51
|
Roslan A, Stanislaus R, Yee Sin T, Aris FA, Ashari A, Shaparudin AA, Rahimi Shah WFW, Hui Beng K, Tjen Jhung L, Tantawi Jauhari Aktifanus A, Kamsani SH, Rusani BI, Win NT, Abdul Rani MNH, Ai Ming T, Aedrus N, Azman K, Halim MNA, Zainal MDY, Hussein K, Shariff Hamid M, Puji A, Khairuddin A. Echocardiography and strain analysis in Malaysian elite athletes versus young healthy adults. IJC HEART & VASCULATURE 2023; 47:101242. [PMID: 37576081 PMCID: PMC10422669 DOI: 10.1016/j.ijcha.2023.101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
Background Athletes have changes that can mimic pathological cardiomyopathy. Methods Echocardiographic study of 50 male, female athletes (MA, FA) and non-athletes (MNA, FNA) age 18 to 30 years. These athletes participate in sports with predominantly endurance component. All participants exhibit no known medical illnesses or symptoms. Results MA have thicker wall (IVSd) than MNA. No MA have IVSd > 1.2 cm and no FA have IVSd > 1.0 cm. Left ventricle internal dimension (LVIDd), left ventricle end diastolic volume index (LVEDVi) is bigger in athletes. None have LVIDd > 5.8 cm. Right ventricle fractional area change (FAC) is lower in athletes. (MA vs MNA, p = 0.013, FA vs FNA, p = 0.025). Athletes have higher septal and lateral e' (Septal e'; MA 13.57 ± 2.66 cm/s vs MNA 11.46 ± 2.93 cm/s, p < 0.001, Lateral e'; MA 17.17 ± 3.07 cm/s vs MNA 14.82 ± 3.14 cm/s, p < 0.001), (Septal e'; FA 13.46 ± 2.32 cm/s vs FNA 12.16 ± 2.05 cm/s, p = 0.04, Lateral e'; FA 16.92 ± 2.97 cm/s vs FNA 15.44 ± 2.29 cm/s, p = 0.006).No difference in Global longitudinal (GLS), Right ventricle free wall (RVFWS) and Global circumferential strain (GCS). Left atrial reservoir (LArS) and left atrial booster strain (LAbS) is smaller in athletes. (LArS, MA 44.12 ± 9.55% vs MNA 52.95 ± 11.17%, p < 0.001 LArS, FA 48.07 ± 10.06% vs FNA 53.64 ± 8.99%, p = 0.004), (LAbS, MA 11.59 ± 5.13% vs MNA 17.35 ± 5.27%, p < 0.001 LAbS FA 11.77 ± 4.65% vs FNA 15.30 ± 4.19%, p < 0.001). Conclusion Malaysian athletes have thicker wall and bigger left ventricle than controls. No athletes have IVSd > 1.2 cm and/or LVIDd > 5.8 cm. There is no difference in GLS, RVFWS and GCS but athletes have smaller LArS and LAbS.
Collapse
Affiliation(s)
- Aslannif Roslan
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Rohith Stanislaus
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Tey Yee Sin
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Faten A. Aris
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Afif Ashari
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | | | | | - Koh Hui Beng
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Lee Tjen Jhung
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | | | - Suraya H. Kamsani
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Beni I. Rusani
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Nay T. Win
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | | | - Tan Ai Ming
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Noraminah Aedrus
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Kartina Azman
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | | | | | | | | | - Arshad Puji
- Institut Sukan Negara, Kuala Lumpur, Malaysia
| | - Ahmad Khairuddin
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| |
Collapse
|
52
|
Agbaje AO. Associations of accelerometer-based sedentary time, light physical activity and moderate-to-vigorous physical activity with resting cardiac structure and function in adolescents according to sex, fat mass, lean mass, BMI, and hypertensive status. Scand J Med Sci Sports 2023; 33:1399-1411. [PMID: 37035905 PMCID: PMC10946782 DOI: 10.1111/sms.14365] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/28/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND This study examined the independent relationships of device-based measured sedentary time (ST) and physical activity (PA) in relation to cardiac structural and functional geometry among adolescents. METHODS From the Avon Longitudinal Study of Parents and Children, UK birth cohort, 530 (50% female) adolescents aged 17 years had complete ST, PA, cardiac, and covariate measures. Echocardiography cardiac measures were left ventricular mass indexed for height2.7 (LVMI2.7 ), relative wall thickness, LV diastolic function (LVDF), and LV filling pressure (LVFP). Overweight/obesity and elevated systolic/BP hypertension were categorized as body mass index >24.99 kg/m2 and ≥130 mmHg, respectively. Data were analyzed with linear regression models adjusting for cardiometabolic factors and lifestyle factors. RESULTS The prevalence of overweight/obesity in males and females was 17.9% and 24.5%, respectively. The prevalence of elevated systolic BP/hypertension was 11.6% in males and 1.1% among females. The average ST was 484 ± 78 min/day, light PA was 274 ± 62 min/day, and moderate-to-vigorous PA (MVPA) was 41 ± 24 min/day, among females. Average ST, LPA, and MVPA were 468 ± 87 min/day, 293 ± 70 min/day, and 56 ± 30 min/day, respectively, among males. Higher ST was associated with higher LVMI2.7 (standardized β = 0.16; p = 0.01) among females, but higher ST was associated with lower LVDF in males (β = -0.14; p = 0.04). Higher ST and MVPA were associated with higher LVMI2.7 in the total cohort, normal weight, and overweight/obese adolescents. Light PA was associated with higher LVDF in the total cohort and normotensives and lower LVFP among adolescents with high lean mass. CONCLUSIONS Higher ST and MVPA were associated with higher LVMI; however, ST-associated LVMI increase was threefold higher than MVPA-associated LVMI increase. Higher LPA was associated with better cardiac function. Reducing ST and increasing LPA may attenuate the risk of altered cardiac structure and function in adolescents.
Collapse
Affiliation(s)
- Andrew O. Agbaje
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
- Children's Health and Exercise Research Centre, Department of Public Health and Sports Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| |
Collapse
|
53
|
Yıldırım A, Tokgözoğlu SL, Yıldırım M, Şener YZ, Okşul M, Akçay D, Kocaefe Ç, Dönmez G, Yorgun H, Özer N. Role of echocardiography on early diagnosis of atrial remodelling and fibrosis in elite athletes. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023; 39:1299-1306. [PMID: 37040062 DOI: 10.1007/s10554-023-02845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023]
Abstract
There is emerging data indicating that long-standing vigorous exercise may be associated with atrial structural remodelling. This remodelling process is may be the cause of the increasing frequency of atrial arrythmias in athletes. Early diagnosis of atrial remodelling by atrial imaging could have a role in management of atrial arrythmias in elite athletes. In this study we aimed to diagnose early phases of atrial remodelling in elite athletes. Two groups of athletes including professional weight lifters (n = 33), professional marathoners (n = 32) and sedentary participants (n = 30) were enrolled. We also studied patients who received cardiotoxic chemotherapy (n = 10) for comparison. Serum TGF-beta level as a marker of fibrosis was measured. Both left atrial (LA) 3D volume and strain values were analysed. There was a positive correlation between serum TGF-beta levels and LA volumes and negative correlation between TGF-beta levels and strain values. TGF-beta levels were higher among chemotherapy and weight lifter groups, compared to control and marathoner groups [mean 0.57 ± 0.3 and 0.55 ± 0.2 vs. 0.45 ± 0.2 and 0.47 ± 0.2, respectively, p = 0.005]. LA volumes were higher among chemotherapy and weight lifter groups [median 33 (26-38) and 31 (23-36) respectively, p = 0.005], and strain values were lower in these two groups [mean 20.3 ± 2.5 and 24.6 ± 4.5, respectively, p < 0.005] compared to control and marathoner groups. Total exercise volume was higher in weight lifter group compared to marathoners [13,780 (2496-36,400) vs. 4732 (780-44928), respectively, p = 0.001]. There wasn't any difference between any group regarding left ventricular systolic and diastolic functions. Vigorous exercise causes atrial remodelling and fibrosis in elite athletes. Strength exercise carries higher risk for atrial fibrosis than endurance exercise. Burden of exercise is correlated with the severity of cardiac fibrosis. Echocardiographic evaluation of the left atrium and TGF-beta levels may help to detect subclinical cardiac remodelling and fibrosis.
Collapse
Affiliation(s)
- Arzu Yıldırım
- Cardiology Department, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Cardiology Department, Medipol University Hospital, İstanbul, Turkey
| | | | - Murat Yıldırım
- Sports Medicine Department, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yusuf Ziya Şener
- Cardiology Department, Beypazarı State Hospital, Ankara, Turkey.
- Cardiology Department, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Metin Okşul
- Cardiology Department, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Cardiology Department, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Duygu Akçay
- Medical Biology Department, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Çetin Kocaefe
- Medical Biology Department, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gürhan Dönmez
- Sports Medicine Department, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hikmet Yorgun
- Cardiology Department, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Necla Özer
- Cardiology Department, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
54
|
Wang Z, Atakan MM, Acar B, Xiong R, Peng L. Effects of 4-Week Low-Load Resistance Training with Blood Flow Restriction on Muscle Strength and Left Ventricular Function in Young Swimmers: A Pilot Randomized Trial. J Hum Kinet 2023; 87:63-76. [PMID: 37559761 PMCID: PMC10407315 DOI: 10.5114/jhk/163013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/27/2023] [Indexed: 08/11/2023] Open
Abstract
Low-load resistance training combined with blood flow restriction (BFR) is known to result in muscle hypertrophy and strength similar to that observed with higher loads. However, the effects of resistance training with BFR on cardiac structure and cardiac function remain largely unknown. Therefore, the purpose of this randomized study was to compare the effects of conventional high-load resistance training (HL-RT) with the effects of low-load resistance training with BFR (LL-BFR) on muscle strength and left ventricular function. Sixteen young swimmers (mean ± standard deviation: age = 19.7 ± 1.6 years, body mass = 78.9 ± 9.7 kg, body height = 180.8 ± 5.8 cm) were randomly allocated to a conventional HL-RT group (n = 8) or a LL-BFR group (n = 8) with a pressure band (200 mmHg) placed on both thighs of participants for 4 weeks (3 days•week-1). Outcome measures were taken at baseline and after 4 weeks of training, and included body composition, one-repetition maximum (1RM) back squat, and echocardiography measures. The 1RM back squat significantly improved (partial eta squared (Ƞ2) = 0.365; p = 0.013) in HL-RT (mean difference (Δ) = 6.6 kg; [95% confidence interval (CI) -7.09 to 20.27]) and LL-BFR groups (Δ = 14.7 kg; [95% CI 3.39 to 26.10]), with no main effect of group or group × time interaction (p > 0.05). Interventricular septum end-systolic thickness showed a slight but statistically significant increase in LL-BFR and HL-RT groups (Ƞ2 = 0.253; p = 0.047), yet there was no main effect of group or group × time interaction (p > 0.05). There were no statistically significant changes (p > 0.05) in other cardiac structure or function parameters (e.g., left ventricular (LV) mass, LV cardiac output, LV ejection fraction, LV stroke volume) after the training programs. Results suggest that 4 weeks of HL-RT and LL-BFR improve muscle strength similarly with limited effects on left ventricular function in young swimmers.
Collapse
Affiliation(s)
- Zhenhuan Wang
- Key Lab of General Administration of Sport, Southwest University, Chongqing, China
- Institute for Health and Sport, Victoria University, Footscray, Melbourne, Australia
| | - Muhammed M. Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Burak Acar
- Department of Cardiology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Rui Xiong
- Key Lab of General Administration of Sport, Southwest University, Chongqing, China
| | - Li Peng
- Key Lab of General Administration of Sport, Southwest University, Chongqing, China
| |
Collapse
|
55
|
Dickson D, Bode E, Linney C, Dutton E, Caivano D, Bispo T, Harris J, Rishniw M. Differences in Left Ventricular Enlargement Secondary to Chronic Volume Loading Between English Springer Spaniels and Two Similar Sporting Breeds. J Vet Cardiol 2023; 48:37-45. [PMID: 37406392 DOI: 10.1016/j.jvc.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION English springer spaniels have larger, rounder ventricles than most other breeds. How this geometry impacts responses to volume overload remains unknown. We compared left ventricular size between English springer spaniels and two similarly sized sporting breeds (Border collies and Labrador retrievers) in naturally occurring chronic left ventricular volume loading conditions (mitral regurgitation and patent ductus arteriosus [PDA]) to examine whether differences in remodelling responses exist between these breeds. ANIMALS, MATERIALS AND METHODS We searched records for cases of mitral regurgitation and PDA in three breeds. We recorded age, sex, presence of congestive heart failure (CHF), body weight and specific echocardiographic variables. We compared normalised measures of left ventricular size between breeds. Cases with CHF were further examined as a separate group. RESULTS One-hundred-and-ninety-one dogs were included: 110 with degenerative mitral valve disease, 42 with mitral dysplasia and 39 with PDA. One third of all cases had CHF. All measures of left ventricular size were larger in English springer spaniels in mitral regurgitation cases (P<0.001), whereas PDA cases did not differ. English springer spaniels with PDA resulting in CHF had larger systolic dimensions and volumes than similarly affected non-English Springer Spaniel dogs (P=0.003). CONCLUSIONS English springer spaniels have greater left ventricular dimensions when exposed to chronic mitral regurgitation, compared with Border collies and Labrador retrievers, but not when exposed to volume overload from a PDA. English springer spaniels differ in their left ventricular morphology from two other sporting breeds, supporting previous studies that they have a unique cardiac morphotype.
