51
|
Shibbani K, De Lima E Silva Bagno L, Poulin MF, Matella T, Diab K, Kavinsky C, Ramesh N, Bhat V, Hijazi ZM, Kenny D. Preclinical comparative assessment of a dedicated pediatric poly-L-lactic-acid-based bioresorbable scaffold with a low-profile bare metal stent. Catheter Cardiovasc Interv 2020; 96:878-888. [PMID: 32294303 DOI: 10.1002/ccd.28893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Polymer-based bioresorbable scaffolds (PBBS) have been assessed for coronary revascularization with mixed outcomes. Few studies have targeted pediatric-specific scaffolds. We sought to assess safety, efficacy, and short-term performance of a dedicated drug-free PBBS pediatric scaffold compared to a standard low-profile bare metal stent (BMS) in central and peripheral arteries of weaned piglets. METHODS Forty-two devices (22 Elixir poly-L-lactic-acid-based pediatric bioresorbable scaffolds [BRS] [6 × 18 mm] and 20 control BMS Cook Formula 418 [6 × 20 mm]) were implanted in the descending aorta and pulmonary arteries (PAs) of 14 female Yucatan piglets. Quantitative measurements were collected on the day of device deployment and 30 and 90 days postimplantation to compare device patency and integrity. RESULTS The BRS has a comparable safety profile to the BMS in the acute setting. Late lumen loss (LLL) and percent diameter stenosis (%DS) were not significantly different between BRS and BMS in the PA at 30 days. LLL and %DS were greater for BRS versus BMS in the aorta at 30 days postimplantation (LLL difference: 0.96 ± 0.26; %DS difference: 16.15 ± 4.51; p < .05). At 90 days, %DS in the aortic BRS was less, and PA BRS LLL was also less than BMS. Histomorphometric data showed greater intimal proliferation and area stenosis in the BRS at all time points and in all vessels. CONCLUSIONS A dedicated PBBS pediatric BRS has a favorable safety profile in the acute/subacute setting and demonstrates characteristics that are consistent with adult BRSs.
Collapse
Affiliation(s)
- Kamel Shibbani
- University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | | | | | | | - Karim Diab
- Rush University Medical Center, Chicago, Illinois, USA
| | | | | | - Vinayak Bhat
- Elixir Medical Corporation, Milpitas, California, USA
| | | | - Damien Kenny
- Children's Hospital Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
52
|
Georgakarakos E, Xenakis A, Georgiadis GS. Computational Comparison between the Altura Aortic Endograft Configuration and the Classic Bifurcated Idealized Designs. Ann Vasc Surg 2020; 68:442-450. [PMID: 32278866 DOI: 10.1016/j.avsg.2020.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The Altura (Alt) endograft is a new design, lacking the classic main body with the flow divider. Instead, 2 proximal D-shaped endografts form a round circumference in the aortic neck for secure sealing and land in the iliac arteries in a cross-limb fashion. The aim of this computational study was to compare hemodynamically this model with the classic bifurcated (Bif) and cross-limb (Cx) endograft designs of equal total length. METHODS All 3D endograft models were created using the finite volume analysis application ANSYS CFX (Ansys Inc., Canonsburg, PA, USA). The Alt inlet was constructed as 2 opposing D-shaped sections. The flow was quantified by time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), and helicity. The displacement forces were also compared for all models with computational fluid dynamics analysis. RESULTS The Alt design was associated with lower forces (range 4.0-5.9Ν) than Bif (4.17-6.15 N) and Cx (4.43-6.53 N). The 2-piece inlet site of the separated limbs of Alt has higher TAWSS than the uniform inlet segment of the Cx and the Bif model. Most importantly, the mid-segment and distal segment of the limbs in the Alt design present higher TAWSS in a greater area than the other 2 models. The inlet of the Alt design showed higher OSI than the other accommodations and similar or comparable OSI values along their mid-limb and distal limb segments. The range, location, and values or RRT were comparable between the 3 models. Helicity in the iliac limbs is more prominent in the crossed accommodations (Alt and Cx). CONCLUSIONS Only small differences in the hemodynamic indices and displacement forces were detected between the Alt and classic accommodations. From this point of view, the Alt design could be theoretically considered not inferior to other widely used endograft configurations.
