This phenotypic variability makes it difficult to correlate genotype-phenotype. We propose that mutations are only one contributor to the phenotype and additional modifications on Nav1.5 lead to the phenotypic variability. Possible modifiers include other genetic variations and alterations in the life cycle of Nav1.5 such as gene transcription, RNA processing, translation, posttranslational modifications, trafficking, complex assembly, and degradation. In this chapter, we summarize potential modifiers of cardiac Nav1.5 that could help explain the clinically observed phenotypic variability. Consideration of these modifiers could help improve genotype-phenotype correlations and lead to new therapeutic strategies.
Collapse
Affiliation(s)
- M Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - K-C Yang
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - S C Dudley
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
83
|
Lee YS, Hwang M, Song JS, Li C, Joung B, Sobie EA, Pak HN. The Contribution of Ionic Currents to Rate-Dependent Action Potential Duration and Pattern of Reentry in a Mathematical Model of Human Atrial Fibrillation. PLoS One 2016; 11:e0150779. [PMID: 26964092 PMCID: PMC4795605 DOI: 10.1371/journal.pone.0150779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/17/2016] [Indexed: 11/19/2022] Open
Abstract
Persistent atrial fibrillation (PeAF) in humans is characterized by shortening of action potential duration (APD) and attenuation of APD rate-adaptation. However, the quantitative influences of particular ionic current alterations on rate-dependent APD changes, and effects on patterns of reentry in atrial tissue, have not been systematically investigated. Using mathematical models of human atrial cells and tissue and performing parameter sensitivity analysis, we evaluated the quantitative contributions to action potential (AP) shortening and APD rate-adaptation of ionic current remodeling seen with PeAF. Ionic remodeling in PeAF was simulated by reducing L-type Ca2+ channel current (ICaL), increasing inward rectifier K+ current (IK1) and modulating five other ionic currents. Parameter sensitivity analysis, which quantified how each ionic current influenced APD in control and PeAF conditions, identified interesting results, including a negative effect of Na+/Ca2+ exchange on APD only in the PeAF condition. At high pacing rate (2 Hz), electrical remodeling in IK1 alone accounts for the APD reduction of PeAF, but at slow pacing rate (0.5 Hz) both electrical remodeling in ICaL alone (-70%) and IK1 alone (+100%) contribute equally to the APD reduction. Furthermore, AP rate-adaptation was affected by IKur in control and by INaCa in the PeAF condition. In a 2D tissue model, a large reduction (-70%) of ICaL becomes a dominant factor leading to a stable spiral wave in PeAF. Our study provides a quantitative and unifying understanding of the roles of ionic current remodeling in determining rate-dependent APD changes at the cellular level and spatial reentry patterns in tissue.
Collapse
Affiliation(s)
- Young-Seon Lee
- Yonsei University Health System, Seoul, Republic of Korea
| | - Minki Hwang
- Yonsei University Health System, Seoul, Republic of Korea
| | - Jun-Seop Song
- Yonsei University Health System, Seoul, Republic of Korea
| | - Changyong Li
- Yonsei University Health System, Seoul, Republic of Korea
| | - Boyoung Joung
- Yonsei University Health System, Seoul, Republic of Korea
| | - Eric A. Sobie
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (HNP); (EAS)
| | - Hui-Nam Pak
- Yonsei University Health System, Seoul, Republic of Korea
- * E-mail: (HNP); (EAS)
| |
Collapse
|
84
|
Mesubi OO, Anderson ME. Atrial remodelling in atrial fibrillation: CaMKII as a nodal proarrhythmic signal. Cardiovasc Res 2016; 109:542-57. [PMID: 26762270 DOI: 10.1093/cvr/cvw002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
CaMKII is a serine-threonine protein kinase that is abundant in myocardium. Emergent evidence suggests that CaMKII may play an important role in promoting atrial fibrillation (AF) by targeting a diverse array of proteins involved in membrane excitability, cell survival, calcium homeostasis, matrix remodelling, inflammation, and metabolism. Furthermore, CaMKII inhibition appears to protect against AF in animal models and correct proarrhythmic, defective intracellular Ca(2+) homeostasis in fibrillating human atrial cells. This review considers current concepts and evidence from animal and human studies on the role of CaMKII in AF.