Collapse
Affiliation(s)
- D Dickson
- HeartVets, Whitestone, Exeter, Devon EX4 2HP, UK.
| | - E Bode
- Department of Small Animal Clinical Sciences, Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire CH64 7TE, UK
| | - C Linney
- Willows Veterinary Centre and Referral Service, Highlands Road, Solihull, West Midlands, B90 4NH, UK
| | - E Dutton
- Cheshire Cardiology, The Beeches, Cheshire WA16 8NE, UK
| | - D Caivano
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - T Bispo
- HeartVets, Whitestone, Exeter, Devon EX4 2HP, UK
| | - J Harris
- HeartVets, Whitestone, Exeter, Devon EX4 2HP, UK
| | - M Rishniw
- Veterinary Information Network, 777 W Covell Blvd, Davis, CA 95616, USA
| |
Collapse
|
56
|
Stoičkov V, Radovanović D, Deljanin-Ilić M, Perišić Z, Pavlović M, Tasić I, Stoičkov I, Golubović M, Scanlan AT, Jakovljević V, Stojanović E. Sport-related differences in QT dispersion and echocardiographic parameters in male athletes. Sci Rep 2023; 13:6770. [PMID: 37185606 PMCID: PMC10130053 DOI: 10.1038/s41598-023-33957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
The aim of this study was to compare QT dispersion (QTd) and echocardiographic parameters in male athletes competing across different sports (long-distance running, volleyball, football, powerlifting, and bodybuilding) and a control population. Significant moderate-strong differences (p < 0.001, [Formula: see text] = 0.52-0.71) were found in corrected QTd, intraventricular septal wall thickness (ISWT), posterior wall thickness (PWT), relative wall thickness (RWT) and LV (left ventricular) index between groups. Corrected QTd, ISWT, PWT, and RWT were significantly (p < 0.001) higher in powerlifters and bodybuilders compared to other athlete groups and controls. While all athlete groups displayed a significantly higher LV index (p < 0.05) compared to controls, corrected QTd was significantly lower (p < 0.001) only in long-distance runners, volleyball athletes, and football athletes compared to controls. Normal or eccentric LV hypertrophy (LVH) was observed in most long-distance runners (58% and 33%), volleyball athletes (50% and 50%), and football athletes (56% and 41%). In contrast, concentric LVH was observed in most powerlifters (58%) and bodybuilders (54%). Advanced LVH, predominantly concentric in nature, appears to be accompanied with increased QTd in powerlifters and bodybuilders. On the other hand, runners, volleyball athletes, and football athletes experienced LVH toward the upper threshold of the normal reference range alongside reduced QTd compared to other groups.
Collapse
Affiliation(s)
- Viktor Stoičkov
- Institute for Treatment and Rehabilitation "Niska Banja", Clinic for Cardiovascular Diseases, Niš, Serbia
- Faculty of Medicine, Department of Internal Medicine, University of Niš, Niš, Serbia
| | | | - Marina Deljanin-Ilić
- Institute for Treatment and Rehabilitation "Niska Banja", Clinic for Cardiovascular Diseases, Niš, Serbia
- Faculty of Medicine, Department of Internal Medicine, University of Niš, Niš, Serbia
| | - Zoran Perišić
- Faculty of Medicine, Department of Internal Medicine, University of Niš, Niš, Serbia
- Cardiovascular Diseases Clinic, Clinical Center Niš, Niš, Serbia
| | - Milan Pavlović
- Faculty of Medicine, Department of Internal Medicine, University of Niš, Niš, Serbia
- Cardiovascular Diseases Clinic, Clinical Center Niš, Niš, Serbia
| | - Ivan Tasić
- Institute for Treatment and Rehabilitation "Niska Banja", Clinic for Cardiovascular Diseases, Niš, Serbia
- Faculty of Medicine, Department of Internal Medicine, University of Niš, Niš, Serbia
| | | | - Mlađan Golubović
- Faculty of Medicine, Department of Internal Medicine, University of Niš, Niš, Serbia
- Cardiovascular and Transplant Surgery Clinic, Clinical Center Niš, Niš, Serbia
| | - Aaron T Scanlan
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Emilija Stojanović
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
57
|
Morris NR, Kermeen FD, Jones AW, Lee JY, Holland AE. Exercise-based rehabilitation programmes for pulmonary hypertension. Cochrane Database Syst Rev 2023; 3:CD011285. [PMID: 36947725 PMCID: PMC10032353 DOI: 10.1002/14651858.cd011285.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
BACKGROUND Individuals with pulmonary hypertension (PH) have reduced exercise capacity and quality of life. Despite initial concerns that exercise training may worsen symptoms in this group, several studies have reported improvements in functional capacity and well-being following exercise-based rehabilitation. OBJECTIVES To evaluate the benefits and harms of exercise-based rehabilitation for people with PH compared with usual care or no exercise-based rehabilitation. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 28 June 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) in people with PH comparing supervised exercise-based rehabilitation programmes with usual care or no exercise-based rehabilitation. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. exercise capacity, 2. serious adverse events during the intervention period and 3. health-related quality of life (HRQoL). Our secondary outcomes were 4. cardiopulmonary haemodynamics, 5. Functional Class, 6. clinical worsening during follow-up, 7. mortality and 8. changes in B-type natriuretic peptide. We used GRADE to assess certainty of evidence. MAIN RESULTS We included eight new studies in the current review, which now includes 14 RCTs. We extracted data from 11 studies. The studies had low- to moderate-certainty evidence with evidence downgraded due to inconsistencies in the data and performance bias. The total number of participants in meta-analyses comparing exercise-based rehabilitation to control groups was 462. The mean age of the participants in the 14 RCTs ranged from 35 to 68 years. Most participants were women and classified as Group I pulmonary arterial hypertension (PAH). Study durations ranged from 3 to 25 weeks. Exercise-based programmes included both inpatient- and outpatient-based rehabilitation that incorporated both upper and lower limb exercise. The mean six-minute walk distance following exercise-based rehabilitation was 48.52 metres higher than control (95% confidence interval (CI) 33.42 to 63.62; I² = 72%; 11 studies, 418 participants; low-certainty evidence), the mean peak oxygen uptake was 2.07 mL/kg/min higher than control (95% CI 1.57 to 2.57; I² = 67%; 7 studies, 314 participants; low-certainty evidence) and the mean peak power was 9.69 W higher than control (95% CI 5.52 to 13.85; I² = 71%; 5 studies, 226 participants; low-certainty evidence). Three studies reported five serious adverse events; however, exercise-based rehabilitation was not associated with an increased risk of serious adverse event (risk difference 0, 95% CI -0.03 to 0.03; I² = 0%; 11 studies, 439 participants; moderate-certainty evidence). The mean change in HRQoL for the 36-item Short Form (SF-36) Physical Component Score was 3.98 points higher (95% CI 1.89 to 6.07; I² = 38%; 5 studies, 187 participants; moderate-certainty evidence) and for the SF-36 Mental Component Score was 3.60 points higher (95% CI 1.21 to 5.98 points; I² = 0%; 5 RCTs, 186 participants; moderate-certainty evidence). There were similar effects in the subgroup analyses for participants with Group 1 PH versus studies of groups with mixed PH. Two studies reported mean reduction in mean pulmonary arterial pressure following exercise-based rehabilitation (mean reduction: 9.29 mmHg, 95% CI -12.96 to -5.61; I² = 0%; 2 studies, 133 participants; low-certainty evidence). AUTHORS' CONCLUSIONS In people with PH, supervised exercise-based rehabilitation may result in a large increase in exercise capacity. Changes in exercise capacity remain heterogeneous and cannot be explained by subgroup analysis. It is likely that exercise-based rehabilitation increases HRQoL and is probably not associated with an increased risk of a serious adverse events. Exercise training may result in a large reduction in mean pulmonary arterial pressure. Overall, we assessed the certainty of the evidence to be low for exercise capacity and mean pulmonary arterial pressure, and moderate for HRQoL and adverse events. Future RCTs are needed to inform the application of exercise-based rehabilitation across the spectrum of people with PH, including those with chronic thromboembolic PH, PH with left-sided heart disease and those with more severe disease.
Collapse
Affiliation(s)
- Norman R Morris
- Allied Health Research Collaborative, The Prince Charles Hospital, Chermside, Australia
- School of Allied Health Sciences and Social Work and Menzies Health Institute, Griffith University, Gold Coast Campus, Southport, Australia
| | - Fiona D Kermeen
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia
| | - Arwel W Jones
- Central Clinical School, Monash University, Melbourne, Australia
| | - Joanna Yt Lee
- Central Clinical School, Monash University, Melbourne, Australia
| | - Anne E Holland
- Central Clinical School, Monash University, Melbourne, Australia
- Physiotherapy, Alfred Health, Melbourne, Australia
- Institute for Breathing and Sleep, Melbourne, Australia
| |
Collapse
|
58
|
Polyák A, Topal L, Zombori-Tóth N, Tóth N, Prorok J, Kohajda Z, Déri S, Demeter-Haludka V, Hegyi P, Venglovecz V, Ágoston G, Husti Z, Gazdag P, Szlovák J, Árpádffy-Lovas T, Naveed M, Sarusi A, Jost N, Virág L, Nagy N, Baczkó I, Farkas AS, Varró A. Cardiac electrophysiological remodeling associated with enhanced arrhythmia susceptibility in a canine model of elite exercise. eLife 2023; 12:80710. [PMID: 36815557 PMCID: PMC10014074 DOI: 10.7554/elife.80710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The health benefits of regular physical exercise are well known. Even so, there is increasing evidence that the exercise regimes of elite athletes can evoke cardiac arrhythmias including ventricular fibrillation and even sudden cardiac death (SCD). The mechanism of exercise-induced arrhythmia and SCD is poorly understood. Here, we show that chronic training in a canine model (12 sedentary and 12 trained dogs) that mimics the regime of elite athletes induces electrophysiological remodeling (measured by ECG, patch-clamp, and immunocytochemical techniques) resulting in increases of both the trigger and the substrate for ventricular arrhythmias. Thus, 4 months sustained training lengthened ventricular repolarization (QTc: 237.1±3.4 ms vs. 213.6±2.8 ms, n=12; APD90: 472.8±29.6 ms vs. 370.1±32.7 ms, n=29 vs. 25), decreased transient outward potassium current (6.4±0.5 pA/pF vs. 8.8±0.9 pA/pF at 50 mV, n=54 vs. 42), and increased the short-term variability of repolarization (29.5±3.8 ms vs. 17.5±4.0 ms, n=27 vs. 18). Left ventricular fibrosis and HCN4 protein expression were also enhanced. These changes were associated with enhanced ectopic activity (number of escape beats from 0/hr to 29.7±20.3/hr) in vivo and arrhythmia susceptibility (elicited ventricular fibrillation: 3 of 10 sedentary dogs vs. 6 of 10 trained dogs). Our findings provide in vivo, cellular electrophysiological and molecular biological evidence for the enhanced susceptibility to ventricular arrhythmia in an experimental large animal model of endurance training.
Collapse
Affiliation(s)
- Alexandra Polyák
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
| | - Leila Topal
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
| | - Noémi Zombori-Tóth
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
| | - Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
| | - János Prorok
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research NetworkSzegedHungary
| | - Zsófia Kohajda
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research NetworkSzegedHungary
| | - Szilvia Déri
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
| | | | - Péter Hegyi
- Centre for Translational Medicine and Institute of Pancreatic Diseases, Semmelweis UniversityBudapestHungary
- Institute for Translational Medicine, Medical School, University of PécsPécsHungary
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of SzegedSzegedHungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
| | - Gergely Ágoston
- Institute of Family Medicine, University of SzegedSzegedHungary
| | - Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
| | - Péter Gazdag
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
| | - Jozefina Szlovák
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
| | - Tamás Árpádffy-Lovas
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
| | - Annamária Sarusi
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research NetworkSzegedHungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of SzegedSzegedHungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of SzegedSzegedHungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research NetworkSzegedHungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of SzegedSzegedHungary
| | - Attila S Farkas
- Department of Internal Medicine, Cardiology ward, University of SzegedSzegedHungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzegedHungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research NetworkSzegedHungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of SzegedSzegedHungary
| |
Collapse
|
59
|
Maceira AM, Monmeneu JV, López MP, García MP, Higueras L, Masiá MD, Boraita A. Reference ventricular dimensions and function parameters by cardiovascular magnetic resonance in highly trained Caucasian athletes. J Cardiovasc Magn Reson 2023; 25:12. [PMID: 36755302 PMCID: PMC9909951 DOI: 10.1186/s12968-023-00910-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Data regarding cardiovascular magnetic resonance (CMR) reference values in athletes have not been well determined yet. Using CMR normal reference values derived from the general population may be misleading in athletes and may have clinical implications. AIMS To determine reference ventricular dimensions and function parameters and ratios by CMR in high performance athletes. METHODS Elite athletes and age- and gender-matched sedentary healthy controls were included. Anatomical and functional variables, including biventricular volumes, mass, systolic function, wall thickness, sphericity index and longitudinal function were determined by CMR. RESULTS A total of 148 athletes (29.2 ± 9.1 years; 64.8% men) and 124 controls (32.1 ± 10.5 years; 67.7% men) were included. Left ventricular (LV) mass excluding papillary muscles was 67 ± 13 g/m2 in the control group and increased from 65 ± 14 g/m2 in the low intensity sport category to 83 ± 16 g/m2 in the high cardiovascular demand sport category; P < 0.001. Regarding right ventricular (RV) mass, the data were 20 ± 5, 31 ± 6, and 38 ± 8 g/m2, respectively; P < 0.001. LV and RV volumes, and wall thickness were higher in athletes than in the control group, and also increased with sport category. However, LV and RV ejection fractions were similar in both groups. LV and RV dimensions, wall thickness and LV/RV ratios reference parameters for athletes are provided. CONCLUSIONS LV and RV masses, volumes, and wall thicknesses are higher in athletes than in sedentary subjects. Specific CMR reference ranges for athletes are provided and can be used as reference levels, rather than the standard upper limits used for the general population to exclude cardiomyopathy.