Collapse
Affiliation(s)
- Efstratios Georgakarakos
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Antonios Xenakis
- Biomechanics Laboratory, School of Mechanical Engineering, Technological Educational Institute of Crete, Heraklion, Crete, Greece
| | - George S Georgiadis
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
53
|
Chen Z, Qin H, Liu J, Wu B, Cheng Z, Jiang Y, Liu L, Jing L, Leng X, Jing J, Wang Y, Wang Y. Characteristics of Wall Shear Stress and Pressure of Intracranial Atherosclerosis Analyzed by a Computational Fluid Dynamics Model: A Pilot Study. Front Neurol 2020; 10:1372. [PMID: 32010041 PMCID: PMC6978719 DOI: 10.3389/fneur.2019.01372] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/11/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Although wall shear stress (WSS) and pressure play important roles in plaque vulnerability, characteristics of the two indices in intracranial atherosclerosis (ICAS) have not been fully investigated yet. This study aimed to elucidate this issue by means of establishing a non-invasive computational fluid dynamics method with time-of-flight magnetic resonance angiography (TOF-MRA) of the whole cerebral artery. Materials and Methods: Subjects with symptomatic ICAS in the middle cerebral artery domain were enrolled, excluding those with concomitant internal carotid artery stenosis. Based on patient-specific TOF-MRA images for three-dimensional (3D) meshes and arterial blood pressure with patient-specific carotid artery ultrasonography for inlet boundary conditions, patients' three-dimensional hemodynamics were modeled by a finite element method governed by Navier-Stokes equations. Results: Among the 55 atherosclerotic lesions analyzed by this TOF-MRA based computational fluid dynamics model, the maximum WSS (WSSmax) was most frequently detected at the apex points and the upper half of the upstream sections of the lesions, whereas the maximum pressure was most often located at the lower half of the upstream sections. As the percent stenosis increases, the relative value of WSSmax and pressure drop increased with significantly increasing steep beyond 50% stenosis. Moreover, WSSmax was found to linearly correlate with pressure drop in ICAS. Conclusions: This study on ICAS revealed certain trends of longitudinal distribution of WSS and pressure and the influences of percent stenosis on cerebral hemodynamics, as well as the correlations between WSS and pressure drop. It represents a step forward in applying computational flow simulation techniques in studying ICAS and stroke, in a patient-specific manner.
Collapse
Affiliation(s)
- Zimo Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Haiqiang Qin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bokai Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zaiheng Cheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Lina Jing
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyi Leng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
54
|
Chang CC, Kogame N, Onuma Y, Byrne RA, Capodanno D, Windecker S, Morel MA, Cutlip DE, Krucoff MW, Stone GW, Lansky AJ, Mehran R, Spitzer E, Fraser AG, Baumbach A, Serruys PW. Defining device success for percutaneous coronary intervention trials: a position statement from the European Association of Percutaneous Cardiovascular Interventions of the European Society of Cardiology. EUROINTERVENTION 2020; 15:1190-1198. [DOI: 10.4244/eij-d-19-00552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Peng Z, Shu B, Zhang Y, Wang M. Endothelial Response to Pathophysiological Stress. Arterioscler Thromb Vasc Biol 2019; 39:e233-e243. [PMID: 31644356 DOI: 10.1161/atvbaha.119.312580] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Located in the innermost layer of the vasculature and directly interacting with blood flow, endothelium integrates various biochemical and biomechanical signals to maintain barrier function with selective permeability, vascular tone, blood fluidity, and vascular formation. Endothelial cells respond to laminar and disturbed flow by structural and functional adaption, which involves reprogramming gene expression, cell proliferation and migration, senescence, autophagy and cell death, as well as synthesizing signal molecules (nitric oxide and prostanoids, etc) that act in manners of autocrine, paracrine, or juxtacrine. Inflammation occurs after infection or tissue injury. Dysregulated inflammatory response participates in pathogenesis of many diseases. Endothelial cells exposed to inflammatory stimuli from the circulation or the microenvironment exhibit impaired vascular tone, increased permeability, elevated procoagulant activity, and dysregulated vascular formation, collectively contributing to the development of vascular diseases. Understanding the endothelial response to pathophysiological stress of hemodynamics and inflammation provides mechanistic insights into cardiovascular diseases, as well as therapeutic opportunities.
