51
|
Pan L, Lin Z, Tang X, Tian J, Zheng Q, Jing J, Xie L, Chen H, Lu Q, Wang H, Li Q, Han Y, Ji Y. S-Nitrosylation of Plastin-3 Exacerbates Thoracic Aortic Dissection Formation via Endothelial Barrier Dysfunction. Arterioscler Thromb Vasc Biol 2019; 40:175-188. [PMID: 31694393 DOI: 10.1161/atvbaha.119.313440] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Thoracic aortic dissection (TAD) is a fatal disease that leads to aortic rupture and sudden death. However, little is known about the effect and molecular mechanism of S-nitrosylation (SNO) modifications in TAD formation. Approach and Results: SNO levels were higher in aortic tissues from TAD patients than in those from healthy controls, and PLS3 (plastin-3) SNO was identified by liquid chromatography-tandem mass spectrometry analysis. Furthermore, tail vein administration of endothelial-specific adeno-associated viruses of mutant PLS3-C566A (denitrosylated form) suppressed the development of TAD in mice, but the wild-type PLS3 (S-nitrosylated form) virus did not. Mechanistically, Ang II (angiotensin II)-induced PLS3 SNO enhanced the association of PLS3 with both plectin and cofilin via an iNOS (inducible nitric oxide synthase)-dependent pathway in endothelial cells. The formation of PLS3/plectin/cofilin complex promoted cell migration and tube formation but weakened adherens junction formation in Ang II-treated endothelial cells. Interestingly, denitrosylated form of PLS3 partially mitigated Ang II-induced PLS3/plectin/cofilin complex formation and cell junction disruption. Additionally, the inhibition of iNOS attenuated PLS3 SNO and the association of PLS3 with plectin and cofilin, thereby modulating endothelial barrier function. CONCLUSIONS Our data indicate that protein SNO modification in endothelial cells modulates the progression of aortic aneurysm and dissection. The iNOS-mediated SNO of PLS3 at the Cys566 site promoted its interaction with cofilin and plectin, thus contributing to endothelial barrier disruption and pathological angiogenesis in TAD.
Collapse
Affiliation(s)
- Lihong Pan
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Zhe Lin
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Xin Tang
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Jiaxin Tian
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Qiao Zheng
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Jin Jing
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, China (J.J., Q.L.)
| | - Liping Xie
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Hongshan Chen
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Qiulun Lu
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, China (J.J., Q.L.)
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (H.W.)
| | - Qingguo Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, China (Q.L.)
| | - Yi Han
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, China (Y.H.)
| | - Yong Ji
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| |
Collapse
|
52
|
Kasprzyk-Pawelec A, Wojciechowska A, Kuc M, Zielinski J, Parulski A, Kusmierczyk M, Lutynska A, Kozar-Kaminska K. microRNA expression profile in Smooth Muscle Cells isolated from thoracic aortic aneurysm samples. Adv Med Sci 2019; 64:331-337. [PMID: 31022558 DOI: 10.1016/j.advms.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/31/2019] [Accepted: 04/10/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE Thoracic aortic aneurysm (TAA) is a cardiovascular disease characterized by increased aortic diameter, treated with surgery and endovascular therapy in order to avoid aortic dissection or rupture. The mechanism of TAA formation has not been thoroughly studied and many factors have been proposed to drive its progression; however strong focus is attributed to modification of smooth muscle cells (SMCs). Latest research indicates, that microRNAs (miRNAs) may play a significant role in TAA development - these are multifunctional molecules consisting of 19-24 nucleotides involved in regulation of the gene expression level related to many biological processes, i.e. cardiovascular disease pathophysiology, immunity or inflammation. MATERIALS AND METHODS Primary SMCs were isolated from aortic scraps of TAA patients and age- and sex-matched healthy controls. Purity of isolated SMCs was determined by flow cytometry using specific markers: α-SMA, CALP, MHC and VIM. Real-time polymerase chain reaction (RT-PCR) was conducted for miRNA analysis. RESULTS We established an isolation protocol and investigated the miRNA expression level in SMCs isolated from aneurysmal and non-aneurysmal aortic samples. We identified that let-7 g (0.71-fold, p = 0.01), miR-130a (0.40-fold, p = 0.04), and miR-221 (0.49-fold, p = 0.05) significantly differed between TAA patients and healthy controls. CONCLUSIONS Further studies are required to improve our understanding of the pathophysiology underlying TAA, which may aid the development of novel, targeted therapies. The pivotal role of miRNAs in the cardiovascular system provides a new perspective on the pathophysiology of thoracic aortic aneurysms.