Collapse
Affiliation(s)
- Alicia M Maceira
- Cardiovascular Imaging Unit, Cardiology Department, Ascires Grupo Biomédico, Valencia, Spain.
| | - Jose V Monmeneu
- Cardiovascular Imaging Unit, Cardiology Department, Ascires Grupo Biomédico, Valencia, Spain
| | - M Pilar López
- Cardiovascular Imaging Unit, Cardiology Department, Ascires Grupo Biomédico, Valencia, Spain
| | - M Pilar García
- Cardiovascular Imaging Unit, Cardiology Department, Ascires Grupo Biomédico, Valencia, Spain
| | - Laura Higueras
- Cardiovascular Imaging Unit, Cardiology Department, Ascires Grupo Biomédico, Valencia, Spain
| | | | - Araceli Boraita
- Cardiology Department, Spanish Sports Health Protection Agency, Madrid, Spain
| |
Collapse
|
60
|
Al Riyami SA, Ebrahim K, Ahmadizad S, Tanaka H, Pluncevikj Gligoroska J. Cardiac structure and function of elite volleyball players across different playing positions. J Sports Med Phys Fitness 2023; 63:360-366. [PMID: 35785932 DOI: 10.23736/s0022-4707.22.14045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Volleyball is a popular Olympic sport but has been little studied. Volleyball players have very distinct roles based on their playing positions. The present study aimed to investigate and compare cardiac functions and structure in elite volleyball players across different playing positions. METHODS Left ventricular structure and function were measured using echocardiography in 60 male professional volleyball players (30.6±3.6 years) across five playing positions including libero, opposite players, outside hitters, middle blockers, and setters. RESULTS Significant differences in most echocardiographic variables were observed among different playing positions, including left ventricular (LV) internal dimension, posterior wall thickness, intact ventricular septum, stroke volume, cardiac output, end-diastolic volume, ejection fraction, and fractional shortening (all P<0.01). End-systolic volume was not different among positions (P=0.167). The opposite players demonstrated greater LV dimension and thickness as well as systolic function than players in other positions (P<0.05). Stroke volume in the setters was significantly lower than those of the opposite players and outside hitters (P<0.05). Regression analysis showed that the playing position independently predicted most of the echocardiographic variables (P<0.05). CONCLUSIONS LV adaptations in volleyball players vary widely according to their playing positions. The opposite players had the most pronounced LV adaptations compared with player in other positions.
Collapse
Affiliation(s)
- Shihab A Al Riyami
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran -
| | - Khosrow Ebrahim
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Sajad Ahmadizad
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
61
|
De Bosscher R, Claeys M, Dausin C, Goetschalckx K, Claus P, Herbots L, Ghekiere O, Van De Heyning C, Paelinck BP, Janssens K, Wright L, Flannery MD, La Gerche A, Willems R, Heidbuchel H, Bogaert J, Claessen G. Three-dimensional echocardiography of the athlete's heart: a comparison with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 2023; 39:295-306. [PMID: 36151432 DOI: 10.1007/s10554-022-02726-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/03/2022] [Indexed: 01/28/2023]
Abstract
Three-dimensional echocardiography (3DE) is the most accurate cardiac ultrasound technique to assess cardiac structure. 3DE has shown close correlation with cardiac magnetic resonance imaging (CMR) in various populations. There is limited data on the accuracy of 3DE in athletes and its value in detecting alterations during follow-up. Indexed left and right ventricular end-diastolic volume (LVEDVi, RVEDVi), end-systolic volume, ejection fraction (LVEF, RVEF) and left ventricular mass (LVMi) were assessed by 3DE and CMR in two-hundred and one competitive endurance athletes (79% male) from the Pro@Heart trial. Sixty-four athletes were assessed at 2 year follow-up. Linear regression and Bland-Altman analyses compared 3DE and CMR at baseline and follow-up. Interquartile analysis evaluated the agreement as cardiac volumes and mass increase. 3DE showed strong correlation with CMR (LVEDVi r = 0.91, LVEF r = 0.85, LVMi r = 0.84, RVEDVi r = 0.84, RVEF r = 0.86 p < 0.001). At follow up, the percentage change by 3DE and CMR were similar (∆LVEDVi r = 0.96 bias - 0.3%, ∆LVEF r = 0.94, bias 0.7%, ∆LVMi r = 0.94 bias 0.8%, ∆RVESVi r = 0.93, bias 1.2%, ∆RVEF r = 0.87 bias 0.4%). 3DE underestimated volumes (LVEDVi bias - 18.5 mL/m2, RVEDVi bias - 25.5 mL/m2) and the degree of underestimation increased with larger dimensions (Q1vsQ4 LVEDVi relative bias - 14.5 versus - 17.4%, p = 0.016; Q1vsQ4 RVEDVi relative bias - 17 versus - 21.9%, p = 0.005). Measurements of cardiac volumes, mass and function by 3DE correlate well with CMR and 3DE accurately detects changes over time. 3DE underestimates volumes and the relative bias increases with larger cardiac size.
Collapse
Affiliation(s)
- Ruben De Bosscher
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium. .,Department of Cardiology, University Hospitals Leuven, Leuven, Belgium. .,Department of Cardiovascular Medicine, University Hospitals Leuven, B-3000, Leuven, Belgium.
| | - Mathias Claeys
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Piet Claus
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Lieven Herbots
- Department of Cardiology, Hartcentrum, Jessa Ziekenhuis, Hasselt, Belgium.,REVAL/BIOMED, Hasselt University, Diepenbeek, Belgium
| | - Olivier Ghekiere
- REVAL/BIOMED, Hasselt University, Diepenbeek, Belgium.,Department of Radiology, Jessa Ziekenhuis, Hasselt, Belgium
| | - Caroline Van De Heyning
- Department of Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Bernard P Paelinck
- Department of Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Kristel Janssens
- Department of Cardiology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Leah Wright
- Department of Cardiology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - André La Gerche
- Department of Cardiology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Rik Willems
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Hein Heidbuchel
- Department of Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Jan Bogaert
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Guido Claessen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
62
|
Hu J, Zhou S, Ryu S, Adams K, Gao Z. Effects of Long-Term Endurance Exercise on Cardiac Morphology, Function, and Injury Indicators among Amateur Marathon Runners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2600. [PMID: 36767963 PMCID: PMC9916084 DOI: 10.3390/ijerph20032600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to investigate the effects of long-term endurance exercise on cardiac morphology and function, as well as injury indicators, among amateur marathon runners. We recruited 33 amateur runners who participated in a marathon. Participants were divided into experimental and control groups according to their National Athletic Grade. The experimental group included participants with a National Athletic Grade of 2 or better, and the control group included participants who did not have a National Athletic Grade. Cardiac morphology, function, and injury indicators were assessed before and after the participants' involvement in the Changsha International Marathon. All cardiac morphology and function indicators returned to pre-race levels at 24 h post-race, and left ventricular end-diastolic volume and left ventricular end-systolic volume indicators showed similar trends. Both stroke volume (SV) and percent fractional shortening (%FS) indicators showed similar trends in changes in the measurements before and after the race. SV showed no change between the pre-race and post-race periods. On the other hand, %FS showed a significant increase in the immediate post-race period, followed by restoration of its level at 24 h post-race. Among myocardial injury indicators, serum levels of cardiac troponin I, creatine kinase (CK), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and N-terminal pro-b-type natriuretic peptide (NT-proBNP) measured before the race, immediately after the race, and 24 h after the race displayed similar trends in changes among CK, CK-MB, LDH, and AST, while NT-proBNP levels did not change. We concluded that high-level amateur marathon runners had greater heart volumes, as well as wall and septal thicknesses, than low-level marathon runners, with differences in heart volume being the most pronounced. Long-term high-intensity endurance exercise caused some damage to the hearts of amateur runners. High-level runners showed better myocardial repair ability, and their levels of myocardial injury markers showed greater decreases at 24 h post-race, while low-level runners had poorer myocardial repair ability.
Collapse
Affiliation(s)
- Jianzhong Hu
- School of Physical Education, Hengyang Normal University, Hengyang 421002, China
| | - Songqing Zhou
- School of Physical Education, Hengyang Normal University, Hengyang 421002, China
| | - Suryeon Ryu
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kaitlyn Adams
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zan Gao
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
63
|
Ruberg FL, Baggish AL, Hays AG, Jerosch-Herold M, Kim J, Ordovas KG, Reddy G, Shenoy C, Weinsaft JW, Woodard PK. Utilization of Cardiovascular Magnetic Resonance Imaging for Resumption of Athletic Activities Following COVID-19 Infection: An Expert Consensus Document on Behalf of the American Heart Association Council on Cardiovascular Radiology and Intervention Leadership and Endorsed by the Society for Cardiovascular Magnetic Resonance. Circ Cardiovasc Imaging 2023; 16:e014106. [PMID: 36541203 PMCID: PMC9848221 DOI: 10.1161/circimaging.122.014106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The global pandemic of COVID-19 caused by infection with SARS-CoV-2 is now entering its fourth year with little evidence of abatement. As of December 2022, the World Health Organization Coronavirus (COVID-19) Dashboard reported 643 million cumulative confirmed cases of COVID-19 worldwide and 98 million in the United States alone as the country with the highest number of cases. Although pneumonia with lung injury has been the manifestation of COVID-19 principally responsible for morbidity and mortality, myocardial inflammation and systolic dysfunction though uncommon are well-recognized features that also associate with adverse prognosis. Given the broad swath of the population infected with COVID-19, the large number of affected professional, collegiate, and amateur athletes raises concern regarding the safe resumption of athletic activity (return to play) following resolution of infection. A variety of different testing combinations that leverage ECG, echocardiography, circulating cardiac biomarkers, and cardiovascular magnetic resonance imaging have been proposed and implemented to mitigate risk. Cardiovascular magnetic resonance in particular affords high sensitivity for myocarditis but has been employed and interpreted nonuniformly in the context of COVID-19 thereby raising uncertainty as to the generalizability and clinical relevance of findings with respect to return to play. This consensus document synthesizes available evidence to contextualize the appropriate utilization of cardiovascular magnetic resonance in the return to play assessment of athletes with prior COVID-19 infection to facilitate informed, evidence-based decisions, while identifying knowledge gaps that merit further investigation.
Collapse
Affiliation(s)
- Frederick L. Ruberg
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine/Boston Medical Center, Boston, MA (F.L.R.)
| | - Aaron L. Baggish
- Cardiac Performance Program, Harvard Medical School/Massachusetts General Hospital, Boston, MA (A.L.B.)
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (A.G.H.)
| | - Michael Jerosch-Herold
- Cardiovascular Imaging Section, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA (M.J.-H.)
| | - Jiwon Kim
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY (J.K., J.W.W.)
| | - Karen G. Ordovas
- Department of Radiology, University of Washington School of Medicine, Seattle, WA (K.G.O., G.R.)
| | - Gautham Reddy
- Department of Radiology, University of Washington School of Medicine, Seattle, WA (K.G.O., G.R.)
| | - Chetan Shenoy
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN (C.S.)
| | - Jonathan W. Weinsaft
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY (J.K., J.W.W.)
| | - Pamela K. Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO (P.K.W.)
| |
Collapse
|
64
|
Chanda M, Petchdee S. Cardiac morphology changes in horses as a response to various types of sports. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2097245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Metha Chanda
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Thailand
| | - Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Thailand
| |
Collapse
|
65
|
Ruberg FL, Baggish AL, Hays AG, Jerosch-Herold M, Kim J, Ordovas KG, Reddy G, Shenoy C, Weinsaft JW, Woodard PK. Utilization of cardiovascular magnetic resonance (CMR) imaging for resumption of athletic activities following COVID-19 infection: an expert consensus document on behalf of the American Heart Association Council on Cardiovascular Radiology and Intervention (CVRI) Leadership and endorsed by the Society for Cardiovascular Magnetic Resonance (SCMR). J Cardiovasc Magn Reson 2022; 24:73. [PMID: 36539786 PMCID: PMC9767806 DOI: 10.1186/s12968-022-00907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory suyndrome coronavirus 2 (SARS-CoV-2) is now entering its 4th year with little evidence of abatement. As of December 2022, the World Health Organization Coronavirus (COVID-19) Dashboard reported 643 million cumulative confirmed cases of COVID-19 worldwide and 98 million in the United States alone as the country with the highest number of cases. While pneumonia with lung injury has been the manifestation of COVID-19 principally responsible for morbidity and mortality, myocardial inflammation and systolic dysfunction though uncommon are well-recognized features that also associate with adverse prognosis. Given the broad swath of the population infected with COVID-19, the large number of affected professional, collegiate, and amateur athletes raises concern regarding the safe resumption of athletic activity (return to play, RTP) following resolution of infection. A variety of different testing combinations that leverage the electrocardiogram, echocardiography, circulating cardiac biomarkers, and cardiovascular magnetic resonance (CMR) imaging have been proposed and implemented to mitigate risk. CMR in particular affords high sensitivity for myocarditis but has been employed and interpreted non-uniformly in the context of COVID-19 thereby raising uncertainty as to the generalizability and clinical relevance of findings with respect to RTP. This consensus document synthesizes available evidence to contextualize the appropriate utilization of CMR in the RTP assessment of athletes with prior COVID-19 infection to facilitate informed, evidence-based decisions, while identifying knowledge gaps that merit further investigation.
Collapse
Affiliation(s)
- Frederick L Ruberg
- Section of Cardiovascular Medicine, Department of Medicine, School of Medicine/Boston Medical Center, Boston University, 72 E Concord St, Boston, MA, 02118, USA.
| | - Aaron L Baggish
- Cardiac Performance Program, Harvard Medical School/Massachusetts General Hospital, Boston, MA, USA
| | - Allison G Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Jerosch-Herold
- Cardiovascular Imaging Section, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA
| | - Jiwon Kim
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - Karen G Ordovas
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Gautham Reddy
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Chetan Shenoy
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jonathan W Weinsaft
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
66
|
Unnithan VB, Beaumont A, Rowland T, George K, Sculthorpe N, Lord RN, Bakhshi A, Oxborough D. Left Ventricular Responses during Exercise in Highly Trained Youth Athletes: Echocardiographic Insights on Function and Adaptation. J Cardiovasc Dev Dis 2022; 9:jcdd9120438. [PMID: 36547435 PMCID: PMC9787332 DOI: 10.3390/jcdd9120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
There is an increase in the prevalence of elite youth sports academies, whose sole aim is to develop future elite athletes. This involves the exposure of the child and adolescent athlete to high-volume training during a period of volatile growth. The large amount of data in this area has been garnered from the resting echocardiographic left ventricular (LV) evaluation of the youth athlete; while this can provide some insight on the functional adaptations to training, it is unable to elucidate a comprehensive overview of the function of the youth athletes' LV during exercise. Consequently, there is a need to interrogate the LV responses in-exercise. This review outlines the feasibility and functional insight of capturing global indices of LV function (Stroke Index-SVIndex and Cardiac Index-QIndex), systolic and diastolic markers, and cardiac strain during submaximal and maximal exercise. Larger SVI and QI were noted in these highly trained young athletes compared to recreationally active peers during submaximal and maximal exercise. The mechanistic insights suggest that there are minimal functional systolic adaptions during exercise compared to their recreationally active peers. Diastolic function was superior during exercise in these young athletes, and this appears to be underpinned by enhanced determinants of pre-load.