Collapse
Affiliation(s)
- Olurotimi O Mesubi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Medicine, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 9026, Baltimore, MD 21287, USA
| | - Mark E Anderson
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Medicine, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 9026, Baltimore, MD 21287, USA Department of Physiology and the Program in Cellular and Molecular Medicine, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
85
|
Pellman J, Sheikh F. Atrial fibrillation: mechanisms, therapeutics, and future directions. Compr Physiol 2016; 5:649-65. [PMID: 25880508 DOI: 10.1002/cphy.c140047] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, affecting 1% to 2% of the general population. It is characterized by rapid and disorganized atrial activation leading to impaired atrial function, which can be diagnosed on an EKG by lack of a P-wave and irregular QRS complexes. AF is associated with increased morbidity and mortality and is a risk factor for embolic stroke and worsening heart failure. Current research on AF support and explore the hypothesis that initiation and maintenance of AF require pathophysiological remodeling of the atria, either specifically as in lone AF or secondary to other heart disease as in heart failure-associated AF. Remodeling in AF can be grouped into three categories that include: (i) electrical remodeling, which includes modulation of L-type Ca(2+) current, various K(+) currents and gap junction function; (ii) structural remodeling, which includes changes in tissues properties, size, and ultrastructure; and (iii) autonomic remodeling, including altered sympathovagal activity and hyperinnervation. Electrical, structural, and autonomic remodeling all contribute to creating an AF-prone substrate which is able to produce AF-associated electrical phenomena including a rapidly firing focus, complex multiple reentrant circuit or rotors. Although various remodeling events occur in AF, current AF therapies focus on ventricular rate and rhythm control strategies using pharmacotherapy and surgical interventions. Recent progress in the field has started to focus on the underlying substrate that drives and maintains AF (termed upstream therapies); however, much work is needed in this area. Here, we review current knowledge of AF mechanisms, therapies, and new areas of investigation.
Collapse
Affiliation(s)
- Jason Pellman
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
86
|
Abstract
Stress-response kinases, the mitogen-activated protein kinases (MAPKs) are activated in response to the challenge of a myriad of stressors. c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERKs), and p38 MAPKs are the predominant members of the MAPK family in the heart. Extensive studies have revealed critical roles of activated MAPKs in the processes of cardiac injury and heart failure and many other cardiovascular diseases. Recently, emerging evidence suggests that MAPKs also promote the development of cardiac arrhythmias. Thus, understanding the functional impact of MAPKs in the heart could shed new light on the development of novel therapeutic approaches to improve cardiac function and prevent arrhythmia development in the patients. This review will summarize the recent findings on the role of MAPKs in cardiac remodeling and arrhythmia development and point to the critical need of future studies to further elucidate the fundamental mechanisms of MAPK activation and arrhythmia development in the heart.
Collapse
|
87
|
Zhang H, Cannell MB, Kim SJ, Watson JJ, Norman R, Calaghan SC, Orchard CH, James AF. Cellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload. PLoS One 2015; 10:e0144309. [PMID: 26713852 PMCID: PMC4694654 DOI: 10.1371/journal.pone.0144309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/16/2015] [Indexed: 11/19/2022] Open
Abstract
Atrial remodeling due to elevated arterial pressure predisposes the heart to atrial fibrillation (AF). Although abnormal sarcoplasmic reticulum (SR) function has been associated with AF, there is little information on the effects of elevated afterload on atrial Ca2+-handling. We investigated the effects of ascending aortic banding (AoB) on Ca2+-handling in rat isolated atrial myocytes in comparison to age-matched sham-operated animals (Sham). Myocytes were either labelled for ryanodine receptor (RyR) or loaded with fluo-3-AM and imaged by confocal microscopy. AoB myocytes were hypertrophied in comparison to Sham controls (P<0.0001). RyR labeling was localized to the z-lines and to the cell edge. There were no differences between AoB and Sham in the intensity or pattern of RyR-staining. In both AoB and Sham, electrical stimulation evoked robust SR Ca2+-release at the cell edge whereas Ca2+ transients at the cell center were much smaller. Western blotting showed a decreased L-type Ca channel expression but no significant changes in RyR or RyR phosphorylation or in expression of Na+/Ca2+ exchanger, SR Ca2+ ATPase or phospholamban. Mathematical modeling indicated that [Ca2+]i transients at the cell center were accounted for by simple centripetal diffusion of Ca2+ released at the cell edge. In contrast, caffeine (10 mM) induced Ca2+ release was uniform across the cell. The caffeine-induced transient was smaller in AoB than in Sham, suggesting a reduced SR Ca2+-load in hypertrophied cells. There were no significant differences between AoB and Sham cells in the rate of Ca2+ extrusion during recovery of electrically-stimulated or caffeine-induced transients. The incidence and frequency of spontaneous Ca2+-transients following rapid-pacing (4 Hz) was greater in AoB than in Sham myocytes. In conclusion, elevated afterload causes cellular hypertrophy and remodeling of atrial SR Ca2+-release.
