51
|
Ivanov SM, Lagunin AA, Pogodin PV, Filimonov DA, Poroikov VV. Identification of Drug Targets Related to the Induction of Ventricular Tachyarrhythmia Through a Systems Chemical Biology Approach. Toxicol Sci 2015; 145:321-36. [DOI: 10.1093/toxsci/kfv054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
52
|
Uysal F, Ozboyaci E, Bostan O, Saglam H, Semizel E, Cil E. Evaluation of electrocardiographic parameters for early diagnosis of autonomic dysfunction in children and adolescents with type-1 diabetes mellitus. Pediatr Int 2014; 56:675-80. [PMID: 24617770 DOI: 10.1111/ped.12329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/14/2014] [Accepted: 02/04/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND The aim of this study was to identify the sensitivity of electrocardiogram (ECG) in early diagnosis of cardiac autonomic function disorder in children with type 1 diabetes mellitus. METHODS A total of 150 children and adolescents with type 1 diabetes mellitus were enrolled between June 2009 and June 2010, as well as 100 age- and sex-matched healthy control children. Twelve-lead ECG was done in all cases and heart rate, QT and QTc interval, dispersion of P wave (Pd), and of QT (QTd) and QTc interval (QTcd) were measured. The clinical and demographic features such as age, gender, duration of follow up and level of HbA1c and fasting glucose were obtained and the effects of these parameters on ECG measurements were investigated. RESULTS The mean age of the patients and controls was 11.61 ± 3.72 years and 10.92 ± 3.2 years, respectively. QT and QTc interval and QTcd interval were significantly higher in diabetic children compared to healthy controls but these ECG findings were not associated with the duration of diabetes or glycemic state. Pd was significantly higher in the diabetic patients with HbA1c >7.5% compared to control, and this was also found in patients that were followed up >1 year. CONCLUSIONS Cardiac autonomic function disorder, which is one of the most important causes of morbidity and mortality, may emerge in the course of type 1 diabetes mellitus. It can be diagnosed on ECG even when the patients are asymptomatic.
Collapse
Affiliation(s)
- Fahrettin Uysal
- Department of Pediatric Cardiology, Medical Faculty, University of Uludag, Gorukle, Bursa, Turkey
| | | | | | | | | | | |
Collapse
|
53
|
Behn C, Dinamarca GA, De Gregorio NF, Lips V, Vivaldi EA, Soza D, Guerra MA, Jiménez RF, Lecannelier EA, Varela H, Silva-Urra JA. Age-Related Arrhythmogenesis on Ascent and Descent: “Autonomic Conflicts” on Hypoxia/Reoxygenation at High Altitude? High Alt Med Biol 2014; 15:356-63. [DOI: 10.1089/ham.2013.1092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Claus Behn
- Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
- Mutual de Seguridad CChC, Chile
| | | | | | - Viviana Lips
- Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Ennio A Vivaldi
- Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | | | | | - Raúl F Jiménez
- Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile
| | | | - Héctor Varela
- Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan A Silva-Urra
- Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
54
|
Ng FS, Holzem KM, Koppel AC, Janks D, Gordon F, Wit AL, Peters NS, Efimov IR. Adverse remodeling of the electrophysiological response to ischemia-reperfusion in human heart failure is associated with remodeling of metabolic gene expression. Circ Arrhythm Electrophysiol 2014; 7:875-82. [PMID: 25114062 DOI: 10.1161/circep.113.001477] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ventricular arrhythmias occur more frequently in heart failure during episodes of ischemia-reperfusion although the mechanisms underlying this in humans are unclear. We assessed, in explanted human hearts, the remodeled electrophysiological response to acute ischemia-reperfusion in heart failure and its potential causes, including the remodeling of metabolic gene expression. METHODS AND RESULTS We optically mapped coronary-perfused left ventricular wedge preparations from 6 human end-stage failing hearts (F) and 6 donor hearts rejected for transplantation (D). Preparations were subjected to 30 minutes of global ischemia, followed by 30 minutes of reperfusion. Failing hearts had exaggerated electrophysiological responses to ischemia-reperfusion, with greater action potential duration shortening (P<0.001 at 8-minute ischemia; P=0.001 at 12-minute ischemia) and greater conduction slowing during ischemia, delayed recovery of electric excitability after reperfusion (F, 4.8±1.8 versus D, 1.0±0 minutes; P<0.05), and incomplete restoration of action potential duration and conduction velocity early after reperfusion. Expression of 46 metabolic genes was probed using custom-designed TaqMan arrays, using extracted RNA from 15 failing and 9 donor hearts. Ten genes important in cardiac metabolism were downregulated in heart failure, with SLC27A4 and KCNJ11 significantly downregulated at a false discovery rate of 0%. CONCLUSIONS We demonstrate, for the first time in human hearts, that the electrophysiological response to ischemia-reperfusion in heart failure is accelerated during ischemia with slower recovery after reperfusion. This can enhance spatial conduction and repolarization gradients across the ischemic border and increase arrhythmia susceptibility. This adverse response was associated with downregulation of expression of cardiac metabolic genes.