Collapse
Affiliation(s)
- Viswanath B. Unnithan
- Sport and Physical Activity Research Institute, Division of Sport and Exercise, School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK
- Correspondence: ; Tel.: +44-01698-894413
| | - Alexander Beaumont
- School of Science, Technology and Health, York St. John University, York YO31 7EX, UK
| | - Thomas Rowland
- Sport and Physical Activity Research Institute, Division of Sport and Exercise, School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK
| | - Keith George
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Nicholas Sculthorpe
- Sport and Physical Activity Research Institute, Division of Sport and Exercise, School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK
| | - Rachel N. Lord
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | | | - David Oxborough
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
67
|
Boraita A, Díaz-Gonzalez L, Valenzuela PL, Heras ME, Morales-Acuna F, Castillo-García A, Lucia MJ, Suja P, Santos-Lozano A, Lucia A. Normative Values for Sport-Specific Left Ventricular Dimensions and Exercise-Induced Cardiac Remodeling in Elite Spanish Male and Female Athletes. SPORTS MEDICINE - OPEN 2022; 8:116. [PMID: 36107355 PMCID: PMC9478009 DOI: 10.1186/s40798-022-00510-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
Background There is debate about the magnitude of geometrical remodeling [i.e., left ventricle (LV) cavity enlargement vs. wall thickening] in the heart of elite athletes, and no limits of normality have been yet established for different sports. We aimed to determine sex- and sport-specific normative values of LV dimensions in elite white adult athletes. Methods This was a single-center, retrospective study of Spanish elite athletes. Athletes were grouped by sport and its relative dynamic/static component (Mitchell’s classification). LV dimensions were measured with two-dimensional-guided M-mode echocardiography imaging to compute normative values. We also developed an online and app-based calculator (https://sites.google.com/lapolart.es/athlete-lv/welcome?authuser=0) to provide clinicians with sports- and Mitchell’s category-specific Z-scores for different LV dimensions. Results We studied 3282 athletes (46 different sports, 37.8% women, mean age 23 ± 6 years). The majority (85.4%) showed normal cardiac geometry, particularly women (90.9%). Eccentric hypertrophy was relatively prevalent (13.4%), and concentric remodeling or hypertrophy was a rare finding (each < 0.8% of total). The proportion of normal cardiac geometry and eccentric hypertrophy decreased and increased, respectively, with the dynamic (in both sexes) or static component (in male athletes) of the sport irrespective of the other (static or dynamic) component. The 95th percentile values of LV dimensions did not exceed the following limits in any of the Mitchell categories: septal wall thickness, 12 mm (males) and 10 mm (females); LV posterior wall, 11 mm and 10 mm; and LV end-diastolic diameter, 64 mm and 57 mm. Conclusions The majority of elite athletes had normal LV geometry, and although some presented with LV eccentric hypertrophy, concentric remodeling or hypertrophy was very uncommon. The present study provides sport-specific normative values that can serve to identify those athletes for whom a detailed examination might be recommendable (i.e., those exceeding the 95th percentile for their sex and sport). Supplementary Information The online version contains supplementary material available at 10.1186/s40798-022-00510-2.
Collapse
|
68
|
Stanton KM, Wylie L, Kotchetkova I, Coy A, Carroll G, LA Gerche A, Celermajer DS. Soldiers' Heart: A Prospective Study of Cardiac Remodeling in Soldiers Undergoing Progressive Intensity Exercise Training. Med Sci Sports Exerc 2022; 54:2011-2019. [PMID: 35881923 DOI: 10.1249/mss.0000000000003006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Most studies reporting cardiac changes with exercise have been cross sectional. The few available longitudinal studies have lacked standardization for environmental confounders. We prospectively assessed the relationship between increasing exercise intensity and cardiac remodeling in a highly standardized cohort of healthy young army soldiers. METHODS Sixty-three male army recruits (22 ± 3 yr) underwent a 12-wk moderate-intensity mixed strength and endurance exercise program, followed by a further 15-wk high-intensity exercise program, with highly controlled exercise, diet, and sleep patterns. Fitness (multistage fitness test), anthropometry, and 2D echocardiography were assessed. RESULTS Moderate-intensity exercise was associated with increased fitness and decreased body fat % (both P < 0.01). There was no significant incremental change in these parameters after high-intensity exercise. By contrast, both moderate- and high-intensity exercises were associated with dose-dependent increases in left atrial and left ventricular (LV) volumes, LV mass, and right ventricular (RV) size (all P < 0.01). At the end of high-intensity training, 51% had a dilated LV and 59% had a dilated RV compared with published normal ranges. Almost all had normal LV systolic function and strain before and after exercise training. A small number of soldiers had mildly decreased RV systolic function at baseline and after moderate-intensity exercise (3% and 6%, respectively). CONCLUSIONS We describe "soldiers' heart," which is characterized by balanced chamber dilatation, normal LV mass, and largely normal systolic function and myocardial strain. This prospective and highly controlled longitudinal study also found that increasing intensity exercise was associated with increasing chamber dimensions, which paralleled an increase in fitness after moderate-intensity exercise. After high-intensity exercise, however, cardiac chamber size continued to increase, but fitness did not increase further.
Collapse
Affiliation(s)
| | - Laura Wylie
- Heart Research Institute Sydney, Newtown, New South Wales, AUSTRALIA
| | | | - Amy Coy
- Heart Research Institute Sydney, Newtown, New South Wales, AUSTRALIA
| | - Gerard Carroll
- Wagga Wagga Base Hospital, Wagga Wagga, New South Wales, AUSTRALIA
| | - André LA Gerche
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, AUSTRALIA
| | | |
Collapse
|
69
|
Abstract
PURPOSE OF REVIEW The athlete's heart exhibits unique structural and functional adaptations in the setting of strenuous and repetitive athletic training which may be similarly found in pathologic states. The purpose of this review is to highlight the morphologic and functional changes associated with the athlete's heart, with a focus upon the insights that echocardiography provides into exercise-induced cardiac remodeling. RECENT FINDINGS Recent studies are aiming to investigate the long-term effects and clinical consequences of an athlete's heart. The "gray-zone" continues to pose a clinical challenge and may indicate scenarios where additional imaging modalities, or longitudinal follow-up, provide a definitive answer. Echocardiography is likely to remain the first-line imaging modality for the cardiac evaluation of elite athletes. Multimodality imaging combined with outcome and long-term follow-up studies both during training and after retirement in both men and women may help further clarify the remaining mysteries in the coming years.
Collapse
|
70
|
Echocardiographic Evidence of Cardiac Atrophy in the Critically Ill. Crit Care Explor 2022; 4:e0804. [PMID: 36419634 PMCID: PMC9678529 DOI: 10.1097/cce.0000000000000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The purpose of this explorative study is to determine if critically ill patients experience cardiac atrophy that can be quantified as a loss of left ventricular mass (LVM) and thus detected by echocardiography. DESIGN Retrospective single-center cohort study. SETTING Patients admitted to a tertiary medical center in Boston, MA. PATIENTS Adult critically ill patients with ICU length of stay greater than or equal to 5 days. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We conducted a retrospective cohort study of 68 patients, of which 42 were included in the final analysis (mean age 60.9 ± 19.2 yr; 47.6% male). The median length of ICU stay was 11.3 days (interquartile range, 6.8-20.1 d). A decrease in mean LVM over the course of admission for critical illness was observed (median 189.11 g [162.82-240.20 g] vs 176.69 g [142.37-226.26 g]; p = 0.01). After adjusting for sex, age, fluid balance, ICU type, dietary orders, time between echocardiograms, and vasopressor use, this decrease in LVM remained consistent (mean difference, -21.30 g; 95% CI, -41.85 to -0.74; p = 0.04). Relative wall thickness (RWT) did not change during admission. CONCLUSIONS These data reveal that a loss of LVM is present in patients over their ICU stay without a corresponding change in RWT, consistent with cardiac atrophy. Future prospective studies are needed to confirm these findings and identify possible sequelae of this finding.
Collapse
|
71
|
Singstad BJ. Norwegian Endurance Athlete ECG Database. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2022; 3:162-166. [PMID: 36632091 PMCID: PMC9829117 DOI: 10.1109/ojemb.2022.3214719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Athletes often have training-induced remodeling of the heart, and this can sometimes be seen as abnormal but non-pathological changes in the electrocardiogram. However, these changes can be confused with severe cardiovascular diseases that, in some cases, can cause cardiovascular death. Electrocardiogram data from athletes is therefore important to learn more about the difference between normal athletic remodeling and pathological remodeling of the heart. This work provides a dataset of electrocardiograms from 28 Norwegian elite endurance athletes. The electrocardiograms are standard 12-lead resting ECGs, recorded for 10 seconds while the athlete's lay supine on a bench. The electrocardiograms were then interpreted by an interpretation algorithm and by a trained cardiologist. The electrocardiogram waveform data and the interpretations were stored in Python Waveform Database format and made publicly available through PhysioNet.
Collapse
Affiliation(s)
- Bjorn-Jostein Singstad
- Department of Computational PhysiologySimula Research Laboratory Kristian Augusts Gate 23,0164OsloNorway
| |
Collapse
|
72
|
Weberruß H, Baumgartner L, Mühlbauer F, Shehu N, Oberhoffer-Fritz R. Training intensity influences left ventricular dimensions in young competitive athletes. Front Cardiovasc Med 2022; 9:961979. [PMID: 36277759 PMCID: PMC9582149 DOI: 10.3389/fcvm.2022.961979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023] Open
Abstract
Background In young athletes, exercise causes changes in the heart that include growth in wall thickness and mass of the left ventricle and expansion of the heart’s chambers. The heart’s function is either preserved or enhanced, but this may change to the opposite over time. Objective This study aimed to assess structural and functional cardiac adaptations in relation to exercise training time, intensity, and performance in young competitive athletes. Methods A total of 404 children and adolescents (14.23 ± 2.0 years, 97 females) were enrolled in the Munich Cardiovascular Adaptations in Young Athletes Study (MuCAYA-Study). Eighty-five participants were examined two times a year. Two-dimensional echocardiography was performed to assess left ventricular structure and function. Training time and intensity was measured with the MoMo physical activity questionnaire, maximum aerobic capacity by cardiopulmonary exercise testing, and strength with the handgrip strength test. Results Maximum aerobic capacity significantly influenced interventricular septal thickness in diastole. Training intensity significantly influenced left ventricular internal diameter in diastole and systole, and left ventricular mass indexed to body surface area. Within one year, interventricular wall thickness, relative wall thickness and left ventricular mass, indexed to body surface area and height, increased significantly. Training intensity and aerobic capacity contributed to cardiac adaptations in young competitive athletes, as represented by altered structural parameters but preserved cardiac function. Within a year, however, structural changes and a decline in diastolic performance were observed within the longitudinal sub-sample. Conclusion Our results confirm the hypothesis that cardiac adaptations to exercise occur at a young age. Cardiac adaptation in our cohort was influenced by exercise intensity and maximum aerobic capacity.
Collapse
Affiliation(s)
- Heidi Weberruß
- Department of Preventive Pediatrics, TUM Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany,*Correspondence: Heidi Weberruß,
| | - Lisa Baumgartner
- Department of Preventive Pediatrics, TUM Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Frauke Mühlbauer
- Department of Preventive Pediatrics, TUM Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Nerejda Shehu
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Renate Oberhoffer-Fritz
- Department of Preventive Pediatrics, TUM Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany,Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich, Technical University of Munich, Munich, Germany
| |
Collapse
|
73
|
Saunders AM, Jones RL, Richards J. Cardiac structure and function in resistance-trained and untrained adults: A systematic review and meta-analysis. J Sports Sci 2022; 40:2191-2199. [PMID: 36399498 DOI: 10.1080/02640414.2022.2147658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Variations in the haemodynamic demands of specific training modalities may explain characteristic differences in cardiac structure and function amongst athletes. However, current consensus regarding these adaptations in highly resistance-trained athletes is yet to be established. The current invetsigation aimed to collate research investigating cardiac structure and function in resistance-trained athletes, exploring the defining characteristics of Athlete's Heart within these individuals. Seven electronic databases were searched. Studies which examined at least one measure of cardiac structure or function, included healthy, normotensive male or females (>18 years) and compared athletes engaged in a resistance training programme (>12 months) to an untrained group engaged in no structured training programme were included. Systematic selection and quality appraisal of articles was performed by two reviewers, with a random effects meta-analysis model applied to suitable studies. Studies were limited to orginal peer-reviewed articles published in English. Resistance-trained athletes (n = 949) demonstrated greater cardiac dimensions compared to their untrained counterparts (n = 1053). No clear impairments to systolic or diastolic cardiac function were observed in athletic population studied here. Resistance-trained athletes display some characteristics of the Athlete's Heart phenomenon, including greater wall thickening and chamber dilation compared to their untrained counterparts.