Collapse
Affiliation(s)
- Haifei Zhang
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Mark B. Cannell
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Shang Jin Kim
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Judy J. Watson
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Ruth Norman
- School of Biomedical Sciences, Garstang, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sarah C. Calaghan
- School of Biomedical Sciences, Garstang, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Clive H. Orchard
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Andrew F. James
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
- * E-mail:
| |
Collapse
|
88
|
Voigt N, Heijman J, Dobrev D. New antiarrhythmic targets in atrial fibrillation. Future Cardiol 2015; 11:645-54. [PMID: 26609872 DOI: 10.2217/fca.15.67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in developed countries. AF is associated with increased mortality and morbidity due to thromboembolism, stroke and worsening of pre-existing heart failure. Currently available pharmacological therapies for AF suffer from unsatisfying efficacy and/or are associated with major side effects such as bleeding complications or proarrhythmia. These limitations largely result from the fact that most of the currently available drugs were developed on an empirical basis, without precise knowledge of the molecular mechanisms underlying the arrhythmia. During the last decade substantial progress has been made in understanding the molecular mechanisms contributing to the initiation and maintenance of AF. This knowledge is expected to stimulate the development of safer and more effective drugs. Here, we review new antiarrhythmic drug targets, which have emerged based on this increasing knowledge about the molecular mechanisms of AF.
Collapse
Affiliation(s)
- Niels Voigt
- Faculty of Medicine, Institute of Pharmacology, University Duisburg-Essen, Hufelandstr 55, 45122 Essen, Germany
| | - Jordi Heijman
- Faculty of Medicine, Institute of Pharmacology, University Duisburg-Essen, Hufelandstr 55, 45122 Essen, Germany
| | - Dobromir Dobrev
- Faculty of Medicine, Institute of Pharmacology, University Duisburg-Essen, Hufelandstr 55, 45122 Essen, Germany
| |
Collapse
|
89
|
Brandenburg S, Arakel EC, Schwappach B, Lehnart SE. The molecular and functional identities of atrial cardiomyocytes in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1882-93. [PMID: 26620800 DOI: 10.1016/j.bbamcr.2015.11.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
Abstract
Atrial cardiomyocytes are essential for fluid homeostasis, ventricular filling, and survival, yet their cell biology and physiology are incompletely understood. It has become clear that the cell fate of atrial cardiomyocytes depends significantly on transcription programs that might control thousands of differentially expressed genes. Atrial muscle membranes propagate action potentials and activate myofilament force generation, producing overall faster contractions than ventricular muscles. While atria-specific excitation and contractility depend critically on intracellular Ca(2+) signalling, voltage-dependent L-type Ca(2+) channels and ryanodine receptor Ca(2+) release channels are each expressed at high levels similar to ventricles. However, intracellular Ca(2+) transients in atrial cardiomyocytes are markedly heterogeneous and fundamentally different from ventricular cardiomyocytes. In addition, differential atria-specific K(+) channel expression and trafficking confer unique electrophysiological and metabolic properties. Because diseased atria have the propensity to perpetuate fast arrhythmias, we discuss our understanding about the cell-specific mechanisms that lead to metabolic and/or mitochondrial dysfunction in atrial fibrillation. Interestingly, recent work identified potential atria-specific mechanisms that lead to early contractile dysfunction and metabolic remodelling, suggesting highly interdependent metabolic, electrical, and contractile pathomechanisms. Hence, the objective of this review is to provide an integrated model of atrial cardiomyocytes, from tissue-specific cell properties, intracellular metabolism, and excitation-contraction (EC) coupling to early pathological changes, in particular metabolic dysfunction and tissue remodelling due to atrial fibrillation and aging. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Sören Brandenburg
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Eric C Arakel