Collapse
Affiliation(s)
- Fu Siong Ng
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Katherine M Holzem
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Aaron C Koppel
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Deborah Janks
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Fabiana Gordon
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Andrew L Wit
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Nicholas S Peters
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Igor R Efimov
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.).
| |
Collapse
|
55
|
Stable ischemic heart disease. Cardiol Clin 2014; 32:333-51. [PMID: 25091962 DOI: 10.1016/j.ccl.2014.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Classical angina refers to typical substernal discomfort triggered by effort or emotions, relieved with rest or nitroglycerin. The well-accepted pathogenesis is an imbalance between oxygen supply and demand. Goals in therapy are improvement in quality of life by limiting the number and severity of attacks, protection against future lethal events, and measures to lower the burden of risk factors to slow disease progression. New pathophysiological data, drugs, as well as conceptual and technological advances have improved patient care over the past decade. Behavioral changes to improve diets, increase physical activity, and encourage adherence to cardiac rehabilitation programs, are difficult to achieve but are effective.
Collapse
|
56
|
Zhang Y, Huang L, Zuo Z, Chen Y, Wang C. Phenanthrene exposure causes cardiac arrhythmia in embryonic zebrafish via perturbing calcium handling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:26-32. [PMID: 23948075 DOI: 10.1016/j.aquatox.2013.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
Phenanthrene (Phe) is one of the most abundant and ubiquitous polycyclic aromatic hydrocarbons in the aquatic environment. It is known that Phe has cardiotoxic effects, but knowledge concerning the mechanism of cardiac dysfunction caused by Phe is still limited. In this study, zebrafish embryos were exposed to environmentally relevant concentrations of Phe, and an increase of an irregular rhythm was observed in Phe treated embryos. Disordered calcium (Ca(2+)) handling characterized by impaired sarcoplasmic reticulum Ca(2+) uptake, and obvious Ca(2+) accumulation in the cytoplasm was observed in rat embryonic cardiac myoblasts (H9C2) exposed to Phe. The mRNA level as well as protein expression of the SERCA2a Ca(2+) pump in zebrafish hearts or H9C2 cells was significantly decreased by Phe exposure. The activity of Ca(2+)-ATPase in H9C2 cells was inhibited by Phe. Both the mRNA and protein levels of TBX5, a direct regulator of SERCA2a, were significantly decreased by Phe exposure. These results suggested that exposure to Phe could lead to arrhythmia in zebrafish embryos via perturbing the calcium handling pathway.
Collapse
Affiliation(s)
- Youyu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | | | | | | | | |
Collapse
|
57
|
|
58
|
Abstract
Since diabetic cardiomyopathy was first reported four decades ago, substantial information on its pathogenesis and clinical features has accumulated. In the heart, diabetes enhances fatty acid metabolism, suppresses glucose oxidation, and modifies intracellular signaling, leading to impairments in multiple steps of excitation–contraction coupling, inefficient energy production, and increased susceptibility to ischemia/reperfusion injury. Loss of normal microvessels and remodeling of the extracellular matrix are also involved in contractile dysfunction of diabetic hearts. Use of sensitive echocardiographic techniques (tissue Doppler imaging and strain rate imaging) and magnetic resonance spectroscopy enables detection of diabetic cardiomyopathy at an early stage, and a combination of the modalities allows differentiation of this type of cardiomyopathy from other organic heart diseases. Circumstantial evidence to date indicates that diabetic cardiomyopathy is a common but frequently unrecognized pathological process in asymptomatic diabetic patients. However, a strategy for prevention or treatment of diabetic cardiomyopathy to improve its prognosis has not yet been established. Here, we review both basic and clinical studies on diabetic cardiomyopathy and summarize problems remaining to be solved for improving management of this type of cardiomyopathy.