Collapse
Affiliation(s)
- Abigail M Saunders
- Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford, UK
| | - Rebecca L Jones
- Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford, UK.,Health Advancement Research Team (HART), School of Sport and Exercise Science, University of Lincoln, Lincoln, UK
| | - Joanna Richards
- Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford, UK
| |
Collapse
|
74
|
Topal L, Polyák A, Tóth N, Ágoston G, Bencsik P, Kohajda Z, Prorok J, Déri S, Nagy N, Jost N, Virág L, Farkas AS, Varró A, Baczkó I. Endurance training-induced cardiac remodeling in a guinea pig athlete's heart model. Can J Physiol Pharmacol 2022; 100:993-1004. [PMID: 35834825 DOI: 10.1139/cjpp-2022-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Besides the health benefits of regular exercise, high-level training-above an optimal level-may have adverse effects. In this study, we investigated the effects of long-term vigorous training and its potentially detrimental structural-functional changes in a small animal athlete's heart model. Thirty-eight 4-month-old male guinea pigs were randomized into sedentary and exercised groups. The latter underwent a 15-week-long endurance-training program. To investigate the effects of the intense long-term exercise, in vivo (echocardiography, electrocardiography), ex vivo, and in vitro (histopathology, patch-clamp) measurements were performed. Following the training protocol, the exercised animals exhibited structural left ventricular enlargement and a significantly higher degree of myocardial fibrosis. Furthermore, resting bradycardia accompanied by elevated heart rate variability occurred, representing increased parasympathetic activity in the exercised hearts. The observed prolonged QTc intervals and increased repolarization variability parameters may raise the risk of electrical instability in exercised animals. Complex arrhythmias did not occur in either group, and there were no differences between the groups in ex vivo or cellular electrophysiological experiments. Accordingly, the high parasympathetic activity may promote impaired repolarization in conscious exercised animals. The detected structural-functional changes share similarities with the human athlete's heart; therefore, this model might be useful for investigations on cardiac remodeling.
Collapse
Affiliation(s)
- L Topal
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, 6720, Hungary
| | - A Polyák
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, 6720, Hungary
- Department of Pediatrics and Pediatric Health Center, University of Szeged, Szeged, 6725, Hungary
| | - N Tóth
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, 6720, Hungary
| | - G Ágoston
- Institute of Family Medicine, University of Szeged, Szeged, 6720, Hungary
| | - P Bencsik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, 6720, Hungary
| | - Zs Kohajda
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - J Prorok
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, 6720, Hungary
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Sz Déri
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, 6720, Hungary
| | - N Nagy
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, 6720, Hungary
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - N Jost
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, 6720, Hungary
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720, Hungary
| | - L Virág
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, 6720, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720, Hungary
| | - A S Farkas
- Department of Internal Medicine, Cardiology, University of Szeged, Szeged, 6725, Hungary
| | - A Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, 6720, Hungary
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720, Hungary
| | - I Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, 6720, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720, Hungary
| |
Collapse
|
75
|
Simard F, Sanz-de la Garza M, Vaquer-Seguí A, Blanco I, Burgos F, Alsina X, Prat-González S, Sitges M. Sex as a main determinant of bi-atrial acute and chronic adaptation to exercise. Eur J Appl Physiol 2022; 122:2585-2596. [DOI: 10.1007/s00421-022-05018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
|
76
|
Milovančev A, Petrović M, Miljković T, Ilić A, Mudrinić TR, Miljković A, Ivanov O, Tripunović J, Anđelic B, Bianco A, Drid P. The elite judo female athlete’s heart. Front Physiol 2022; 13:990142. [PMID: 36091408 PMCID: PMC9459045 DOI: 10.3389/fphys.2022.990142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose: There is a paucity of data on physiological heart adaptation in elite-level judo female athletes. This study aimed to assess left ventricular morphology and function in highly trained elite female judokas. Methods: The study prospectively included 18 females aged 23.5 ± 2.25 years, nine elite level judokas, and nine healthy non-athlete volunteers. All participants underwent a medical examination, electrocardiogram, and transthoracic 2D echocardiogram. Left ventricular diastolic and systolic diameters and volumes were determined, and parameters of left heart geometry and function (systolic and diastolic) were measured, calculated, and compared between groups. Results: When groups were compared, judokas had significantly increased left ventricular cavity dimensions p < 0.01, left ventricular wall thickness p < 0.01, and volumes p < 0.01. Elite female judokas exhibited left ventricular dilatation demonstrated as high prevalence increased end-diastolic volume/index, and increased end-systolic volume/index in 88.9% of judokas vs. 0% in controls, p < 0.01. Left ventricle mass/index was significantly increased in judokas, p < 0.01), with a 43.3% difference between groups. The majority (77.7%) of judokas had normal left ventricular geometry, although eccentric hypertrophy was revealed in 2 (22.2%) of judokas. Conclusion: Elite, highly trained female judokas exhibit significant changes in left heart morphology as a result of vigorous training compared to non-athletes. These findings suggest that female judokas athletes’ heart follows a pattern toward chamber dilatation rather than left ventricular wall hypertrophy.
Collapse
Affiliation(s)
- Aleksandra Milovančev
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Milovan Petrović
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Tatjana Miljković
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Aleksandra Ilić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | | | | | - Olivera Ivanov
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Tripunović
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Bogdan Anđelic
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
- *Correspondence: Patrik Drid,
| |
Collapse
|
77
|
Comparison of Three-Month HIIT and CMT Effects on Left Ventricle Echocardiography Observations in Male Employees. J Clin Med 2022; 11:jcm11164795. [PMID: 36013034 PMCID: PMC9410475 DOI: 10.3390/jcm11164795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to identify changes in echocardiographic parameters before and after three-month high-intensity interval training (HIIT) and continuous moderate-intensity training (CMT) in male employees. For this purpose, using a convenience sampling method, 33 male employees of the Islamic Republic of Iran Army (office workers with a sedentary lifestyle) aged 30 through 40 were selected. Participants were divided into three groups of HIIT, CMT, and control (11 for each group) including all anthropometric data (body fat percentage, body mass index, height, weight, and VO2 max) with no history of chronic diseases, metabolic syndrome, confirmed heart disease or congenital heart defect, and hospitalization due to chronic diseases or consumption of medication affecting cardiovascular indicators. A one-way ANOVA was conducted to compare the groups. The results demonstrated that the end-systolic volumes (ESVs) (p < 0.01) and relative wall thickness (RWT) in the CMT group (p < 0.01) and the end-diastolic volumes (EDVs) (p < 0.01), stroke volumes (SVs) (p < 0.01), end-systolic and diastolic diameters (ESD, EDD) (p < 0.01), as well as the RWT and left ventricle diastolic function (E/A ratio) in the HIIT group (p < 0.05) were significantly different before and after the 12-week training (Bonferroni correction was used for pairwise comparisons). The results revealed a significant increase in the end-systolic diameters (ESDs) of the HIIT group, whereas no such increase was observed in the ESDs of the CMT group (p < 0.51). Moreover, a significant increase was observed in left ventricular (LV) RWT and aerobic power of both training groups. The significant decrease of ESVs and the significant increase in E/A ratio, ESDs, EDDs following HIIT (two to three sessions per week) may indicate beneficial and optimal LV structural adaptations and improved LV function in nonathletes (even with a sedentary lifestyle).
Collapse
|
78
|
Sretenovic J, Zivkovic V, Srejovic I, Pantovic S, Jovic JJ, Nikolic M, Turnic TN, Savic M, Jevdjevic M, Milosavljevic Z, Bolevich S, Jakovljevic V. Nandrolone Decanoate and Swimming Affects Cardiodynamic and Morphometric Parameters in the Isolated Rat Heart. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081242. [PMID: 36013421 PMCID: PMC9410289 DOI: 10.3390/life12081242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
(1) Background: The aim of this study was to show the effects of swimming and nandrolone administration on cardiodynamic and morphometric parameters of the isolated rat heart. (2) The study included 72 Wistar rats, divided into three groups, scheduled to be sacrificed after the second, third, and fourth week. Each group was divided into four subgroups: control (T-N-), nandrolone (T-N+), swimming training (T+N-), and swimming training plus nandrolone (T+N+) group. The rats from T+N- and T+N+ swam 1 h/day, 5 days/week while ones from T-N+ and T+N+ received weekly nandrolone decanoate (20 mg/kg). The isolated hearts were perfused according to the Langendorff technique and measured parameters: dp/dt max/min, SLVP, DLVP, heart rate, and coronary flow. Hearts were fixed and stained with H/E and Masson trichrome dyes. (3) dp/dt max and dp/dt min were increased in the T-N+ group at higher perfusion pressure compared to the T-N- group. SLVP and DLVP were increased in all groups after the 4th week. Collagen content was increased in T-N+ by 403% and in T+N+ by 357% groups, while it was decreased in T+N- compared to the control after 4th week. (4) Conclusions: Nandrolone alone or combined with swimming had a deleterious effect on myocardial function and perfusion.
Collapse
Affiliation(s)
- Jasmina Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Correspondence:
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Pharmacology 1st Moscow State Medical University IM Sechenov, Trubetskaya Str. 2, 119992 Moscow, Russia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Pharmacology 1st Moscow State Medical University IM Sechenov, Trubetskaya Str. 2, 119992 Moscow, Russia
| | - Suzana Pantovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Jovana Joksimovic Jovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Maja Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Tamara Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- N.A. Semashko Public Health and Healthcare Department, F.F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Maja Savic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Maja Jevdjevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Zoran Milosavljevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Faculty of Farmacy, Pavlovica Put bb., Bijeljina University, 76300 Bijeljina, Bosnia and Herzegovina
| | - Sergej Bolevich
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Trubetskaya Str. 2, 119992 Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Trubetskaya Str. 2, 119992 Moscow, Russia
| |
Collapse
|
79
|
Valenzuela PL, Baggish A, Castillo-García A, Santos-Lozano A, Boraita A, Lucia A. Strenuous Endurance Exercise and the Heart: Physiological versus Pathological Adaptations. Compr Physiol 2022; 12:4067-4085. [PMID: 35950659 DOI: 10.1002/cphy.c210045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although the benefits of regular physical activity on cardiovascular health are well established, the effects of strenuous endurance exercise (SEE) have been a matter of debate since ancient times. In this article, we aim to provide a balanced overview of what is known about SEE and the heart-from epidemiological evidence to recent cardiac imaging findings. Lifelong SEE is overall cardioprotective, with endurance master athletes showing in fact a youthful heart. Yet, some lines of research remain open, such as the need to elucidate the time-course and potential relevance of transient declines in heart function (or increases in biomarkers of cardiac injury) with SEE. The underlying mechanisms and clinical relevance of SEE-associated atrial fibrillation, myocardial fibrosis, or high coronary artery calcium scores also remain to be elucidated. © 2022 American Physiological Society. Compr Physiol 12:1-19, 2022.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
| | - Aaron Baggish
- Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Adrián Castillo-García
- Fissac - Physiology, Health and Physical Activity, Madrid, Spain.,Biology Systems Department, University of Alcalá, Madrid, Spain
| | - Alejandro Santos-Lozano
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain.,i+HeALTH, European University Miguel de Cervantes, Valladolid, Spain
| | - Araceli Boraita
- Department of Cardiology, Sports Medicine Center, Spanish Agency for Health Protection in Sports, Madrid, Spain
| | - Alejandro Lucia
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain.,Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
80
|
Slankamenac J, Milovancev A, Klasnja A, Gavrilovic T, Sekulic D, Kesic MG, Trivic T, Kolarov V, Drid P. Echocardiographic Characterization of Left Heart Morphology and Function in Highly Trained Male Judo Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148842. [PMID: 35886693 PMCID: PMC9325159 DOI: 10.3390/ijerph19148842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023]
Abstract
The long-term practice of judo can lead to various changes in the heart including increased dimensions of the left ventricle in diastole and thickening of the interventricular septum and the posterior wall of the left ventricle. This study aimed to assess left ventricular morphology and function in elite male judokas. A comparative cross-sectional study was conducted that included a total of 20 subjects, 10 judokas, and 10 healthy non-athletes aged 24 ± 2.85 years. Demographic and anthropometric data were analyzed. All subjects underwent a medical examination and a two-dimensional transthoracic echocardiogram. Different parameters of left ventricular morphology and function were measured and compared between athletes and non-athletes. Left ventricle mass and LV mass index were higher in judokas than in non-athletes (p < 0.05), as well as PW thickness (9.78 ± 0.89 mm vs. 8.95 ± 0.76 mm). A total of six (n = 6) of athletes had eccentric hypertrophy, while others had normal heart geometry. LVEDd, LVEDs, LVEDd/BSA, and LVEDs/BSA were significantly higher in judokas (p < 0.05). LVEDd in athletes ranged from 48 to 62 mm. These values, combined with normal diastolic function, ejection fraction, and shortening fraction, indicate that the judokas’ cardiac adaptation was physiological rather than pathological.
Collapse
Affiliation(s)
- Jelena Slankamenac
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia; (J.S.); (T.T.)
| | - Aleksandra Milovancev
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.M.); (A.K.); (V.K.)
- Institute of Cardiovascular Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Aleksandar Klasnja
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.M.); (A.K.); (V.K.)
| | - Tamara Gavrilovic
- Serbian Institute of Sport and Sports Medicine, 11000 Belgrade, Serbia;
| | - Damir Sekulic
- Faculty of Kinesiology, University of Split, 21000 Split, Croatia; (D.S.); (M.G.K.)
| | - Marijana Geets Kesic
- Faculty of Kinesiology, University of Split, 21000 Split, Croatia; (D.S.); (M.G.K.)
| | - Tatjana Trivic
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia; (J.S.); (T.T.)
| | - Violeta Kolarov
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.M.); (A.K.); (V.K.)
- Institute for Pulmonary Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia; (J.S.); (T.T.)