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) site Göttingen, 37075 Göttingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37075 Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) site Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
90
|
Dai J, Zhang H, Chen Y, Chang Y, Yuan Q, Ji G, Zhai K. Characterization of Ca+ handling proteins and contractile proteins in patients with lone atrial fibrillation. Int J Cardiol 2015; 202:749-51. [PMID: 26474465 DOI: 10.1016/j.ijcard.2015.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/03/2015] [Accepted: 10/03/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Jiang Dai
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Han Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yingxiao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Chang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qi Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Kui Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
91
|
Tao H, Shi KH, Yang JJ, Li J. Epigenetic mechanisms in atrial fibrillation: New insights and future directions. Trends Cardiovasc Med 2015; 26:306-18. [PMID: 26475117 DOI: 10.1016/j.tcm.2015.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/23/2015] [Accepted: 08/28/2015] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. AF is a complex disease that results from genetic and environmental factors and their interactions. In recent years, numerous studies have shown that epigenetic mechanisms significantly participate in AF pathogenesis. Even though a poor understanding of the molecular and electrophysiologic mechanisms of AF, accumulated evidence has suggested that the relevance of epigenetic changes in the development of AF. The aim of this review is to describe the present knowledge about the epigenetic regulatory features significantly participates in AF, and look ahead on new perspectives of epigenetic mechanisms research. Epigenetic regulatory features such as DNA methylation, histone modification, and microRNA influence gene expression by epigenetic mechanisms and by directly binding to various factor response elements in the target gene promoters. Given the role of epigenetic alterations in regulating genes, there is potential for the integration of factors-induced epigenetic alterations as informative factors in the risk assessment process. In this review, new insight into the epigenetic mechanisms in AF pathogenesis is discussed, with special emphasis on DNA methylation, histone modification, and microRNA. Further studies are needed to reveal the potential targets of epigenetic mechanisms, and it can be developed as a therapeutic target for AF.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China; Cardiovascular Research Center, Anhui Medical University, Hefei, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China; Cardiovascular Research Center, Anhui Medical University, Hefei, China.
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
92
|
Voigt N, Pearman CM, Dobrev D, Dibb KM. Methods for isolating atrial cells from large mammals and humans. J Mol Cell Cardiol 2015; 86:187-98. [PMID: 26186893 DOI: 10.1016/j.yjmcc.2015.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/04/2023]
Abstract
The identification of disturbances in the cellular structure, electrophysiology and calcium handling of atrial cardiomyocytes is crucial to the understanding of common pathologies such as atrial fibrillation. Human right atrial specimens can be obtained during routine cardiac surgery and may be used for isolation of atrial myocytes. These samples provide the unique opportunity to directly investigate the effects of human disease on atrial myocytes. However, atrial myocytes vary greatly between patients, there is little if any access to truly healthy controls and the challenges associated with assessing the in vivo effects of drugs or devices in man are considerable. These issues highlight the need for animal models. Large mammalian models are particularly suitable for this purpose as their cardiac structure and electrophysiology are comparable with humans. Here, we review techniques for obtaining atrial cardiomyocytes. We start with background information on solution composition. Agents shown to increase viable cell yield will then be explored followed by a discussion of the use of tissue-dissociating enzymes. Protocols are detailed for the perfusion method of cell isolation in large mammals and the chunk digest methods of cell isolation in humans.