Collapse
Affiliation(s)
- Takayuki Miki
- Division of Cardiology, Second Department of Internal Medicine, School of Medicine, Sapporo Medical University, South-1 West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | | | | | | |
Collapse
|
59
|
Herren AW, Bers DM, Grandi E. Post-translational modifications of the cardiac Na channel: contribution of CaMKII-dependent phosphorylation to acquired arrhythmias. Am J Physiol Heart Circ Physiol 2013; 305:H431-45. [PMID: 23771687 DOI: 10.1152/ajpheart.00306.2013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The voltage-gated Na channel isoform 1.5 (NaV1.5) is the pore forming α-subunit of the voltage-gated cardiac Na channel, which is responsible for the initiation and propagation of cardiac action potentials. Mutations in the SCN5A gene encoding NaV1.5 have been linked to changes in the Na current leading to a variety of arrhythmogenic phenotypes, and alterations in the NaV1.5 expression level, Na current density, and/or gating have been observed in acquired cardiac disorders, including heart failure. The precise mechanisms underlying these abnormalities have not been fully elucidated. However, several recent studies have made it clear that NaV1.5 forms a macromolecular complex with a number of proteins that modulate its expression levels, localization, and gating and is the target of extensive post-translational modifications, which may also influence all these properties. We review here the molecular aspects of cardiac Na channel regulation and their functional consequences. In particular, we focus on the molecular and functional aspects of Na channel phosphorylation by the Ca/calmodulin-dependent protein kinase II, which is hyperactive in heart failure and has been causally linked to cardiac arrhythmia. Understanding the mechanisms of altered NaV1.5 expression and function is crucial for gaining insight into arrhythmogenesis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Anthony W Herren
- Department of Pharmacology, University of California Davis, Davis, California
| | | | | |
Collapse
|
60
|
Mourmoura E, Vial G, Laillet B, Rigaudière JP, Hininger-Favier I, Dubouchaud H, Morio B, Demaison L. Preserved endothelium-dependent dilatation of the coronary microvasculature at the early phase of diabetes mellitus despite the increased oxidative stress and depressed cardiac mechanical function ex vivo. Cardiovasc Diabetol 2013; 12:49. [PMID: 23530768 PMCID: PMC3620680 DOI: 10.1186/1475-2840-12-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 11/12/2022] Open
Abstract
Background There has been accumulating evidence associating diabetes mellitus and cardiovascular dysfunctions. However, most of the studies are focused on the late stages of diabetes and on the function of large arteries. This study aimed at characterizing the effects of the early phase of diabetes mellitus on the cardiac and vascular function with focus on the intact coronary microvasculature and the oxidative stress involved. Materials and methods Zucker diabetic fatty rats and their lean littermates fed with standard diet A04 (Safe) were studied at the 11th week of age. Biochemical parameters such as glucose, insulin and triglycerides levels as well as their oxidative stress status were measured. Their hearts were perfused ex vivo according to Langendorff and their cardiac activity and coronary microvascular reactivity were evaluated. Results Zucker fatty rats already exhibited a diabetic state at this age as demonstrated by the elevated levels of plasma glucose, insulin, glycated hemoglobin and triglycerides. The ex vivo perfusion of their hearts revealed a decreased cardiac mechanical function and coronary flow. This was accompanied by an increase in the overall oxidative stress of the organs. However, estimation of the active form of endothelial nitric oxide synthase and coronary reactivity indicated a preserved function of the coronary microvessels at this phase of the disease. Diabetes affected also the cardiac membrane phospholipid fatty acid composition by increasing the arachidonic acid and n-3 polyunsaturated fatty acids levels. Conclusions The presence of diabetes, even at its beginning, significantly increased the overall oxidative stress of the organs resulting to decreased cardiac mechanical activity ex vivo. However, adaptations were adopted at this early phase of the disease regarding the preserved coronary microvascular reactivity and the associated cardiac phospholipid composition in order to provide a certain protection to the heart.