- Correspondence:
| |
Collapse
|
81
|
Lasocka Z, Lewicka-Potocka Z, Faran A, Daniłowicz-Szymanowicz L, Nowak R, Kaufmann D, Kaleta-Duss A, Kalinowski L, Raczak G, Lewicka E, Dąbrowska-Kugacka A. Exercise-Induced Atrial Remodeling in Female Amateur Marathon Runners Assessed by Three-Dimensional and Speckle Tracking Echocardiography. Front Physiol 2022; 13:863217. [PMID: 35860663 PMCID: PMC9289460 DOI: 10.3389/fphys.2022.863217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Endurance athletes have an increased risk of atrial remodeling and atrial arrhythmias. However, data regarding atrial adaptation to physical exercise in non-elite athletes are limited. Even less is known about atrial performance in women. We aimed to elucidate exercise-induced changes in atrial morphology and function in female amateur marathon runners using three-dimensional (3D) echocardiography and two-dimensional (2D) speckle tracking echocardiography (STE). The study group consisted of 27 female (40 ± 7 years) amateur athletes. Right (RA) and left atrial (LA) measures were assessed three times: 2–3 weeks before the marathon (stage 1), immediately after the run (stage 2), and 2 weeks after the competition (stage 3). Directly after the marathon, a remarkable RA dilatation, as assessed by RA maximal volume (RAVmax, 31.3 ± 6.8 vs. 35.0 ± 7.0 ml/m2; p = 0.008), with concomitant increase in RA contractile function [RA active emptying fraction (RA active EF), 27.7 ± 8.6 vs. 35.0 ± 12.1%; p = 0.014; RA peak atrial contraction strain (RA PACS) 13.8 ± 1.8 vs. 15.6 ± 2.5%; p = 0.016] was noticed. There were no significant changes in LA volumes between stages, while LA active EF (34.3 ± 6.4 vs. 39.4 ± 8.6%; p = 0.020), along with LA PACS (12.8 ± 2.1 vs. 14.9 ± 2.7%; p = 0.002), increased post race. After the race, an increase in right ventricular (RV) dimensions (RV end-diastolic volume index, 48.8 ± 11.0 vs. 60.0 ± 11.1 ml/m2; p = 0.001) and a decrease in RV function (RV ejection fraction, 54.9 ± 6.3 vs. 49.1 ± 6.3%; p = 0.006) were observed. The magnitude of post-race RV dilatation was correlated with peak RA longitudinal strain deterioration (r = −0.56, p = 0.032). The measured parameters did not differ between stages 1 and 3. In female amateur athletes, apart from RV enlargement and dysfunction, marathon running promotes transient biatrial remodeling, with more pronounced changes in the RA. Post-race RA dilatation and increment of the active contraction force of both atria are observed. However, RA reservoir function diminishes in those with post-race RV dilation.
Collapse
Affiliation(s)
- Zofia Lasocka
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
- First Department of Cardiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Zuzanna Lewicka-Potocka
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
- First Department of Cardiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Faran
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Radosław Nowak
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Damian Kaufmann
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Kaleta-Duss
- Institute for Radiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdańsk University of Technology, Gdańsk, Poland
| | - Grzegorz Raczak
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewa Lewicka
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Dąbrowska-Kugacka
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
- *Correspondence: Alicja Dąbrowska-Kugacka,
| |
Collapse
|
82
|
Colombo JN, Sawda CN, White SC. Cardiac Concerns in the Pediatric Athlete. Clin Sports Med 2022; 41:529-548. [PMID: 35710276 DOI: 10.1016/j.csm.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cardiovascular disease remains the number one cause of death in Americans. It is no secret that exercise mitigates this risk. Exercise and regular physical activity are beneficial for physical health including aerobic conditioning, endurance, strength, mental health, and overall improved quality of life. Unfortunately, today many children and adolescents are sedentary, lacking the recommended daily amount of physical activity, leading to higher rates of obesity, cardiovascular disease, stroke, diabetes, anxiety, and depression. Given this rising concern, the World Health Organization launched a 12-year plan to improve physical activity in children and adolescents by reducing the inactivity rate by 15% in the world. How does this apply to children and adolescents with acquired or congenital heart disease?.
Collapse
Affiliation(s)
- Jamie N Colombo
- Department of Pediatrics, Division of Cardiology, Washington University School of Medicine/St. Louis Children's Hospital, 1 Childrens Place, St. Louis, MO 63110, USA
| | - Christine N Sawda
- Department of Pediatrics, Division of Cardiology, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Shelby C White
- Department of Pediatrics, Division of Cardiology, University of Virginia, PO Box 800386, Charlottesville, VA 22908, USA.
| |
Collapse
|
83
|
Fornasier-Santos C, Izem O, Aboukhoudir F, Rupp T, Stridgeon P, Millet GP, Nottin S. Left ventricular function and mechanics in backs and forwards elite rugby union players. Eur J Sport Sci 2022; 23:904-913. [PMID: 35734942 DOI: 10.1080/17461391.2022.2092778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The aim of the present study was to assess left ventricular (LV) morphological and regional functional adaptations in backs and forwards elite rugby union (RU) players. METHODS Thirty-nine elite male RU players and twenty sedentary controls have been examined using resting echocardiography. RU players were divided into two groups, forwards (n = 22) and backs (n = 17). Evaluations included tissue Doppler and 2D speckle tracking analysis to assess LV strains and twisting mechanics. RESULTS The elite RU players exhibited a LV remodeling characterized by an increase in LV mass indexed to body surface area (82.2 ± 13.2 vs. 99.9 ± 16.1 and 119.7 ± 13.4 g.m-2, in controls, backs and forwards; P < 0.001). Compared to backs, forwards exhibited lower global longitudinal strain (19.9 ± 2.5 vs. 18.0 ± 1.6%; P < 0.05), lower early diastolic velocity (16.5 ± 1.8 vs. 15.0 ± 2.3 cm.s-1; P < 0.05) and lower diastolic longitudinal strain rate (1.80 ± 0.34 vs. 1.54 ± 0.26 s-1; P < 0.01), especially at the apex. LV twist and untwisting velocities were similar in RU players compared to controls, but with lower apical (-46.2 ± 22.1 vs. -28.2 ± 21.7 deg.s-1; P < 0.01) and higher basal rotational velocities (33.9 ± 20.9 vs. 48.4 ± 20.7 deg.s-1; P < 0.05). CONCLUSION RU players exhibited an increase in LV mass which was more pronounced in forwards. In forwards, LV global longitudinal strain was depressed, LV filling pressures were decreased and LV relaxation depressed at the apex.
Collapse
Affiliation(s)
- Charly Fornasier-Santos
- Pharm-Ecology Cardiovascular Laboratory EA4278, Avignon University, Avignon, France.,Rugby Club Toulonnais, Toulon, France
| | - Omar Izem
- Pharm-Ecology Cardiovascular Laboratory EA4278, Avignon University, Avignon, France
| | - Falah Aboukhoudir
- Pharm-Ecology Cardiovascular Laboratory EA4278, Avignon University, Avignon, France.,Service de cardiologie, centre hospitalier d'Avignon, Avignon, France
| | - Thomas Rupp
- Inter-university Laboratory of Human Movement Science, University of Savoie Mont-Blanc, Chambéry, France
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Stéphane Nottin
- Pharm-Ecology Cardiovascular Laboratory EA4278, Avignon University, Avignon, France
| |
Collapse
|
84
|
Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts. BIOLOGY 2022; 11:biology11060880. [PMID: 35741401 PMCID: PMC9220194 DOI: 10.3390/biology11060880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Death from injury to the heart from a variety of causes remains a major cause of mortality worldwide. The cardiomyocyte, the major contracting cell of the heart, is responsible for pumping blood to the rest of the body. During fetal development, these immature cardiomyocytes are small and rapidly divide to complete development of the heart by birth when they develop structural and functional characteristics of mature cells which prevent further division. All further growth of the heart after birth is due to an increase in the size of cardiomyocytes, hypertrophy. Following the loss of functional cardiomyocytes due to coronary artery occlusion or other causes, the heart is unable to replace the lost cells. One of the significant research goals has been to induce adult cardiomyocytes to reactivate the cell cycle and repair cardiac injury. This review explores the developmental, structural, and functional changes of the growing cardiomyocyte, and particularly the sarcomere, responsible for force generation, from the early fetal period of reproductive cell growth through the neonatal period and on to adulthood, as well as during pathological response to different forms of myocardial diseases or injury. Multiple issues relative to cardiomyocyte cell-cycle regulation in normal or diseased conditions are discussed. Abstract The cardiomyocyte undergoes dramatic changes in structure, metabolism, and function from the early fetal stage of hyperplastic cell growth, through birth and the conversion to hypertrophic cell growth, continuing to the adult stage and responding to various forms of stress on the myocardium, often leading to myocardial failure. The fetal cell with incompletely formed sarcomeres and other cellular and extracellular components is actively undergoing mitosis, organelle dispersion, and formation of daughter cells. In the first few days of neonatal life, the heart is able to repair fully from injury, but not after conversion to hypertrophic growth. Structural and metabolic changes occur following conversion to hypertrophic growth which forms a barrier to further cardiomyocyte division, though interstitial components continue dividing to keep pace with cardiac growth. Both intra- and extracellular structural changes occur in the stressed myocardium which together with hemodynamic alterations lead to metabolic and functional alterations of myocardial failure. This review probes some of the questions regarding conditions that regulate normal and pathologic growth of the heart.
Collapse
|
85
|
Cha MJ, Kim C, Park CH, Hong YJ, Shin JM, Kim TH, Cha YJ, Park CH. Differential Diagnosis of Thick Myocardium according to Histologic Features Revealed by Multiparametric Cardiac Magnetic Resonance Imaging. Korean J Radiol 2022; 23:581-597. [PMID: 35555885 PMCID: PMC9174501 DOI: 10.3348/kjr.2021.0815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022] Open
Abstract
Left ventricular (LV) wall thickening, or LV hypertrophy (LVH), is common and occurs in diverse conditions including hypertrophic cardiomyopathy (HCM), hypertensive heart disease, aortic valve stenosis, lysosomal storage disorders, cardiac amyloidosis, mitochondrial cardiomyopathy, sarcoidosis and athlete's heart. Cardiac magnetic resonance (CMR) imaging provides various tissue contrasts and characteristics that reflect histological changes in the myocardium, such as cellular hypertrophy, cardiomyocyte disarray, interstitial fibrosis, extracellular accumulation of insoluble proteins, intracellular accumulation of fat, and intracellular vacuolar changes. Therefore, CMR imaging may be beneficial in establishing a differential diagnosis of LVH. Although various diseases share LV wall thickening as a common feature, the histologic changes that underscore each disease are distinct. This review focuses on CMR multiparametric myocardial analysis, which may provide clues for the differentiation of thickened myocardium based on the histologic features of HCM and its phenocopies.
Collapse
Affiliation(s)
- Min Jae Cha
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Cherry Kim
- Department of Radiology, Korea University Ansan Hospital, Ansan, Korea
| | - Chan Ho Park
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Yoo Jin Hong
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Min Shin
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Hoon Kim
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Chul Hwan Park
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
86
|
Johansson M, Tangruksa B, Heydarkhan-Hagvall S, Jeppsson A, Sartipy P, Synnergren J. Data Mining Identifies CCN2 and THBS1 as Biomarker Candidates for Cardiac Hypertrophy. Life (Basel) 2022; 12:life12050726. [PMID: 35629393 PMCID: PMC9147176 DOI: 10.3390/life12050726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiac hypertrophy is a condition that may contribute to the development of heart failure. In this study, we compare the gene-expression patterns of our in vitro stem-cell-based cardiac hypertrophy model with the gene expression of biopsies collected from hypertrophic human hearts. Twenty-five differentially expressed genes (DEGs) from both groups were identified and the expression of selected corresponding secreted proteins were validated using ELISA and Western blot. Several biomarkers, including CCN2, THBS1, NPPA, and NPPB, were identified, which showed significant overexpressions in the hypertrophic samples in both the cardiac biopsies and in the endothelin-1-treated cells, both at gene and protein levels. The protein-interaction network analysis revealed CCN2 as a central node among the 25 overlapping DEGs, suggesting that this gene might play an important role in the development of cardiac hypertrophy. GO-enrichment analysis of the 25 DEGs revealed many biological processes associated with cardiac function and the development of cardiac hypertrophy. In conclusion, we identified important similarities between ET-1-stimulated human-stem-cell-derived cardiomyocytes and human hypertrophic cardiac tissue. Novel putative cardiac hypertrophy biomarkers were identified and validated on the protein level, lending support for further investigations to assess their potential for future clinical applications.
Collapse
Affiliation(s)
- Markus Johansson
- Systems Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden; (S.H.-H.); (P.S.); (J.S.)
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden;
- Correspondence: (M.J.); (B.T.)
| | - Benyapa Tangruksa
- Systems Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden; (S.H.-H.); (P.S.); (J.S.)
- Correspondence: (M.J.); (B.T.)
| | - Sepideh Heydarkhan-Hagvall
- Systems Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden; (S.H.-H.); (P.S.); (J.S.)
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, SE-413 83 Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden;
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Peter Sartipy
- Systems Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden; (S.H.-H.); (P.S.); (J.S.)
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden; (S.H.-H.); (P.S.); (J.S.)
| |
Collapse
|
87
|
Nguyen Nguyen N, Assad JG, Femia G, Schuster A, Otton J, Nguyen TL. Role of cardiac magnetic resonance imaging in troponinemia syndromes. World J Cardiol 2022; 14:190-205. [PMID: 35582465 PMCID: PMC9048277 DOI: 10.4330/wjc.v14.i4.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/13/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiac magnetic resonance imaging (MRI) is an evolving technology, proving to be a highly accurate tool for quantitative assessment. Most recently, it has been increasingly used in the diagnostic and prognostic evaluation of conditions involving an elevation in troponin or troponinemia. Although an elevation in troponin is a nonspecific marker of myocardial tissue damage, it is a frequently ordered investigation leaving many patients without a specific diagnosis. Fortunately, the advent of newer cardiac MRI protocols can provide additional information. In this review, we discuss several conditions associated with an elevation in troponin such as myocardial infarction, myocarditis, Takotsubo cardiomyopathy, coronavirus disease 2019 related cardiac dysfunction and athlete’s heart syndrome.