Collapse
Affiliation(s)
- Zekun Peng
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingyan Shu
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yurong Zhang
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
56
|
Genkel VV, Kuznetcova AS, Shaposhnik II. Biomechanical Forces and Atherosclerosis: From Mechanism to Diagnosis and Treatment. Curr Cardiol Rev 2019; 16:187-197. [PMID: 31362692 PMCID: PMC7536809 DOI: 10.2174/1573403x15666190730095153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/22/2022] Open
Abstract
The article provides an overview of current views on the role of biomechanical forces in the pathogenesis of atherosclerosis. The importance of biomechanical forces in maintaining vascular homeostasis is considered. We provide descriptions of mechanosensing and mechanotransduction. The roles of wall shear stress and circumferential wall stress in the initiation, progression and destabilization of atherosclerotic plaque are described. The data on the possibilities of assessing biomechanical factors in clinical practice and the clinical significance of this approach are presented. The article concludes with a discussion on current therapeutic approaches based on the modulation of biomechanical forces.
Collapse
Affiliation(s)
- Vadim V Genkel
- Department of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation, Chelyabinsk, Russian Federation
| | - Alla S Kuznetcova
- Department of Hospital Therapy Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation, Chelyabinsk, Russian Federation
| | - Igor I Shaposhnik
- Department of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation, Chelyabinsk, Russian Federation
| |
Collapse
|
57
|
Lee KE, Shin SW, Kim GT, Choi JH, Shim EB. Prediction of Plaque Progression in Coronary Arteries Based on a Novel Hemodynamic Index Calculated From Virtual Stenosis Method. Front Physiol 2019; 10:400. [PMID: 31133862 PMCID: PMC6526757 DOI: 10.3389/fphys.2019.00400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/22/2019] [Indexed: 01/07/2023] Open
Abstract
Rationale Predicting the sites in coronary arteries that are susceptible to plaque deposition is essential for the development of clinical treatment strategies and prevention. However, to date, no physiological biomarkers for this purpose have been developed. We hypothesized that the possibility of plaque deposition at a specific site in the coronary artery is associated with wall shear stress (WSS) and fractional flow reserve (FFR). Background and Objective We proposed a new biomarker called the stenosis susceptibility index (SSI) using the FFR and WSS derived using virtual stenosis method. To validate the clinical efficacy of this index, we applied the method to actual pilot clinical cases. This index non-invasively quantifies the vasodilation effects of vascular endothelial cells relative to FFR variation at a specific coronary artery site. Methods and Results Using virtual stenosis method, we computed maximum WSS and FFR according to the variation in stenotic severity at each potential stenotic site and then plotted the variations of maximum WSS (y-axis) and FFR (x-axis). The slope of the graph indicated a site-specific SSI value. Then we determined the most susceptible sites for plaque deposition by comparing SSI values between the potential sites. Applying this method to seven patients revealed 71.4% in per-patient basis analysis 77.8% accuracy in per-vessel basis analysis in percutaneous coronary intervention (PCI) site prediction. Conclusion The SSI index can be used as a predictive biomarker to identify plaque deposition sites. Patients with relatively smaller SSI values also had a higher tendency for myocardial infarction. In conclusion, sites susceptible to plaque deposition can be identified using the SSI index.
Collapse
Affiliation(s)
- Kyung Eun Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, South Korea.,Bio-Convergence Technology Group, Korea Institute of Industrial Technology, Jeju, South Korea
| | - Sung Woong Shin
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, South Korea
| | | | - Jin Ho Choi
- Department of Cardiology, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Eun Bo Shim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
58
|
Borovac JA, D'Amario D, Vergallo R, Porto I, Bisignani A, Galli M, Annibali G, Montone RA, Leone AM, Niccoli G, Crea F. Neoatherosclerosis after drug-eluting stent implantation: a novel clinical and therapeutic challenge. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2019; 5:105-116. [PMID: 30285099 DOI: 10.1093/ehjcvp/pvy036] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/06/2018] [Accepted: 10/03/2018] [Indexed: 11/12/2022]
Abstract
The recognition that obstructive disease of the epicardial coronary arteries, causing ischaemic heart disease, can be treated with a percutaneous coronary intervention (PCI) has been a major discovery in cardiology in the last 40 years contributing, in particular, to the reduction of mortality associated to acute myocardial infarction (AMI). However, even in the era of drug-eluting stent (DES) implantation, a sizable proportion of patients who undergo PCI may develop late or very late post-implantation complications, that occur in the form of restenosis, neoatherosclerosis, and/or in-stent thrombosis. Such complications are clinically relevant since they can cause AMI and negatively impact on the outcome. The underlying pathophysiological mechanisms are complex but related to inhibition of neointimal proliferation by DES that, on the hand, reduces the rate of in-stent restenosis, but, on the other hand, causes dysfunctional vessel healing, persistent inflammation, platelet activation, and adverse immunological responses. Multiple approaches have been developed or are under evaluation to target DES-related complications including pharmacotherapy, procedure-related imaging methods, novel stent designs, and drug-delivery methods. The aim of this review is to provide an update on the latest preclinical, translational, and clinical pharmacotherapeutic developments in this setting that target novel cellular mechanisms and pathways that might contribute to neoatherosclerosis. Due to the importance of secondary prevention in the reduction of DES-associated complications, this review also provides a short overview of pharmacological agents that are established or currently being investigated in this regard.