Collapse
Affiliation(s)
- Evangelia Mourmoura
- Laboratoire de Bioénergétique Fondamentale et Appliquée, INSERM U1055, Université Joseph Fourier, BP 53, Grenoble cedex 09 F-38041, France.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Olsen KB, Axelsen LN, Braunstein TH, Sørensen CM, Andersen CB, Ploug T, Holstein-Rathlou NH, Nielsen MS. Myocardial impulse propagation is impaired in right ventricular tissue of Zucker diabetic fatty (ZDF) rats. Cardiovasc Diabetol 2013; 12:19. [PMID: 23327647 PMCID: PMC3561236 DOI: 10.1186/1475-2840-12-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/14/2013] [Indexed: 01/31/2023] Open
Abstract
Background Diabetes increases the risk of cardiovascular complications including arrhythmias, but the underlying mechanisms remain to be established. Decreased conduction velocity (CV), which is an independent risk factor for re-entry arrhythmias, is present in models with streptozotocin (STZ) induced type 1 diabetes. Whether CV is also disturbed in models of type 2 diabetes is currently unknown. Methods We used Zucker Diabetic Fatty (ZDF) rats, as a model of type 2 diabetes, and their lean controls Zucker Diabetic Lean (ZDL) rats to investigate CV and its response to the anti-arrhythmic peptide analogue AAP10. Gap junction remodeling was examined by immunofluorescence and western blotting. Cardiac histomorphometry was examined by Masson`s Trichrome staining and intracellular lipid accumulation was analyzed by Bodipy staining. Results CV was significantly slower in ZDF rats (56±1.9 cm/s) compared to non-diabetic controls (ZDL, 66±1.6 cm/s), but AAP10 did not affect CV in either group. The total amount of Connexin43 (C×43) was identical between ZDF and ZDL rats, but the amount of lateralized C×43 was significantly increased in ZDF rats (42±12 %) compared to ZDL rats (30±8%), p<0.04. Judged by electrophoretic mobility, C×43 phosphorylation was unchanged between ZDF and ZDL rats. Also, no differences in cardiomyocyte size or histomorphometry including fibrosis were observed between groups, but the volume of intracellular lipid droplets was 4.2 times higher in ZDF compared to ZDL rats (p<0.01). Conclusion CV is reduced in type 2 diabetic ZDF rats. The CV disturbance may be partly explained by increased lateralization of C×43, but other factors are likely also involved. Our data indicates that lipotoxicity potentially may play a role in development of conduction disturbances and arrhythmias in type 2 diabetes.
Collapse
Affiliation(s)
- Kristine Boisen Olsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Sohn K, Wende AR, Abel ED, Moreno AP, Sachse FB, Punske BB. Absence of glucose transporter 4 diminishes electrical activity of mouse hearts during hypoxia. Exp Physiol 2012. [PMID: 23180812 DOI: 10.1113/expphysiol.2012.070235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Insulin resistance, which characterizes type 2 diabetes, is associated with reduced translocation of glucose transporter 4 (GLUT4) to the plasma membrane following insulin stimulation, and diabetic patients with insulin resistance show a higher incidence of ischaemia, arrhythmias and sudden cardiac death. The aim of this study was to examine whether GLUT4 deficiency leads to more severe alterations in cardiac electrical activity during cardiac stress due to hypoxia. To fulfil this aim, we compared cardiac electrical activity from cardiac-selective GLUT4-ablated (G4H-/-) mouse hearts and corresponding control (CTL) littermates. A custom-made cylindrical 'cage' electrode array measured potentials (Ves) from the epicardium of isolated, perfused mouse hearts. The normalized average of the maximal downstroke of Ves ( (|d Ves/dt(min)|na), which we previously introduced as an index of electrical activity in normal, ischaemic and hypoxic hearts, was used to assess the effects of GLUT4 deficiency on electrical activity. The |d Ves/dt(min)|na of G4H −/− and CTL hearts decreased by 75 and 47%, respectively (P < 0.05), 30 min after the onset of hypoxia. Administration of insulin attenuated decreases in values of |d Ves/dt(min)|na in G4H −/− hearts as well as in CTL hearts, during hypoxia. In general, however, G4H −/− hearts showed a severe alteration of the propagation sequence and a prolonged total activation time. Results of this study demonstrate that reduced glucose availability associated with insulin resistance and a reduction in GLUT4-mediated glucose transport impairs electrical activity during hypoxia, and may contribute to cardiac vulnerability to arrhythmias in diabetic patients.