Collapse
Affiliation(s)
- Niels Voigt
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | - Charles M Pearman
- Unit of Cardiac Physiology, Institute of Cardiovascular Sciences, 3.26 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom.
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | - Katharine M Dibb
- Unit of Cardiac Physiology, Institute of Cardiovascular Sciences, 3.26 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom.
| |
Collapse
|
93
|
van Marion DMS, Lanters EAH, Wiersma M, Allessie MA, Brundel BBJJM, de Groot NMS. Diagnosis and Therapy of Atrial Fibrillation: The Past, The Present and The Future. J Atr Fibrillation 2015; 8:1216. [PMID: 27957185 DOI: 10.4022/jafib.1216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/05/2015] [Accepted: 01/10/2015] [Indexed: 02/03/2023]
Abstract
Atrial fibrillation (AF) is the most common age-related cardiac arrhythmia. It is a progressive disease, which makes treatment difficult. The progression of AF is caused by the accumulation of damage in cardiomyocytes which makes the atria more vulnerable for AF. Especially structural remodeling and electrical remodeling, together called electropathology are sustainable in the atria and impair functional recovery to sinus rhythm after cardioversion. The exact electropathological mechanisms underlying persistence of AF are at present unknown. High resolution wavemapping studies in patients with different types of AF showed that longitudinal dissociation in conduction and epicardial breakthrough were the key elements of the substrate of longstanding persistent AF. A double layer of electrically dissociated waves propagating transmurally can explain persistence of AF (Double Layer Hypothesis) but the molecular mechanism is unknown. Derailment of proteasis -defined as the homeostasis in protein synthesis, folding, assembly, trafficking, guided by chaperones, and clearance by protein degradation systems - may play an important role in remodeling of the cardiomyocyte. As current therapies are not effective in attenuating AF progression, step-by-step analysis of this process, in order to identify potential targets for drug therapy, is essential. In addition, novel mapping approaches enabling assessment of the degree of electropathology in the individual patient are mandatory to develop patient-tailored therapies. The aims of this review are to 1) summarize current knowledge of the electrical and molecular mechanisms underlying AF 2) discuss the shortcomings of present diagnostic instruments and therapeutic options and 3) to present potential novel diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Denise M S van Marion
- Department of Clinical Pharmacy and Pharmacology, University Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eva A H Lanters
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marit Wiersma
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maurits A Allessie
- Department of Clinical Pharmacy and Pharmacology, University Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bianca B J J M Brundel
- Department of Clinical Pharmacy and Pharmacology, University Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Clinical Pharmacy and Pharmacology, University Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Natasja M S de Groot
- Department of Clinical Pharmacy and Pharmacology, University Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
94
|
Gonzales MJ, Vincent KP, Rappel WJ, Narayan SM, McCulloch AD. Structural contributions to fibrillatory rotors in a patient-derived computational model of the atria. Europace 2015; 16 Suppl 4:iv3-iv10. [PMID: 25362167 DOI: 10.1093/europace/euu251] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS The aim of this study was to investigate structural contributions to the maintenance of rotors in human atrial fibrillation (AF) and possible mechanisms of termination. METHODS AND RESULTS A three-dimensional human biatrial finite element model based on patient-derived computed tomography and arrhythmia observed at electrophysiology study was used to study AF. With normal physiological electrical conductivity and effective refractory periods (ERPs), wave break failed to sustain reentrant activity or electrical rotors. With depressed excitability, decreased conduction anisotropy, and shorter ERP characteristic of AF, reentrant rotors were readily maintained. Rotors were transiently or permanently trapped by fibre discontinuities on the lateral wall of the right atrium near the tricuspid valve orifice and adjacent to the crista terminalis, both known sites of right atrial arrhythmias. Modelling inexcitable regions near the rotor tip to simulate fibrosis anchored the rotors, converting the arrhythmia to macro-reentry. Accordingly, increasing the spatial core of inexcitable tissue decreased the frequency of rotation, widened the excitable gap, and enabled an external wave to impinge on the rotor core and displace the source. CONCLUSION These model findings highlight the importance of structural features in rotor dynamics and suggest that regions of fibrosis may anchor fibrillatory rotors. Increasing extent of fibrosis and scar may eventually convert fibrillation to excitable gap reentry. Such macro-reentry can then be eliminated by extending the obstacle or by external stimuli that penetrate the excitable gap.