Collapse
Affiliation(s)
- Anna Kasprzyk-Pawelec
- Department of Medical Biology, Immunology Laboratory, Institute of Cardiology, Warsaw, Poland
| | - Anna Wojciechowska
- Department of Medical Biology, Immunology Laboratory, Institute of Cardiology, Warsaw, Poland
| | - Mateusz Kuc
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Jakub Zielinski
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Adam Parulski
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Mariusz Kusmierczyk
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Anna Lutynska
- Department of Medical Biology, Institute of Cardiology, Warsaw, Poland
| | | |
Collapse
|
53
|
Hulshoff MS, Xu X, Krenning G, Zeisberg EM. Epigenetic Regulation of Endothelial-to-Mesenchymal Transition in Chronic Heart Disease. Arterioscler Thromb Vasc Biol 2019; 38:1986-1996. [PMID: 30354260 DOI: 10.1161/atvbaha.118.311276] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a process in which endothelial cells lose their properties and transform into fibroblast-like cells. This transition process contributes to cardiac fibrosis, a common feature of patients with chronic heart failure. To date, no specific therapies to halt or reverse cardiac fibrosis are available, so knowledge of the underlying mechanisms of cardiac fibrosis is urgently needed. In addition, EndMT contributes to other cardiovascular pathologies such as atherosclerosis and pulmonary hypertension, but also to cancer and organ fibrosis. Remarkably, the molecular mechanisms driving EndMT are largely unknown. Epigenetics play an important role in regulating gene transcription and translation and have been implicated in the EndMT process. Therefore, epigenetics might be the missing link in unraveling the underlying mechanisms of EndMT. Here, we review the involvement of epigenetic regulators during EndMT in the context of cardiac fibrosis. The role of DNA methylation, histone modifications (acetylation and methylation), and noncoding RNAs (microRNAs, long noncoding RNAs, and circular RNAs) in the facilitation and inhibition of EndMT are discussed, and potential therapeutic epigenetic targets will be highlighted.
Collapse
Affiliation(s)
- Melanie S Hulshoff
- From the Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Germany (M.S.H., X.X., E.M.Z.).,German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (M.S.H., X.X., E.M.Z.).,Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands (M.S.H., G.K.)
| | - Xingbo Xu
- From the Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Germany (M.S.H., X.X., E.M.Z.).,German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (M.S.H., X.X., E.M.Z.)
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands (M.S.H., G.K.)
| | - Elisabeth M Zeisberg
- From the Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Germany (M.S.H., X.X., E.M.Z.).,German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (M.S.H., X.X., E.M.Z.)
| |
Collapse
|
54
|
Lu Y, Thavarajah T, Gu W, Cai J, Xu Q. Impact of miRNA in Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 38:e159-e170. [PMID: 30354259 DOI: 10.1161/atvbaha.118.310227] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yao Lu
- From the Center of Clinical Pharmacology (Y.L.)
| | - Tanuja Thavarajah
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (T.T., W.G., Q.X.)