Collapse
Affiliation(s)
- Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2, Split, Croatia.,University Hospital of Split, Spinciceva 1, Split, Croatia
| | - Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, Institute of Cardiology, Catholic University of the Sacred Heart, Largo Agostino Gemelli, Rome, Italy
| | - Rocco Vergallo
- Department of Cardiovascular and Thoracic Sciences, Institute of Cardiology, Catholic University of the Sacred Heart, Largo Agostino Gemelli, Rome, Italy
| | - Italo Porto
- Department of Cardiovascular and Thoracic Sciences, Institute of Cardiology, Catholic University of the Sacred Heart, Largo Agostino Gemelli, Rome, Italy
| | - Antonio Bisignani
- Department of Cardiovascular and Thoracic Sciences, Institute of Cardiology, Catholic University of the Sacred Heart, Largo Agostino Gemelli, Rome, Italy
| | - Mattia Galli
- Department of Cardiovascular and Thoracic Sciences, Institute of Cardiology, Catholic University of the Sacred Heart, Largo Agostino Gemelli, Rome, Italy
| | - Gianmarco Annibali
- Department of Cardiovascular and Thoracic Sciences, Institute of Cardiology, Catholic University of the Sacred Heart, Largo Agostino Gemelli, Rome, Italy
| | - Rocco A Montone
- Department of Cardiovascular and Thoracic Sciences, Institute of Cardiology, Catholic University of the Sacred Heart, Largo Agostino Gemelli, Rome, Italy
| | - Antonio Maria Leone
- Department of Cardiovascular and Thoracic Sciences, Institute of Cardiology, Catholic University of the Sacred Heart, Largo Agostino Gemelli, Rome, Italy
| | - Giampaolo Niccoli
- Department of Cardiovascular and Thoracic Sciences, Institute of Cardiology, Catholic University of the Sacred Heart, Largo Agostino Gemelli, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Institute of Cardiology, Catholic University of the Sacred Heart, Largo Agostino Gemelli, Rome, Italy
| |
Collapse
|
59
|
Iannaccone M, Gatti P, Barbero U, Bassignana A, Gallo D, Benedictis M, Helft G, Morbiducci U, Doronzo B, D'Ascenzo F. Impact of strut thickness and number of crown and connectors on clinical outcomes on patients treated with second‐generation drug eluting stent. Catheter Cardiovasc Interv 2019; 96:1417-1422. [DOI: 10.1002/ccd.28228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/31/2019] [Accepted: 03/23/2019] [Indexed: 01/25/2023]
Affiliation(s)
| | - Paolo Gatti
- Division of Cardiology Città Della Salute e della Scienza Hospital Turin Italy
| | - Umberto Barbero
- Division of Cardiology SS. Annunziata Hospital Savigliano Italy
| | | | - Diego Gallo
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin Italy
| | | | - Gerard Helft
- Division of Cardiology Cardiology Institute, Pitié‐Salpêtrière Hospital, UPMC, APHP Paris France
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin Italy
| | | | - Fabrizio D'Ascenzo
- Division of Cardiology Città Della Salute e della Scienza Hospital Turin Italy
| |
Collapse
|
60
|
Georgakarakos E, Xenakis A, Georgiadis GS. Computational Comparison Between a Classic Bifurcated Endograft and a Customized Model With "Dog Bone"-Shaped Limbs. J Endovasc Ther 2019; 26:250-257. [PMID: 30898071 DOI: 10.1177/1526602819834713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To use computational simulations to compare the hemodynamic characteristics of a classic bifurcated stent-graft to an equally long endograft design with "dog bone"-shaped limbs (DB), which have large diameter proximal and distal ends and significant narrowing at the midsection to accommodate aneurysms with an extremely narrow bifurcation. MATERIALS AND METHODS A 3-dimensional model was constructed using commercially available validated software. Inlet and outlet diameters were 28 and 14 mm, respectively. The total length of both models was kept constant to 180 mm, but the main body of the DB model was 20 mm shorter than the bifurcated endograft. The iliac limbs of the DB model had a 9-mm stenosis over a 30-mm segmental length in the midsection. Flow was quantified by time-averaged wall shear stress, oscillatory