Collapse
Affiliation(s)
- Kwanghyun Sohn
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112-5000, USA.
| | | | | | | | | | | |
Collapse
|
63
|
Harada M, Nattel SN, Nattel S. AMP-activated protein kinase: potential role in cardiac electrophysiology and arrhythmias. Circ Arrhythm Electrophysiol 2012; 5:860-7. [PMID: 22895602 DOI: 10.1161/circep.112.972265] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Masahide Harada
- Department of Medicine and Research Centre, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
64
|
Jindal HK, Merchant E, Balschi JA, Zhangand Y, Koren G. Proteomic analyses of transgenic LQT1 and LQT2 rabbit hearts elucidate an increase in expression and activity of energy producing enzymes. J Proteomics 2012; 75:5254-65. [PMID: 22796357 DOI: 10.1016/j.jprot.2012.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/04/2012] [Accepted: 06/11/2012] [Indexed: 01/22/2023]
Abstract
Various biochemical and genomic mechanisms are considered to be a hallmark of metabolic remodeling in the stressed heart, including the hypertrophied and failing heart. In this study, we used quantitative proteomic 2-D Fluorescence Difference In-Gel Electrophoresis (2-D DIGE) in conjunction with mass spectrometry to demonstrate differential protein expression in the hearts of transgenic rabbit models of Long QT Syndrome 1 (LQT1) and Long QT Syndrome 2 (LQT2) as compared to littermate controls (LMC). The results of our proteomic analysis revealed upregulation of key metabolic enzymes involved in all pathways associated with ATP generation, including creatine kinase in both LQT1 and LQT2 rabbit hearts. Additionally, the expression of lamin-A protein was increased in both LQT1 and LQT2 rabbit hearts as was the expression of mitochondrial aldehyde dehydrogenase and desmoplakin in LQT1 and LQT 2 rabbit hearts, respectively. Results of the proteomic analysis also demonstrated down regulation in the expression of protein disulfide-isomerase A3 precuorsor and dynamin-like 120 kDa protein (mitochondrial) in LQT1, and of alpha-actinin 2 in LQT2 rabbit hearts. Up regulation of the expression of the enzymes associated with ATP generation was substantiated by the results of selective enzyme assays in LQT1 and LQT2 hearts, as compared to LMC, which revealed increases in the activities of glycogen phosphorylase (+50%, +65%, respectively), lactate dehydrogenase (+25%, +25%) pyruvate dehydrogenase (+31%, +22%), and succinate dehydrogenase (+32%, +60%). The activity of cytochrome c-oxidase, a marker for the mitochondrial function was also found to be significantly elevated (+80%) in LQT1 rabbit hearts as compared with LMC. Western blot analysis in LQT1 and LQT2 hearts compared to LMC revealed an increase in the expression of very-long chain-specific acyl-CoA dehydrogenase (+35%, +33%), a rate-limiting enzymes in β-oxidation of fatty acids. Collectively, our results demonstrate similar increases in the expression and activities of key ATP-generating enzymes in LQT1 and LQT2 rabbit hearts, suggesting an increased demand, and in turn, increased energy supply across the entire metabolic pathway by virtue of the upregulation of enzymes involved in energy generation.
Collapse
Affiliation(s)
- Hitesh K Jindal
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, 1 Hoppin Street, West Coro-5, Providence, RI 02903, USA
| | | | | | | | | |
Collapse
|
65
|
Song YH, Choi E, Park SH, Lee SH, Cho H, Ho WK, Ryu SY. Sustained CaMKII activity mediates transient oxidative stress-induced long-term facilitation of L-type Ca(2+) current in cardiomyocytes. Free Radic Biol Med 2011; 51:1708-16. [PMID: 21854842 DOI: 10.1016/j.freeradbiomed.2011.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 11/17/2022]
Abstract
Oxidative stress remodels Ca(2+) signaling in cardiomyocytes, which promotes altered heart function in various heart diseases. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) was shown to be activated by oxidation, but whether and how CaMKII links oxidative stress to pathophysiological long-term changes in Ca(2+) signaling remain unknown. Here, we present evidence demonstrating the role of CaMKII in transient oxidative stress-induced long-term facilitation (LTF) of L-type Ca(2+) current (I(Ca,L)) in rat cardiomyocytes. A 5-min exposure of 1mM H(2)O(2) induced an increase in I(Ca,L), and this increase was sustained for ~1h. The CaMKII inhibitor KN-93 fully reversed H(2)O(2)-induced LTF of I(Ca,L), indicating that sustained CaMKII activity underlies this oxidative stress-induced memory. Simultaneous inhibition of oxidation and autophosphorylation of CaMKII prevented the maintenance of LTF, suggesting that both mechanisms contribute to sustained CaMKII activity. We further found that sarcoplasmic reticulum Ca(2+) release and mitochondrial ROS generation have critical roles in sustaining CaMKII activity via autophosphorylation- and oxidation-dependent mechanisms. Finally, we show that long-term remodeling of the cardiac action potential is induced by H(2)O(2) via CaMKII. In conclusion, CaMKII and mitochondria confer oxidative stress-induced pathological cellular memory that leads to cardiac arrhythmia.