Collapse
Affiliation(s)
- Matthew J Gonzales
- Department of Bioengineering, University of California San Diego, Mail Code 0412, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Kevin P Vincent
- Department of Bioengineering, University of California San Diego, Mail Code 0412, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California San Diego, La Jolla, CA, USA Center for Theoretical Biological Physics, University of California San Diego, La Jolla, CA, USA
| | - Sanjiv M Narayan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA Cardiac Biomedical Science and Engineering Center, University of California San Diego, CA, USA VA San Diego Healthcare System, San Diego, CA, USA
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, Mail Code 0412, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA Department of Medicine, University of California San Diego, La Jolla, CA, USA Cardiac Biomedical Science and Engineering Center, University of California San Diego, CA, USA
| |
Collapse
|
95
|
Chronotropic Modulation of the Source-Sink Relationship of Sinoatrial-Atrial Impulse Conduction and Its Significance to Initiation of AF: A One-Dimensional Model Study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:496418. [PMID: 26229960 PMCID: PMC4502286 DOI: 10.1155/2015/496418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 01/15/2023]
Abstract
Initiation and maintenance of atrial fibrillation (AF) is often associated with pharmacologically or pathologically induced bradycardic states. Even drugs specifically developed in order to counteract cardiac arrhythmias often combine their action with bradycardia and, in turn, with development of AF, via still largely unknown mechanisms. This study aims to simulate action potential (AP) conduction between sinoatrial node (SAN) and atrial cells, either arranged in cell pairs or in a one-dimensional strand, where the relative amount of SAN membrane is made varying, in turn, with junctional resistance. The source-sink relationship between the two membrane types is studied in control conditions and under different simulated chronotropic interventions, in order to define a safety factor for pacemaker-to-atrial AP conduction (SASF) for each treatment. Whereas antiarrhythmic-like interventions which involve downregulation of calcium channels or of calcium handling decrease SASF, the simulation of Ivabradine administration does so to a lesser extent. Particularly interesting is the increase of SASF observed when downregulation G Kr, which simulates the administration of class III antiarrhythmic agents and is likely sustained by an increase in I CaL. Also, the increase in SASF is accompanied by a decreased conduction delay and a better entrainment of repolarization, which is significant to anti-AF strategies.
Collapse
|
96
|
Abstract
Optimal cardiac function depends on proper timing of excitation and contraction in various regions of the heart, as well as on appropriate heart rate. This is accomplished via specialized electrical properties of various components of the system, including the sinoatrial node, atria, atrioventricular node, His-Purkinje system, and ventricles. Here we review the major regionally determined electrical properties of these cardiac regions and present the available data regarding the molecular and ionic bases of regional cardiac function and dysfunction. Understanding these differences is of fundamental importance for the investigation of arrhythmia mechanisms and pharmacotherapy.
Collapse
Affiliation(s)
- Daniel C Bartos
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
97
|
Alterations in the interactome of serine/threonine protein phosphatase type-1 in atrial fibrillation patients. J Am Coll Cardiol 2015; 65:163-73. [PMID: 25593058 DOI: 10.1016/j.jacc.2014.10.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/20/2014] [Accepted: 10/07/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, yet current pharmacological treatments are limited. Serine/threonine protein phosphatase type-1 (PP1), a major phosphatase in the heart, consists of a catalytic subunit (PP1c) and a large set of regulatory (R)-subunits that confer localization and substrate specificity to the holoenzyme. Previous studies suggest that PP1 is dysregulated in AF, but the mechanisms are unknown. OBJECTIVES The purpose of this study was to test the hypothesis that PP1 is dysregulated in paroxysmal atrial fibrillation (PAF) at the level of its R-subunits. METHODS Cardiac lysates were coimmunoprecipitated with anti-PP1c antibody followed by mass spectrometry-based, quantitative profiling of associated R-subunits. Subsequently, label-free quantification (LFQ) was used to evaluate altered R-subunit-PP1c interactions in PAF patients. R-subunits with altered binding to PP1c in PAF were further studied using bioinformatics, Western blotting (WB), immunocytochemistry, and coimmunoprecipitation. RESULTS A total of 135 and 78 putative PP1c interactors were captured from mouse and human cardiac lysates, respectively, including many previously unreported interactors with conserved PP1c docking motifs. Increases in binding were found between PP1c and PPP1R7, cold-shock domain protein A (CSDA), and phosphodiesterase type-5A (PDE5A) in PAF patients, with CSDA and PDE5A being novel interactors validated by bioinformatics, immunocytochemistry, and coimmunoprecipitation. WB confirmed that these increases in binding cannot be ascribed to their changes in global protein expression alone. CONCLUSIONS Subcellular heterogeneity in PP1 activity and downstream protein phosphorylation in AF may be attributed to alterations in PP1c-R-subunit interactions, which impair PP1 targeting to proteins involved in electrical and Ca(2+) remodeling. This represents a novel concept in AF pathogenesis and may provide more specific drug targets for treating AF.