shear index (OSI), and relative residence time (RRT). The displacement forces in newtons (N) and maximum wall shear stress (WSS) in pascals (Pa) were compared during a cardiac cycle at 3 segments (main body, bifurcation, and iliac limbs) of both models with computational fluid dynamics analysis. RESULTS The DB accommodation was associated with higher forces at the main body (range 3.15-4.9 Ν) compared with the classic configuration (1.56-2.34 N). On the contrary, the forces at the bifurcation (3.81-5.98 vs 3.76-5.54 N) and at the iliac limbs (0.34-0.85 vs 0.49-0.74 N) were comparable for both models. Accordingly, maximum WSS was detected at the iliac sites for both models throughout the cardiac cycle. The highest values were detected at peak systole and equaled 26.6 and 12 Pa for the DB and bifurcated configurations, respectively. The narrow segments in the DB model displayed high stress values but low OSI and very low RRT. CONCLUSION The DB accommodation seems to correlate with higher displacement forces at the main body and higher stresses at the iliac limbs. Consequently, regular imaging follow-up of the DB design deems necessary to delineate its mid- and long-term clinical performance.
Collapse
Affiliation(s)
- Efstratios Georgakarakos
- 1 Department of Vascular Surgery, University Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Xenakis
- 2 Fluids Section, School of Mechanical Engineering, National Technical University of Athens, Greece
| | - George S Georgiadis
- 1 Department of Vascular Surgery, University Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
61
|
Micropatterning of a 2-methacryloyloxyethyl phosphorylcholine polymer surface by hydrogenated amorphous carbon thin films for endothelialization and antithrombogenicity. Acta Biomater 2019; 87:187-196. [PMID: 30710709 DOI: 10.1016/j.actbio.2019.01.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/19/2018] [Accepted: 01/29/2019] [Indexed: 11/23/2022]
Abstract
The existing first-generation drug-eluting stent (DES) has caused late and very late stent thrombosis related to incomplete stent endothelialization. Hence, biomaterials that possess sufficient anti-thrombogenicity and endothelialization with the controlled drug release system have been highly required. In this work, we have developed a newly designed drug-release platform composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, a non-thrombogenic polymer, and micropatterned hydrogenated amorphous carbon (a-C:H), a cell-compatible thin film. The platelet adhesion and the endothelial cell adhesion behavior on the micropatterned substrates were investigated in vitro. The results indicated that the micropatterned a-C:H/MPC polymer substrates effectively supported the human umbilical vein endothelial cell (HUVEC) proliferation, while suppressing the platelet adhesion. Interestingly, the HUVEC exhibited different shape and behavior by changing the island size of the micropatterned a-C:H. By introducing both a non-thrombogenic polymer and cell-compatible thin films through a simple patterning method, we demonstrated that the platform had the potential to be utilized as a base material for DES with cell controllability. STATEMENT OF SIGNIFICANCE: The current first-generation drug-eluting stents (DES) would cause late and very late stent thrombosis due to the incomplete endothelialization of the metal stent material. In this work, we have developed a new DES platform composed of a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer micropatterned by hydrogenated amorphous carbon (a-C:H). Two types of differently micropatterned a-C:H stent surface were made. Our studies revealed that the micropatterned a-C:H/MPC polymer substrates could effectively enhance the endothelial cell (EC) proliferation, simultaneously suppressing the platelet adhesion, becoming a highly biocompatible material especially for indwelling devices including a drug-release device. The new drug-release platform could be utilized as a base material for cell-controllable coating on DES.