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (T.T., W.G., Q.X.)
| | - Jingjing Cai
- Department of Cardiology (J.C., Q.X.), Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingbo Xu
- Department of Cardiology (J.C., Q.X.), Third Xiangya Hospital, Central South University, Changsha, China.,School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (T.T., W.G., Q.X.)
| |
Collapse
|
55
|
Expression profiles of circRNAs and the potential diagnostic value of serum circMARK3 in human acute Stanford type A aortic dissection. PLoS One 2019; 14:e0219013. [PMID: 31251793 PMCID: PMC6599129 DOI: 10.1371/journal.pone.0219013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023] Open
Abstract
CircRNAs are involved in a variety of human diseases, however, the expression profiles and the potential diagnostic value of circRNAs in human acute Stanford type A aortic dissection (AAAD) remains largely unknown. In this study, high-throughput RNA sequencing (RNA-Seq) was used to investigate the differentially expressed circRNAs, microRNAs (miRs) and mRNAs in human AAAD tissues (n = 10) compared with normal aortic tissues (n = 10). The results of RNA-Seq revealed that 506 circRNAs were significantly dysregulated (P<0.05, false discovery rate, FDR<0.05, fold change>2). The subsequent weighted gene correlation network analysis and the following co-expression network analysis revealed that tyrosine-protein kinase Fgr might play important roles in the occurrence and development of AAAD. According to the circRNA-miRNA-mRNA network, we found that the upstream regulatory molecule of Fgr is circMARK3. Finally, a receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of the serum circMARK3 as biomarkers for AAAD (cutoff value = 1.497, area under the curve = 0.9344, P < 0.0001, sensitivity = 90.0%, specificity = 86.7%). These results provided a preliminary landscape of circRNAs expression profiles and indicated that circMARK3 was a potential biomarker for AAAD diagnosis.
Collapse
|
56
|
Li T, Liu C, Liu L, Xia H, Xiao Y, Wang X, Wang Y. Regulatory Mechanism of MicroRNA-145 in the Pathogenesis of Acute Aortic Dissection. Yonsei Med J 2019; 60:352-359. [PMID: 30900421 PMCID: PMC6433572 DOI: 10.3349/ymj.2019.60.4.352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Previous studies have confirmed that microRNAs play important roles in the pathogenesis of acute aortic dissection (AAD). Here, we aimed to explore the role of miR-145 and its regulatory mechanism in the pathogenesis of AAD. MATERIALS AND METHODS AAD tissue samples were harvested from patients with aortic dissection and normal donors. Rat aortic vascular smooth muscle cells (VSMCs) were transfected with miR-145 mimic/inhibitor or negative control mimic/inhibitor. Gene and protein expression was measured in human aortic dissection tissue specimens and VSMCs by qRT-PCR and Western blot. Luciferase reporter assay was applied to verify whether connective tissue growth factor (CTGF) was a direct target of miR-145 in VSMCs. Methyl thiazolyl tetrazolium assay was used to detect VSMC viability. RESULTS miR-145 expression was downregulated in aortic dissection tissues and was associated with the survival of patients with AAD. Overexpression of miR-145 promoted VSMC proliferation and inhibited cell apoptosis. Moreover, CTGF, which was increased in aortic dissection tissues, was decreased by miR-145 mimic and increased by miR-145 inhibitor. Furthermore, CTGF was confirmed as a target of miR-145 and could reverse the promotion effect of miR-145 on the progression of AAD. CONCLUSION miR-145 suppressed the progression of AAD by targeting CTGF, suggesting that a miR-145/CTGF axis may provide a potential therapeutic target for AAD.
Collapse
Affiliation(s)
- Tianbo Li
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China
| | - Chencheng Liu
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China
| | - Lingchao Liu
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China
| | - Han Xia
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China
| | - Xuefeng Wang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China
| | - Yong Wang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China.