Collapse
|
98
|
Ai X. SR calcium handling dysfunction, stress-response signaling pathways, and atrial fibrillation. Front Physiol 2015; 6:46. [PMID: 25745402 PMCID: PMC4333799 DOI: 10.3389/fphys.2015.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/30/2015] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. It is associated with a markedly increased risk of premature death due to embolic stroke and also complicates co-existing cardiovascular diseases such as heart failure. The prevalence of AF increases dramatically with age, and aging has been shown to be an independent risk of AF. Due to an aging population in the world, a growing body of AF patients are suffering a diminished quality of life and causing an associated economic burden. However, effective pharmacologic treatments and prevention strategies are lacking due to a poor understanding of the molecular and electrophysiologic mechanisms of AF in the failing and/or aged heart. Recent studies suggest that altered atrial calcium handling contributes to the onset and maintenance of AF. Here we review the role of stress-response kinases and calcium handling dysfunction in AF genesis in the aged and failing heart.
Collapse
Affiliation(s)
- Xun Ai
- Department of Cell and Molecular Physiology, Loyola University Chicago Maywood, IL, USA
| |
Collapse
|
99
|
Matus M, Kucerova D, Kruzliak P, Adameova A, Doka G, Turcekova K, Kmecova J, Kyselovic J, Krenek P, Kirchhefer U, Mueller FU, Boknik P, Klimas J. Upregulation of SERCA2a following short-term ACE inhibition (by enalaprilat) alters contractile performance and arrhythmogenicity of healthy myocardium in rat. Mol Cell Biochem 2015; 403:199-208. [PMID: 25663023 DOI: 10.1007/s11010-015-2350-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/30/2015] [Indexed: 12/12/2022]
Abstract
Chronic angiotensin-converting enzyme inhibitor (ACEIs) treatment can suppress arrhythmogenesis. To examine whether the effect is more immediate and independent of suppression of pathological remodelling, we tested the antiarrhythmic effect of short-term ACE inhibition in healthy normotensive rats. Wistar rats were administered with enalaprilat (ENA, i.p., 5 mg/kg every 12 h) or vehicle (CON) for 2 weeks. Intraarterial blood pressure in situ was measured in A. carotis. Cellular shortening was measured in isolated, electrically paced cardiomyocytes. Standard 12-lead electrocardiography was performed, and hearts of anaesthetized open-chest rats were subjected to 6-min ischemia followed by 10-min reperfusion to examine susceptibility to ventricular arrhythmias. Expressions of calcium-regulating proteins (SERCA2a, cardiac sarco/endoplasmic reticulum Ca(2+)-ATPase; CSQ, calsequestrin; TRD, triadin; PLB, phospholamban; Thr(17)-PLB-phosphorylated PLB at threonine-17, FKBP12.6, FK506-binding protein, Cav1.2-voltage-dependent L-type calcium channel alpha 1C subunit) were measured by Western blot; mRNA levels of L-type calcium channel (Cacna1c), ryanodine receptor (Ryr2) and potassium channels Kcnh2 and Kcnq1 were measured by qRT-PCR. ENA decreased intraarterial systolic as well as diastolic blood pressure (by 20%, and by 31%, respectively, for both P < 0.05) but enhanced shortening of cardiomyocytes at basal conditions (by 34%, P < 0.05) and under beta-adrenergic stimulation (by 73%, P < 0.05). Enalaprilat shortened QTc interval duration (CON 78 ± 1 ms vs. ENA 72 ± 2 ms; P < 0.05) and significantly decreased the total duration of ventricular fibrillations (VF) and the number of VF episodes (P < 0.05). Reduction in arrhythmogenesis was associated with a pronounced upregulation of SERCA2a (CON 100 ± 20 vs. ENA 304 ± 13; P < 0.05) and complete absence of basal Ca(2+)/calmodulin-dependent phosphorylation of PLB at Thr(17). Short-term ACEI treatment can provide protection against I/R injury-induced ventricular arrhythmias in healthy myocardium, and this effect is associated with increased SERCA2a expression.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Animals