Collapse
|
62
|
Bologna M, Migliori S, Montin E, Rampat R, Dubini G, Migliavacca F, Mainardi L, Chiastra C. Automatic segmentation of optical coherence tomography pullbacks of coronary arteries treated with bioresorbable vascular scaffolds: Application to hemodynamics modeling. PLoS One 2019; 14:e0213603. [PMID: 30870477 PMCID: PMC6417773 DOI: 10.1371/journal.pone.0213603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/25/2019] [Indexed: 01/13/2023] Open
Abstract
Background / Objectives Automatic algorithms for stent struts segmentation in optical coherence tomography (OCT) images of coronary arteries have been developed over the years, particularly with application on metallic stents. The aim of this study is three-fold: (1) to develop and to validate a segmentation algorithm for the detection of both lumen contours and polymeric bioresorbable scaffold struts from 8-bit OCT images, (2) to develop a method for automatic OCT pullback quality assessment, and (3) to demonstrate the applicability of the segmentation algorithm for the creation of patient-specific stented coronary artery for local hemodynamics analysis. Methods The proposed OCT segmentation algorithm comprises four steps: (1) image pre-processing, (2) lumen segmentation, (3) stent struts segmentation, (4) strut-based lumen correction. This segmentation process is then followed by an automatic OCT pullback image quality assessment. This method classifies the OCT pullback image quality as ‘good’ or ‘poor’ based on the number of regions detected by the stent segmentation. The segmentation algorithm was validated against manual segmentation of 1150 images obtained from 23 in vivo OCT pullbacks. Results When considering the entire set of OCT pullbacks, lumen segmentation showed results comparable with manual segmentation and with previous studies (sensitivity ~97%, specificity ~99%), while stent segmentation showed poorer results compared to manual segmentation (sensitivity ~63%, precision ~83%). The OCT pullback quality assessment algorithm classified 7 pullbacks as ‘poor’ quality cases. When considering only the ‘good’ classified cases, the performance indexes of the scaffold segmentation were higher (sensitivity >76%, precision >86%). Conclusions This study proposes a segmentation algorithm for the detection of lumen contours and stent struts in low quality OCT images of patients treated with polymeric bioresorbable scaffolds. The segmentation results were successfully used for the reconstruction of one coronary artery model that included a bioresorbable scaffold geometry for computational fluid dynamics analysis.
Collapse
Affiliation(s)
- Marco Bologna
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Susanna Migliori
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Eros Montin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, United States of America
| | - Rajiv Rampat
- Sussex Cardiac Centre, Brighton and Sussex University Hospitals, Brighton, United Kingdom
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- * E-mail:
| |
Collapse
|
63
|
Chichareon P, Katagiri Y, Asano T, Takahashi K, Kogame N, Modolo R, Tenekecioglu E, Chang CC, Tomaniak M, Kukreja N, Wykrzykowska JJ, Piek JJ, Serruys PW, Onuma Y. Mechanical properties and performances of contemporary drug-eluting stent: focus on the metallic backbone. Expert Rev Med Devices 2019; 16:211-228. [DOI: 10.1080/17434440.2019.1573142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ply Chichareon
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Division of Cardiovascular Medicine, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Yuki Katagiri
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Taku Asano
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kuniaki Takahashi
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Norihiro Kogame
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rodrigo Modolo
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Internal Medicine, Cardiology Division, University of Campinas (UNICAMP). Campinas, Sao Paulo, Brazil
| | | | - Chun-Chin Chang
- ThoraxCenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mariusz Tomaniak
- ThoraxCenter, Erasmus Medical Center, Rotterdam, the Netherlands
- First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Neville Kukreja
- Department of Cardiology, East and North Hertfordshire NHS Trust, Hertfordshire, UK
| | | | - Jan J. Piek
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Patrick W. Serruys
- International Centre for Circulatory Health, NHLI, Imperial College London, London, UK
| | - Yoshinobu Onuma
- ThoraxCenter, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
64
|
|
65
|
Menzyanova NG, Pyatina SА, Nikolaeva ED, Shabanov AV, Nemtsev IV, Stolyarov DP, Dryganov DB, Sakhnov EV, Shishatskaya EI. Screening of biopolymeric materials for cardiovascular surgery toxicity-Evaluation of their surface relief with assessment of morphological aspects of monocyte/macrophage polarization in atherosclerosis patients. Toxicol Rep 2018; 6:74-90. [PMID: 30581762 PMCID: PMC6297908 DOI: 10.1016/j.toxrep.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
The morphotypes of human macrophages (MPh) were studied in the culture on nano-structured biopolymer substrates, made from polyhydroxyalcanoates (PHAs) of five various monomer compositions, followed by the solvent evaporation. Its surface relief, which was further in direct contact with human cells in vitro, was analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). It was shown, that the features of the micro/nano relief depend on the monomeric composition of the polymer substrates. Monocytes (MN) of patients with atherosclerosis and cardiac ischemia, undergoing stenting and conventional anti-atherosclerotic therapy, were harvested prior and after stenting. MN were isolated and cultured, with the transformation into MPh in direct contact with biopolymer culture substrates with different monomer composition and nano-reliefs, and transformed into MPh, in comparison with the same process on standard culture plastic. Sub-populations of cells with characteristic morphology in each phenotypic class were described, and their quantitative ratios for each sample of polymers were counted as an intermediate result in the development of "smart" material for cardiovascular devices. The results obtained allow us to assume, that the processes of MPh differentiation and polarization in vitro depend not only on the features of the micro/nano relief of biopolymer substrates, but also on the initial state of MN in vivo and general response of patients.