| |
Collapse
|
57
|
Sawada H, Chen JZ, Wright BC, Moorleghen JJ, Lu HS, Daugherty A. Ultrasound Imaging of the Thoracic and Abdominal Aorta in Mice to Determine Aneurysm Dimensions. J Vis Exp 2019. [PMID: 30907888 DOI: 10.3791/59013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Contemporary high-resolution ultrasound instruments have sufficient resolution to facilitate the measurement of mouse aortas. These instruments have been widely used to measure aortic dimensions in mouse models of aortic aneurysms. Aortic aneurysms are defined as permanent dilations of the aorta, which occur most frequently in the ascending and abdominal regions. Sequential measurements of aortic dimensions by ultrasound are the principal approach for assessing the development and progression of aortic aneurysms in vivo. Although many reported studies used ultrasound imaging to measure aortic diameters as a primary endpoint, there are confounding factors, such as probe position and cardiac cycle, that may impact the accuracy of data acquisition, analysis, and interpretation. The purpose of this protocol is to provide a practical guide on the use of ultrasound to measure the aortic diameter in a reliable and reproducible manner. This protocol introduces the preparation of mice and instruments, the acquisition of appropriate ultrasound images, and data analysis.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky
| | - Jeff Z Chen
- Department of Physiology, University of Kentucky
| | | | | | - Hong S Lu
- Saha Cardiovascular Research Center, University of Kentucky; Department of Physiology, University of Kentucky
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky; Department of Physiology, University of Kentucky;
| |
Collapse
|
58
|
Alfranca A, Campanero MR, Redondo JM. New Methods for Disease Modeling Using Lentiviral Vectors. Trends Mol Med 2018; 24:825-837. [PMID: 30213701 DOI: 10.1016/j.molmed.2018.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
Lentiviral vectors (LVs) transduce quiescent cells and provide stable integration to maintain transgene expression. Several approaches have been adopted to optimize LV safety profiles. Similarly, LV targeting has been tailored through strategies including the modification of envelope components, the use of specific regulatory elements, and the selection of appropriate administration routes. Models of aortic disease based on a single injection of pleiotropic LVs have been developed that efficiently transduce the three aorta layers in wild type mice. This approach allows the dissection of pathways involved in aortic aneurysm formation and the identification of targets for gene therapy in aortic diseases. LVs provide a fast, efficient, and affordable alternative to genetically modified mice to study disease mechanisms and develop therapeutic tools.
Collapse
Affiliation(s)
- Arantzazu Alfranca
- Department of Immunology, Hospital Universitario de La Princesa, Madrid, Spain; CIBERCV, Madrid, Spain.
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain; CIBERCV, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBERCV, Madrid, Spain.
| |
Collapse
|
59
|
Zeng T, Shi L, Ji Q, Shi Y, Huang Y, Liu Y, Gan J, Yuan J, Lu Z, Xue Y, Hu H, Liu L, Lin Y. Cytokines in aortic dissection. Clin Chim Acta 2018; 486:177-182. [PMID: 30086263 DOI: 10.1016/j.cca.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023]
Abstract
Aortic dissection (AD) is one of the most dangerous forms of vascular disease, characterized by endometrial rupture and intramural hematoma formation. Generally, the pathological process is complicated and closely related to the infiltration of inflammatory cells into the aortic wall and apoptosis of vascular smooth muscle cells. Currently, multiple cytokines, including interleukins, interferon, the tumor necrosis factor superfamily, colony stimulating factor, chemotactic factor, growth factor and so on, have all been demonstrated to play a critical role in AD. Additionally, studies of the link between cytokines and AD could deepen our understanding of the disease and may guide future treatment therapies; therefore, this review focuses on the role of cytokines in AD.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Shi
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingwei Ji
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China; Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Ying Shi
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ying Huang
- Department of Ultrasound, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Yu Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianting Gan
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jun Yuan
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhengde Lu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yan Xue
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haiying Hu
- Department of Cardiology, Handan First Hospital, Handan 056002, China
| | - Ling Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| | - Yingzhong Lin
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
60
|
Wu CH, Mohammadmoradi S, Chen JZ, Sawada H, Daugherty A, Lu HS. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler Thromb Vasc Biol 2018; 38:e108-e116. [PMID: 29950386 PMCID: PMC6039412 DOI: 10.1161/atvbaha.118.311282] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chia-Hua Wu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Shayan Mohammadmoradi
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Jeff Z Chen
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hisashi Sawada
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|