Collapse
Affiliation(s)
- Young-Hwan Song
- Department of Pediatrics, Sanggye Paik Hospital, Inje University College of Medicine, Seoul 139-707, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
66
|
Jeong EM, Liu M, Sturdy M, Gao G, Varghese ST, Sovari AA, Dudley SC. Metabolic stress, reactive oxygen species, and arrhythmia. J Mol Cell Cardiol 2011; 52:454-63. [PMID: 21978629 DOI: 10.1016/j.yjmcc.2011.09.018] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 08/20/2011] [Accepted: 09/19/2011] [Indexed: 02/07/2023]
Abstract
Cardiac arrhythmias can cause sudden cardiac death (SCD) and add to the current heart failure (HF) health crisis. Nevertheless, the pathological processes underlying arrhythmias are unclear. Arrhythmic conditions are associated with systemic and cardiac oxidative stress caused by reactive oxygen species (ROS). In excitable cardiac cells, ROS regulate both cellular metabolism and ion homeostasis. Increasing evidence suggests that elevated cellular ROS can cause alterations of the cardiac sodium channel (Na(v)1.5), abnormal Ca(2+) handling, changes of mitochondrial function, and gap junction remodeling, leading to arrhythmogenesis. This review summarizes our knowledge of the mechanisms by which ROS may cause arrhythmias and discusses potential therapeutic strategies to prevent arrhythmias by targeting ROS and its consequences. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- Euy-Myoung Jeong
- Section of Cardiology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
67
|
Pott C, Eckardt L, Goldhaber JI. Triple threat: the Na+/Ca2+ exchanger in the pathophysiology of cardiac arrhythmia, ischemia and heart failure. Curr Drug Targets 2011; 12:737-47. [PMID: 21291388 PMCID: PMC4406235 DOI: 10.2174/138945011795378559] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 08/30/2010] [Indexed: 02/02/2023]
Abstract
The Na(+)/Ca(2+) exchanger (NCX) is the main Ca(2+) extrusion mechanism of the cardiac myocyte and thus is crucial for maintaining Ca(2+) homeostasis. It is involved in the regulation of several parameters of cardiac excitation contraction coupling, such as cytosolic Ca(2+) concentration, repolarization and contractility. Increased NCX activity has been identified as a mechanism promoting heart failure, cardiac ischemia and arrhythmia. Transgenic mice as well as pharmacological interventions have been used to support the idea of using NCX inhibition as a future pharmacological strategy to treat cardiovascular disease.
Collapse
Affiliation(s)
- Christian Pott
- University Hospital of Muenster, Department of Cardiology and Angiology, Albert-Schweitzer-Str. 33, 48149 Muenster, Germany.
| | | | | |
Collapse
|
68
|
Meyer T, Stuerz K, Guenther E, Edamura M, Kraushaar U. Cardiac slices as a predictive tool for arrhythmogenic potential of drugs and chemicals. Expert Opin Drug Metab Toxicol 2010; 6:1461-75. [PMID: 21067457 DOI: 10.1517/17425255.2010.526601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE OF THE FIELD cardiac arrhythmia represents one of the primary safety pharmacological concerns in drug development. The most prominent example is drug induced ventricular tachycardia of the Torsade des Pointes type. The mechanism how this type of arrhythmia develops is a complex multi-cellular phenomenon. It can only be insufficiently reflected by cellular or molecular assays. However, organ models - such as Langendorff hearts - or in vivo experiments are expensive and time consuming and not suitable for assays requiring an increased throughput. AREAS COVERED IN THIS REVIEW here, we describe and review an assay bridging the gap between cardiomyocyte based assays and organ based systems - cardiac slices. This assay is reviewed in direct comparison with established safety pharmacological assays. WHAT THE READER WILL GAIN while slices have played an important role in brain research for > 2 decades, cardiac slices are experiencing a renaissance due to the novel challenges in safety pharmacology just in the last few years. Cardiac slices can be cultured and recorded over several days. It is possible to access electrophysiological data with a high number of electrodes - up to 256 electrodes - embedded in the surface of a microelectrode array. TAKE HOME MESSAGE cardiac slices close the gap between cellular and organ based assays in cardiac safety pharmacology. The tissue properties of a functional cardiac syncytium are more accurately reflected by a slice rather than a single cell.