Collapse
Affiliation(s)
- Nhung Nguyen Nguyen
- Department of Cardiology, Liverpool Hospital, Liverpool 2170, NSW, Australia
| | - Joseph George Assad
- Department of Cardiology, Liverpool Hospital, Liverpool 2170, NSW, Australia
| | - Giuseppe Femia
- Department of Cardiology, Campbelltown Hospital, Campbelltown 2560, NSW, Australia
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center, Göttingen 37075, Germany
| | - James Otton
- Department of Cardiology, Liverpool Hospital, Liverpool 2170, NSW, Australia
| | - Tuan Le Nguyen
- Department of Cardiology, Liverpool Hospital, Liverpool 2170, NSW, Australia
| |
Collapse
|
88
|
Lin GM, Han CL. Editorial: Physical Fitness and Cardiovascular Health in Specific Populations. Front Cardiovasc Med 2022; 9:874874. [PMID: 35514440 PMCID: PMC9063857 DOI: 10.3389/fcvm.2022.874874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Gen-Min Lin
- Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien, Taiwan
- Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Chih-Lu Han
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
89
|
Toncelli L, Pasquini L, Masini G, Orlandi M, Paci G, Mecacci F, Pedrizzetti G, Galanti G. Difference in cardiac remodeling between female athletes and pregnant women: a case control study. Cardiovasc Ultrasound 2022; 20:10. [PMID: 35418063 PMCID: PMC9006435 DOI: 10.1186/s12947-022-00280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 03/25/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVES The aim of this study was to detect possible differences in reversible cardiac remodeling occurring in sport training and twin pregnancy. BACKGROUND cardiac remodeling occurs in athletes and pregnant women due to training and fetal requirements, respectively. These changes could be apparently similar. METHODS 21 female elite athletes (23.2 ± 5.3 years), 25 women with twin pregnancies (35.4 ± 5.7 years) and 25 healthy competitive female athletes (controls), age-matched with pregnant women (34.9 ± 7.9 years), were enrolled. This latter group was included to minimize the effect of age on cardiac remodeling. All women evaluated through anamnestic collection, physical examination, 12 leads ECG, standard echocardiogram and strain analysis. Sphericity (SI) and apical conicity (ACI) indexes were also calculated. RESULTS Pregnant women showed higher LA dimension (p < 0.001) compared to both groups of athletes. LV e RV GLS were significantly different in pregnant women compared to female athletes (p = 0.02 and 0.03, respectively). RV GLS was also different between pregnant women and controls (p = 0.02). Pregnant women showed significantly higher S' wave compared to female athletes (p = 0.02) but not controls. Parameters of diastolic function were significantly higher in athletes (p = 0.08 for IVRT and p < 0.001 for E/A,). SI was lower in athletes in both diastole (p = 0.01) and systole (p < 0.001), while ACIs was lower in pregnant women (p = 0.04). CONCLUSIONS Cardiac remodeling of athletes and pregnant women could be similar at first sight but different in LV shape and in GLS, highlighting a profound difference in longitudinal deformation between athletes and pregnant women. This difference seems not to be related with age. These findings suggest that an initial maternal cardiovascular maladaptation could occur in the third trimester of twin pregnancies.
Collapse
Affiliation(s)
- Loira Toncelli
- Sport and Exercise Medicine Department of University of Florence, via delle Oblate 4, 50100, Florence, FI, Italy
| | - Lucia Pasquini
- Fetal Medicine Unit, Department for Women and Children Health, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giulia Masini
- Fetal Medicine Unit, Department for Women and Children Health, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Melissa Orlandi
- Sport and Exercise Medicine Department of University of Florence, via delle Oblate 4, 50100, Florence, FI, Italy
| | - Gabriele Paci
- Sport and Exercise Medicine Department of University of Florence, via delle Oblate 4, 50100, Florence, FI, Italy
| | - Federico Mecacci
- Fetal Medicine Unit, Department for Women and Children Health, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Gianni Pedrizzetti
- Architectural and Engineering Department of University of Trieste, Trieste, Italy
| | - Giorgio Galanti
- Sport and Exercise Medicine Department of University of Florence, via delle Oblate 4, 50100, Florence, FI, Italy.
| |
Collapse
|
90
|
Cardiac remodeling in ambitious endurance-trained amateur athletes older than 50 years–an observational study. PLoS One 2022; 17:e0266951. [PMID: 35413088 PMCID: PMC9004772 DOI: 10.1371/journal.pone.0266951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Background Data on cardiac remodeling in veteran athletes are conflicting but of clinical importance. Methods Sixty-nine clinically stable and healthy individuals >50 years were identified (median 55 (IQR 52–64), 26% female). Echocardiographic features were identified in individuals, who have performed endurance sports at 70% of their maximum heart rate for at least 1 hour 3 times/ week over the previous 5 years. Results Median training time in all participants was 6 hours per week. Therefore, based on these 6 hours of weekly training, participants were grouped into 45 ambitious endurance-trained amateur athletes (EAA) and 24 recreationally active endurance-trained athletes (RAP) training ≥6 hours (6–10) and <6 hours (3.5–5), respectively. Left ventricular (LV) diameters were slightly larger in EAA than in RAP (27 mm/m2 (25–28) vs. 25 mm/m2 (24–27), p = 0.023) and EAA showed preserved diastolic function (p = 0.028) with lower E/E’ ratio (7 (6–9) vs. 9 (7–10), p = 0.039). Interventricular septal thickness and relative wall thickness ratio were similar. Global right ventricular and LV strain were similar, but left atrial (LA) reservoir strain was higher in EAA than in RAP (27% (22–34) vs. 20% (15–29), p = 0.002). Conclusions Endurance training in healthy athletes >50 years is not associated with chamber dilatation or LV hypertrophy. A weekly training duration of ≥6 hours seems beneficial to preserve diastolic function associated with an increased LA reservoir function.
Collapse
|
91
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
92
|
Chatrath N, Papadakis M. Physical activity and exercise recommendations for patients with valvular heart disease. BRITISH HEART JOURNAL 2022; 108:1938-1944. [PMID: 35236765 DOI: 10.1136/heartjnl-2021-319824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/07/2022] [Indexed: 11/04/2022]
Abstract
There is a paucity of studies looking at the natural history of valvular heart disease (VHD) in exercising individuals, and exercise recommendations are largely based on expert consensus. All individuals with VHD should be encouraged to avoid sedentary behaviour by engaging in at least 150 min of physical activity every week, including strength training. There are generally no exercise restrictions to individuals with mild VHD. Regurgitant lesions are better tolerated compared with stenotic lesions and as such the recommendations are more permissive for moderate-to-severe regurgitant VHD. Individuals with severe aortic regurgitation can still partake in moderate-intensity exercise provided the left ventricle (LV) and aorta are not significantly dilated and the ejection fraction (EF) remains >50%. Similarly, individuals with severe mitral regurgitation can partake in moderate-intensity exercise if the LV end-diastolic diameter <60 mm, the EF ≥60%, resting pulmonary artery pressure <50 mm Hg and there is an absence of arrhythmias on exercise testing. Conversely, individuals with severe aortic or mitral stenosis are advised to partake in low-intensity exercise. For individuals with bicuspid aortic valve, in the absence of aortopathy, the guidance for tricuspid aortic valve dysfunction applies. Mitral valve prolapse has several clinical, ECG and cardiac imaging markers of increased arrhythmic risk; and if any are present, individuals should refrain from high-intensity exercise.
Collapse
Affiliation(s)
- Nikhil Chatrath
- Cardiovascular Clinical Academic Group, St George's University of London, London, UK
| | - Michael Papadakis
- Cardiovascular Clinical Academic Group, St George's University of London, London, UK
| |
Collapse
|
93
|
D'Andrea A, Radmilovic J, Russo V, Sperlongano S, Carbone A, Di Maio M, Ilardi F, Riegler L, D'Alto M, Giallauria F, Bossone E, Picano E. Biventricular dysfunction and lung congestion in athletes on anabolic androgenic steroids: a speckle tracking and stress lung echocardiography analysis. Eur J Prev Cardiol 2022; 28:1928-1938. [PMID: 34339497 DOI: 10.1093/eurjpc/zwab086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022]
Abstract
AIMS The real effects of the chronic consumption of anabolic-androgenic steroids (AASs) on cardiovascular structures are subjects of intense debate. The aim of the study was to detect by speckle tracking echocardiography (STE) right ventricular (RV) and left ventricular (LV) dysfunction at rest and during exercise stress echocardiography (ESE) in athletes abusing AAS. METHODS AND RESULTS One hundred and fifteen top-level competitive bodybuilders were selected (70 males), including 65 athletes misusing AAS for at least 5 years (users), 50 anabolic-free bodybuilders (non-users), compared to 50 age- and sex-matched healthy sedentary controls. Standard Doppler echocardiography, STE analysis, and lung ultrasound at rest and at peak supine-bicycle ESE were performed. Athletes showed increased LV mass index, wall thickness, and RV diameters compared with controls, whereas LV ejection fraction was comparable within the groups. left atrial volume index, LV and RV strain, and LV E/Em were significantly higher in AAS users. Users showed more B-lines during stress (median 4.4 vs. 1.25 in controls and 1.3 in non-users, P < 0.01 vs. users). By multivariable analyses, LV E/Ea (beta coefficient = 0.35, P < 0.01), pulmonary artery systolic pressure (beta = 0.43, P < 0.001) at peak effort and number of weeks of AAS use per year (beta = 0.45, P < 0.001) emerged as the only independent determinants of resting RV lateral wall peak systolic two-dimensional strain. In addition, a close association between resting RV myocardial function and VO2 peak during ESE was evidenced (P < 0.001), with a powerful incremental value with respect to clinical and standard echocardiographic data. CONCLUSIONS In athletes abusing steroids, STE analysis showed an impaired RV systolic deformation, closely associated with reduced functional capacity during physical effort, and-during exercise-more pulmonary congestion.
Collapse
Affiliation(s)
- Antonello D'Andrea
- Unit of Cardiology, Department of Traslational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Via Bianchi 6, 80131, Italy
- Unit of Cardiology and Intensive Coronary Care, "Umberto I" Hospital, Nocera Inferiore, Viale S. Francesco 84014, Italy
| | - Juri Radmilovic
- Unit of Cardiology and Intensive Coronary Care, "Umberto I" Hospital, Nocera Inferiore, Viale S. Francesco 84014, Italy
| | - Vincenzo Russo
- Unit of Cardiology, Department of Traslational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Via Bianchi 6, 80131, Italy
| | - Simona Sperlongano
- Unit of Cardiology, Department of Traslational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Via Bianchi 6, 80131, Italy
| | - Andreina Carbone
- Unit of Cardiology, Department of Traslational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Via Bianchi 6, 80131, Italy
| | - Marco Di Maio
- Unit of Cardiology, "SS Addolorata" Hospital, Eboli (ASL Salerno), Piazza Scuola Medica Salernitana 84025, Italy
| | - Federica Ilardi
- Cardiology and Internal Medicine, University of Naples Federico II, Naples, Via Pansini 5, 80131, Italy
| | - Lucia Riegler
- Unit of Cardiology and Intensive Coronary Care, "Umberto I" Hospital, Nocera Inferiore, Viale S. Francesco 84014, Italy
| | - Michele D'Alto
- Unit of Cardiology, Department of Traslational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Via Bianchi 6, 80131, Italy
| | - Francesco Giallauria
- Cardiology and Internal Medicine, University of Naples Federico II, Naples, Via Pansini 5, 80131, Italy
| | - Eduardo Bossone
- UOC Cardiologia Riabilitativa, Cardarelli Hospital, Naples, Via Cardarelli 9, 80131, Italy
| | - Eugenio Picano
- Institute of Clinical Physiology, CNR, Pisa, Via G. Moruzzi, Pisa 56121, Italy
| |
Collapse
|
94
|
Lin YK, Tsai KZ, Han CL, Lee JT, Lin GM. Athlete's Heart Assessed by Sit-Up Strength Exercises in Military Men and Women: The CHIEF Heart Study. Front Cardiovasc Med 2022; 8:737607. [PMID: 35155593 PMCID: PMC8826563 DOI: 10.3389/fcvm.2021.737607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Greater changes in cardiac structure and function in response to physical training have been observed more often in male athletes than in female athletes compared with their sedentary controls. However, studies for the sex-specific cardiac remodeling related to strength exercises in Asian athletes are rare. METHODS This study included 580 men and 79 women, with an average age of 25 years, for a 6-month military training program in Taiwan. Both men and women attended a 2-min sit-up test to assess muscular strength after the training. The test performance falling one standard deviation above the mean (16%) was to define the superior eliteness of athletes. Cardiac structure and function were investigated by electrocardiography and echocardiography for men and women. Multiple logistic regression was used to determine the predictors of elite athlete status. RESULTS In men, greater QTc interval, left ventricular mass adjusted to body surface area (LVMI), lateral mitral E'/A' ratio and right ventricular systolic pressure, and lower diastolic blood pressure were independent predictors of elite strength athletes in the sit-up test [odds ratio (OR) and 95% confidence intervals: 1.01 (1.00, 1.02), 1.02 (1.00, 1.04), 1.45 (1.06, 1.98), 1.13 (1.06, 1.23), and 0.96 (0.93, 0.99), respectively. In contrast, in women, the greater right ventricular outflow tract dimension was the only independent predictor of elite strength athletes in the sit-up test [OR: 1.26 (1.04, 1.53)]. CONCLUSIONS In the 2-min sit-up test, cardiac characteristics differ between elite male and female athletes. While greater QTc interval, LVMI, and diastolic function of left ventricle predict the eliteness of male strength athletes, greater right ventricular chamber size characterizes elite female strength athletes.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien City, Taiwan
- Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Zhe Tsai
- Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien City, Taiwan
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Lu Han
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiunn-Tay Lee
- Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Gen-Min Lin
- Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien City, Taiwan
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
95
|
Athlete’s Heart in Elite Biathlon, Nordic Cross—Country and Ski-Mountaineering Athletes: Cardiac Adaptions Determined Using Echocardiographic Data. J Cardiovasc Dev Dis 2021; 9:jcdd9010008. [PMID: 35050218 PMCID: PMC8779238 DOI: 10.3390/jcdd9010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
Twelve world elite Biathlon (Bia), ten Nordic Cross Country (NCC) and ten ski-mountaineering (Ski-Mo) athletes were evaluated for pronounced echocardiographic physiological cardiac remodeling as a primary aim of our descriptive preliminary report. In this context, sports-related cardiac remodeling was analyzed by performing two-dimensional echocardiography including speckle tracking analysis as left ventricular global longitudinal strain (LV-GLS). A multicenter retrospective analysis of echocardiographic data was performed in 32 elite world winter sports athletes, which were obtained between 2020 and 2021 during the annual medical examination. The matched data of the elite world winter sports athletes (14 women, 18 male athletes, age: 18–35 years) were compared for different echocardiographic parameters. Significant differences could be revealed for left ventricular systolic function (LV-EF, p = 0.0001), left ventricular mass index (LV Mass index, p = 0.0078), left atrial remodeling by left atrial volume index (LAVI, p = 0.0052), and LV-GLS (p = 0.0003) between the three professional winter sports disciplines. This report provides new evidence that resting measures of cardiac structure and function in elite winter sport professionals can identify sport specific remodeling of the left heart, against the background of training schedule and training frequency.