- Arrhythmias, Cardiac/complications
- Arrhythmias, Cardiac/diagnostic imaging
- Arrhythmias, Cardiac/physiopathology
- Blotting, Western
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Cell Separation
- Electrolytes/blood
- Enalaprilat/administration & dosage
- Enalaprilat/pharmacology
- Heart Ventricles/drug effects
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Isoproterenol/pharmacology
- Male
- Myocardial Contraction/drug effects
- Myocardium/enzymology
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organ Size/drug effects
- Potassium Channels/genetics
- Potassium Channels/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Reperfusion Injury/complications
- Reperfusion Injury/pathology
- Reperfusion Injury/physiopathology
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Ultrasonography
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Marek Matus
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Clarke JD, Caldwell JL, Horn MA, Bode EF, Richards MA, Hall MCS, Graham HK, Briston SJ, Greensmith DJ, Eisner DA, Dibb KM, Trafford AW. Perturbed atrial calcium handling in an ovine model of heart failure: potential roles for reductions in the L-type calcium current. J Mol Cell Cardiol 2015; 79:169-79. [PMID: 25463272 PMCID: PMC4312356 DOI: 10.1016/j.yjmcc.2014.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/19/2022]
Abstract
Heart failure (HF) is commonly associated with reduced cardiac output and an increased risk of atrial arrhythmias particularly during β-adrenergic stimulation. The aim of the present study was to determine how HF alters systolic Ca(2+) and the response to β-adrenergic (β-AR) stimulation in atrial myocytes. HF was induced in sheep by ventricular tachypacing and changes in intracellular Ca(2+) concentration studied in single left atrial myocytes under voltage and current clamp conditions. The following were all reduced in HF atrial myocytes; Ca(2+) transient amplitude (by 46% in current clamped and 28% in voltage clamped cells), SR dependent rate of Ca(2+) removal (kSR, by 32%), L-type Ca(2+) current density (by 36%) and action potential duration (APD90 by 22%). However, in HF SR Ca(2+) content was increased (by 19%) when measured under voltage-clamp stimulation. Inhibiting the L-type Ca(2+) current (ICa-L) in control cells reproduced both the decrease in Ca(2+) transient amplitude and increase of SR Ca(2+) content observed in voltage-clamped HF cells. During β-AR stimulation Ca(2+) transient amplitude was the same in control and HF cells. However, ICa-L remained less in HF than control cells whilst SR Ca(2+) content was highest in HF cells during β-AR stimulation. The decrease in ICa-L that occurs in HF atrial myocytes appears to underpin the decreased Ca(2+) transient amplitude and increased SR Ca(2+) content observed in voltage-clamped cells.
Collapse
Affiliation(s)
- Jessica D Clarke
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Jessica L Caldwell
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Margaux A Horn
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Elizabeth F Bode
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Mark A Richards
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Mark C S Hall
- Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool L14 3PE, UK
| | - Helen K Graham
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Sarah J Briston
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - David J Greensmith
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - David A Eisner
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Katharine M Dibb
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Andrew W Trafford
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK.
| |
Collapse
|