Collapse
Key Words
- AFM, atomic force microscopy
- Atherosclerosis
- Cell morphology
- Intravascular stenting
- MN, monocytes
- MOC, mononuclear cells
- MPh, macrophages
- MUC, multinucleated cells
- Macrophages
- Monocytes
- P(3HB), poly-3-hydroxybutyrate
- P(3HB/3HV), copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate
- P(3HB/3HV/3HHx), copolymers of 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxyhexanoate
- P(3HB/3HV/4HB/3HHx), copolymers of 3-hydroxybutyrate, 3-hydroxyvalerate, 4-hydroxybutyrate and 3-hydroxyhexanoate
- P(3HB/4HB), copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate
- PHAs, polyhydroxyalcanoates
- Polyhydroxyalkanoates
- SEM, scanning electron microscopy
Collapse
Affiliation(s)
| | | | - Elena D. Nikolaeva
- Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Alexander V. Shabanov
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50/38 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Ivan V. Nemtsev
- Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Dmitry P. Stolyarov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, Krasnoyarsk, 660020, Russia
| | - Dmitry B. Dryganov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, Krasnoyarsk, 660020, Russia
| | - Eugene V. Sakhnov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, Krasnoyarsk, 660020, Russia
| | - Ekaterina I. Shishatskaya
- Siberian Federal University, 79, Svobodny av., Krasnoyarsk, 660041, Russia
- Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
66
|
Tesfamariam B. Bioresorbable Scaffold-Based Controlled Drug Delivery for Restenosis. J Cardiovasc Transl Res 2018; 12:193-203. [DOI: 10.1007/s12265-018-9841-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022]
|
67
|
Biomechanical Impact of Wrong Positioning of a Dedicated Stent for Coronary Bifurcations: A Virtual Bench Testing Study. Cardiovasc Eng Technol 2018; 9:415-426. [DOI: 10.1007/s13239-018-0359-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/01/2018] [Indexed: 10/16/2022]
|
68
|
Chiastra C, Migliori S, Burzotta F, Dubini G, Migliavacca F. Patient-Specific Modeling of Stented Coronary Arteries Reconstructed from Optical Coherence Tomography: Towards a Widespread Clinical Use of Fluid Dynamics Analyses. J Cardiovasc Transl Res 2017; 11:156-172. [PMID: 29282628 PMCID: PMC5908818 DOI: 10.1007/s12265-017-9777-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022]
Abstract
The recent widespread application of optical coherence tomography (OCT) in interventional cardiology has improved patient-specific modeling of stented coronary arteries for the investigation of local hemodynamics. In this review, the workflow for the creation of fluid dynamics models of stented coronary arteries from OCT images is presented. The algorithms for lumen contours and stent strut detection from OCT as well as the reconstruction methods of stented geometries are discussed. Furthermore, the state of the art of studies that investigate the hemodynamics of OCT-based stented coronary artery geometries is reported. Although those studies analyzed few patient-specific cases, the application of the current reconstruction methods of stented geometries to large populations is possible. However, the improvement of these methods and the reduction of the time needed for the entire modeling process are crucial for a widespread clinical use of the OCT-based models and future in silico clinical trials.
Collapse
Affiliation(s)
- Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| | - Susanna Migliori
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Francesco Burzotta
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| |
Collapse
|