Collapse
Affiliation(s)
- Thomas Meyer
- Multi Channel Systems MCS GmbH, Aspenhaustr. 21, 72770 Reutlingen, Germany.
| | | | | | | | | |
Collapse
|
69
|
Kones R. Recent advances in the management of chronic stable angina II. Anti-ischemic therapy, options for refractory angina, risk factor reduction, and revascularization. Vasc Health Risk Manag 2010; 6:749-74. [PMID: 20859545 PMCID: PMC2941787 DOI: 10.2147/vhrm.s11100] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Indexed: 12/19/2022] Open
Abstract
The objectives in treating angina are relief of pain and prevention of disease progression through risk reduction. Mechanisms, indications, clinical forms, doses, and side effects of the traditional antianginal agents - nitrates, β-blockers, and calcium channel blockers - are reviewed. A number of patients have contraindications or remain unrelieved from anginal discomfort with these drugs. Among newer alternatives, ranolazine, recently approved in the United States, indirectly prevents the intracellular calcium overload involved in cardiac ischemia and is a welcome addition to available treatments. None, however, are disease-modifying agents. Two options for refractory angina, enhanced external counterpulsation and spinal cord stimulation (SCS), are presented in detail. They are both well-studied and are effective means of treating at least some patients with this perplexing form of angina. Traditional modifiable risk factors for coronary artery disease (CAD) - smoking, hypertension, dyslipidemia, diabetes, and obesity - account for most of the population-attributable risk. Individual therapy of high-risk patients differs from population-wide efforts to prevent risk factors from appearing or reducing their severity, in order to lower the national burden of disease. Current American College of Cardiology/American Heart Association guidelines to lower risk in patients with chronic angina are reviewed. The Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial showed that in patients with stable angina, optimal medical therapy alone and percutaneous coronary intervention (PCI) with medical therapy were equal in preventing myocardial infarction and death. The integration of COURAGE results into current practice is discussed. For patients who are unstable, with very high risk, with left main coronary artery lesions, in whom medical therapy fails, and in those with acute coronary syndromes, PCI is indicated. Asymptomatic patients with CAD and those with stable angina may defer intervention without additional risk to see if they will improve on optimum medical therapy. For many patients, coronary artery bypass surgery offers the best opportunity for relieving angina, reducing the need for additional revascularization procedures and improving survival. Optimal medical therapy, percutaneous coronary intervention, and surgery are not competing therapies, but are complementary and form a continuum, each filling an important evidence-based need in modern comprehensive management.
Collapse
Affiliation(s)
- Richard Kones
- Cardiometabolic Research Institute, Houston, Texas 77055, USA.
| |
Collapse
|
70
|
Huke S, Knollmann BC. Increased myofilament Ca2+-sensitivity and arrhythmia susceptibility. J Mol Cell Cardiol 2010; 48:824-33. [PMID: 20097204 PMCID: PMC2854218 DOI: 10.1016/j.yjmcc.2010.01.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/12/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
Increased myofilament Ca(2+) sensitivity is a common attribute of many inherited and acquired cardiomyopathies that are associated with cardiac arrhythmias. Accumulating evidence supports the concept that increased myofilament Ca(2+) sensitivity is an independent risk factor for arrhythmias. This review describes and discusses potential underlying molecular and cellular mechanisms how myofilament Ca(2+) sensitivity affects cardiac excitation and leads to the generation of arrhythmias. Emphasized are downstream effects of increased myofilament Ca(2+) sensitivity: altered Ca(2+) buffering/handling, impaired energy metabolism and increased mechanical stretch, and how they may contribute to arrhythmogenesis.
Collapse
Affiliation(s)
- Sabine Huke
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232-0575, USA
| | | |
Collapse
|