Collapse
|
96
|
Perkins DR, Talbot JS, Lord RN, Dawkins TG, Baggish AL, Zaidi A, Uzun O, Mackintosh KA, McNarry MA, Cooper SM, Lloyd RS, Oliver JL, Shave RE, Stembridge M. The influence of maturation on exercise-induced cardiac remodelling and haematological adaptation. J Physiol 2021; 600:583-601. [PMID: 34935156 DOI: 10.1113/jp282282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS It has long been hypothesised that cardiovascular adaptation to endurance training is augmented following puberty. We investigated whether differences in cardiac and haematological variables exist, and to what extent, between endurance-trained vs. untrained, pre- and post-peak height velocity (PHV) children, and how these central factors relate to maximal oxygen consumption. Using echocardiography to quantify left ventricular (LV) morphology and carbon monoxide rebreathing to determine blood volume and haemoglobin mass, we identified that training-related differences in LV morphology are evident in pre-PHV children, with haematological differences also observed between pre-PHV girls. However, the breadth and magnitude of cardiovascular remodelling was more pronounced post-PHV. Cardiac and haematological measures provide significant predictive models for maximal oxygen consumption in children that are much stronger post-PHV, suggesting that other important determinants within the oxygen transport chain could account for the majority of variance in before puberty. ABSTRACT Cardiovascular and haematological adaptations to endurance training facilitate greater maximal oxygen consumption, and such adaptations maybe augmented following puberty. Therefore, we compared left ventricular (LV) morphology (echocardiography), blood volume, haemoglobin (Hb) mass (CO-rebreathe) and in endurance-trained and untrained boys (n = 42, age = 9.0-17.1 years, = 61.6±7.2 mL∙kg∙min, and n = 31, age = 8.0-17.7 years, O2max = 46.5±6.1 mL∙kg∙min, respectively) and girls (n = 45, age = 8.2-17.0 years, O2max = 51.4±5.7 mL∙kg∙min and n = 36, age = 8.0-17.6 years, O2max = 39.8±5.7 mL∙kg∙min, respectively). Pubertal stage was estimated via maturity offset, with participants classified as pre- or post-peak height velocity (PHV). Pre-PHV, only a larger LV end-diastolic volume/lean body mass (EDV/LBM) for trained boys (+0.28 mL∙kgLBM , P = 0.007) and a higher Hb mass/LBM for trained girls (+1.65 g∙kgLBM , P = 0.007) were evident compared to untrained controls. Post-PHV, LV mass/LBM (boys:+0.50 g∙kgLBM , P = 0.0003; girls:+0.35 g∙kgLBM , P = 0.003), EDV/LBM (boys:+0.35 mL∙kgLBM , P<0.0001; girls:+0.31 mL∙kgLBM, P = 0.0004), blood volume/LBM (boys:+12.47 mL∙kgLBM , P = 0.004; girls:+13.48 mL∙kgLBM , P = 0.0002.) and Hb mass/LBM (boys:+1.29 g∙kgLBM , P = 0.015; girls:+1.47 g∙kgLBM , P = 0.002) were all greater in trained vs. untrained groups. Pre-PHV, EDV (R2 adj = 0.224, P = 0.001) in boys, and Hb mass and interventricular septal thickness (R2 adj = 0.317, P = 0.002) in girls partially accounted for the variance in O2max . Post-PHV, stronger predictive models were evident via the inclusion of LV wall thickness and EDV in boys (R2 adj = 0.608, P<0.0001), and posterior wall thickness and Hb mass in girls (R2 adj = 0.490, P<0.0001). In conclusion, cardiovascular adaptation to exercise training is more pronounced post-PHV, with evidence for a greater role of central components for oxygen delivery. Abstract figure legend: Schematic diagram depicting cardiac structural and haematological differences between trained and untrained boys and girls, pre-peak height velocity (PHV) and post-PHV alongside cardiac and haematological variables contributions to the variance in O2max . Cardiac and haematological variables are greater in trained vs. untrained pre-pubertal children, and a greater number and magnitude of differences are observed at post-PHV. These variables provide significant predictive models for maximal oxygen consumption in children and are much stronger post-PHV, suggesting that other important determinants within the oxygen transport chain could account for the majority of variance in O2max before puberty. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dean R Perkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Jack S Talbot
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Rachel N Lord
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, Canada
| | - Aaron L Baggish
- Cardiovascular Performance Program, Massachusetts General Hospital, Boston
| | - Abbas Zaidi
- University Hospital of Wales, Cardiff, United Kingdom
| | - Orhan Uzun
- University Hospital of Wales, Cardiff, United Kingdom
| | - Kelly A Mackintosh
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Swansea University, Swansea, United Kingdom
| | - Melitta A McNarry
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Swansea University, Swansea, United Kingdom
| | - Stephen-Mark Cooper
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Rhodri S Lloyd
- Youth Physical Development Centre, Cardiff Metropolitan University, Cardiff, United Kingdom.,Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand.,Centre for Sport Science and Human Performance, Waikato Institute of Technology, Waikato, New Zealand
| | - Jon L Oliver
- Youth Physical Development Centre, Cardiff Metropolitan University, Cardiff, United Kingdom.,Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| | - Rob E Shave
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
97
|
Linnehan BK, Gomez FM, Huston SM, Hsu A, Takeshita R, Colegrove KM, Harms CA, Barratclough A, Deming AC, Rowles TK, Musser WB, Zolman ES, Wells RS, Jensen ED, Schwacke LH, Smith CR. Cardiac assessments of bottlenose dolphins (Tursiops truncatus) in the Northern Gulf of Mexico following exposure to Deepwater Horizon oil. PLoS One 2021; 16:e0261112. [PMID: 34905585 PMCID: PMC8670661 DOI: 10.1371/journal.pone.0261112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
The Deepwater Horizon (DWH) oil spill profoundly impacted the health of bottlenose dolphins (Tursiops truncatus) in Barataria Bay, LA (BB). To comprehensively assess the cardiac health of dolphins living within the DWH oil spill footprint, techniques for in-water cardiac evaluation were refined with dolphins cared for by the U.S. Navy Marine Mammal Program in 2018 and applied to free-ranging bottlenose dolphins in BB (n = 34) and Sarasota Bay, Florida (SB) (n = 19), a non-oiled reference population. Cardiac auscultation detected systolic murmurs in the majority of dolphins from both sites (88% BB, 89% SB) and echocardiography showed most of the murmurs were innocent flow murmurs attributed to elevated blood flow velocity [1]. Telemetric six-lead electrocardiography detected arrhythmias in BB dolphins (43%) and SB dolphins (31%), all of which were considered low to moderate risk for adverse cardiac events. Echocardiography showed BB dolphins had thinner left ventricular walls, with significant differences in intraventricular septum thickness at the end of diastole (p = 0.002), and left ventricular posterior wall thickness at the end of diastole (p = 0.033). BB dolphins also had smaller left atrial size (p = 0.004), higher prevalence of tricuspid valve prolapse (p = 0.003), higher prevalence of tricuspid valve thickening (p = 0.033), and higher prevalence of aortic valve thickening (p = 0.008). Two dolphins in BB were diagnosed with pulmonary arterial hypertension based on Doppler echocardiography-derived estimates and supporting echocardiographic findings. Histopathology of dolphins who stranded within the DWH oil spill footprint showed a significantly higher prevalence of myocardial fibrosis (p = 0.003), regardless of age, compared to dolphins outside the oil spill footprint. In conclusion, there were substantial cardiac abnormalities identified in BB dolphins which may be related to DWH oil exposure, however, future work is needed to rule out other hypotheses and further elucidate the connection between oil exposure, pulmonary disease, and the observed cardiac abnormalities.
Collapse
Affiliation(s)
- Barbara K. Linnehan
- National Marine Mammal Foundation, San Diego, California, United States of America
- * E-mail:
| | - Forrest M. Gomez
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Sharon M. Huston
- San Diego Veterinary Cardiology, San Diego, California, United States of America
| | - Adonia Hsu
- San Diego Veterinary Cardiology, San Diego, California, United States of America
| | - Ryan Takeshita
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Kathleen M. Colegrove
- Zoological Pathology Program, University of Illinois at Urbana-Champaign, Brookfield, Illinois, United States of America
| | - Craig A. Harms
- North Carolina State University, Center for Marine Sciences and Technology, Morehead City, North Carolina, United States of America
| | - Ashley Barratclough
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Alissa C. Deming
- Dauphin Island Sea Lab, Dauphin Island, Alabama, United States of America
| | - Teri K. Rowles
- National Oceanic and Atmospheric Administration, Office of Protected Resources, Silver Spring, Maryland, United States of America
| | - Whitney B. Musser
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Eric S. Zolman
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Eric D. Jensen
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, California, United States of America
| | - Lori H. Schwacke
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Cynthia R. Smith
- National Marine Mammal Foundation, San Diego, California, United States of America
| |
Collapse
|
98
|
Bass-Stringer S, Tai CMK, McMullen JR. IGF1-PI3K-induced physiological cardiac hypertrophy: Implications for new heart failure therapies, biomarkers, and predicting cardiotoxicity. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:637-647. [PMID: 33246162 PMCID: PMC8724616 DOI: 10.1016/j.jshs.2020.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/28/2020] [Accepted: 11/13/2020] [Indexed: 05/30/2023]
Abstract
Heart failure represents the end point of a variety of cardiovascular diseases. It is a growing health burden and a leading cause of death worldwide. To date, limited treatment options exist for the treatment of heart failure, but exercise has been well-established as one of the few safe and effective interventions, leading to improved outcomes in patients. However, a lack of patient adherence remains a significant barrier in the implementation of exercise-based therapy for the treatment of heart failure. The insulin-like growth factor 1 (IGF1)-phosphoinositide 3-kinase (PI3K) pathway has been recognized as perhaps the most critical pathway for mediating exercised-induced heart growth and protection. Here, we discuss how modulating activity of the IGF1-PI3K pathway may be a valuable approach for the development of therapies that mimic the protective effects of exercise on the heart. We outline some of the promising approaches being investigated that utilize PI3K-based therapy for the treatment of heart failure. We discuss the implications for cardiac pathology and cardiotoxicity that arise in a setting of reduced PI3K activity. Finally, we discuss the use of animal models of cardiac health and disease, and genetic mice with increased or decreased cardiac PI3K activity for the discovery of novel drug targets and biomarkers of cardiovascular disease.
Collapse
Affiliation(s)
- Sebastian Bass-Stringer
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Celeste M K Tai
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
99
|
Hammami N, Frih B, Rahali H, Mkacher W, Rezgui T, Čular D, Bouassida A. Effects of taekwondo style practice on cardiac remodeling and isokinetic thigh strength in elite women players. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
100
|
Bryde R, Applewhite AI, Abu Dabrh AM, Taylor BJ, Heckman MG, Filmalter SE, Pujalte G, Rojas C, Heckman AJ, Brigham TJ, Prokop LJ, Shapiro BP. Cardiac structure and function in elite female athletes: A systematic review and meta-analysis. Physiol Rep 2021; 9:e15141. [PMID: 34894105 PMCID: PMC8665377 DOI: 10.14814/phy2.15141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 02/01/2023] Open
Abstract
We conducted a meta-analysis to synthesize the best available evidence comparing cardiac biventricular structure and function using cardiac magnetic resonance imaging (CMR) and transthoracic echocardiography (TTE) in elite female athletes and healthy controls (HC). Chronic exposure to exercise may induce cardiac chamber enlargement as a means to augment stroke volume, a condition known as the "athlete's heart." These changes have not been clearly characterized in female athletes. Multiple databases were searched from inception to June 18, 2019. Outcomes of interest included left ventricular (LV) and right ventricular (RV) dimensional, volumetric, mass, and functional assessments in female athletes. Most values were indexed to body surface area. The final search yielded 22 studies, including 1000 female athletes from endurance, strength, and mixed athletic disciplines. CMR-derived LV end-diastolic volume (LVEDV) and RV end-diastolic volume (RVEDV) were greater in endurance athletes (EA) versus HC (17.0% and 18.5%, respectively; both p < 0.001). Similarly, TTE-derived LVEDV and RVEDV were greater in EA versus HC (16.8% and 28.0%, respectively; both p < 0.001). Both LVEF and RVEF were lower in EA versus HC, with the most pronounced difference observed in RVEF via TTE (9%) (p < 0.001). LV stroke volume was greater in EA versus HC via both CMR (18.5%) and TTE (13.2%) (both p < 0.05). Few studies reported data for the mixed athlete (MA) population and even fewer studies reported data for strength athletes (SA), therefore a limited analysis was performed on MA and no analysis was performed on SA. This evidence-synthesis review demonstrates the RV may be more susceptible to ventricular enlargement. General changes in LV and RV structure and function in female EA mirrored changes observed in male counterparts. Further studies are needed to determine if potential adverse outcomes occur secondary to these changes.
Collapse
Affiliation(s)
- Robyn Bryde
- Department of Cardiovascular DiseasesMayo ClinicJacksonvilleFloridaUSA
| | | | - Abd Moain Abu Dabrh
- Department of Family MedicineMayo ClinicJacksonvilleFloridaUSA
- Division of General Internal MedicineIntegrative Medicine and HealthMayo ClinicJacksonvilleFloridaUSA
| | - Bryan J. Taylor
- Department of Cardiovascular DiseasesMayo ClinicJacksonvilleFloridaUSA
| | | | - Sara E. Filmalter
- Department of Family MedicineMayo ClinicJacksonvilleFloridaUSA
- Division of Sports MedicineDepartment of OrthopedicsMayo ClinicJacksonvilleFloridaUSA
| | - George Pujalte
- Department of Family MedicineMayo ClinicJacksonvilleFloridaUSA
- Division of Sports MedicineDepartment of OrthopedicsMayo ClinicJacksonvilleFloridaUSA
| | - Carlos Rojas
- Department of RadiologyMayo ClinicJacksonvilleFloridaUSA
| | | | | | | | - Brian P. Shapiro
- Department of Cardiovascular DiseasesMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|