51
|
Chen Z, Xu Z, Gao C, Chen L, Tan T, Jiang W, Chen B, Yuan Y, Zhang Z. Escitalopram-induced QTc prolongation and its relationship with KCNQ1, KCNE1, and KCNH2 gene polymorphisms. J Affect Disord 2024; 347:399-405. [PMID: 38000475 DOI: 10.1016/j.jad.2023.11.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Escitalopram can cause prolongation of the QT interval on the electrocardiogram (ECG). However, only some patients get pathological QTc prolongation in clinic. We investigated the influence of KCNQ1, KCNE1, and KCNH2 gene polymorphisms along with clinical factors on escitalopram-induced QTc prolongation. METHODS A total of 713 patients prescribed escitalopram were identified and had at least one ECG recording in this retrospective study. 472 patients with two or more ECG data were divided into QTc prolongation (n = 119) and non-prolongation (n = 353) groups depending on the threshold change in QTc of 30 ms above baseline value (∆QTc ≥ 30 ms). 45 patients in the QTc prolongation group and 90 patients in the QTc non-prolongation group were genotyped for 43 single nucleotide polymorphisms (SNPs) of KCNQ1, KCNE1, and KCNH2 genes. RESULTS Patients with QTc prolongation (∆QTc ≥ 30 ms) got higher escitalopram dose (10.3 mg) than patients without QTc prolongation (9.4 mg), although no significant relationship was found between QTc interval and escitalopram dose in the linear mixed model. Patients who were older/coronary disease/hypertension or carried with KCNE1 rs1805127 C allele, KCNE1 rs4817668 C allele, KCNH2 rs3807372 AG/GG genotype were significantly at risk for QTc prolongation (∆QTc ≥ 30 ms). Concomitant antipsychotic treatment was associated with a longer QTc interval. LIMITATIONS A relatively small sample size and lack of the blood concentration of escitalopram restricted the accurate relationship between escitalopram dose and QTc interval. CONCLUSION Our study revealed that KCNQ1, KCNE1, and KCNH2 gene polymorphisms along with clinical factors provide a complementary effect in escitalopram-induced QTc prolongation.
Collapse
Affiliation(s)
- Zimu Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University Nanjing, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University Nanjing, China; Department of General Practice, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Chenjie Gao
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University Nanjing, China
| | - Lei Chen
- Department of Psychiatry, General Hospital of Eastern Theater Command, Nanjing, China
| | - Tingting Tan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University Nanjing, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University Nanjing, China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University Nanjing, China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
52
|
Vašků A, Novotný T, Špinar J. Polymorphic Variants of SCN5A Gene (rs41312433 and rs1805124) Associated with Coronary Artery Affliction in Patients with Severe Arrhythmias. Genes (Basel) 2024; 15:200. [PMID: 38397190 PMCID: PMC10887539 DOI: 10.3390/genes15020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Several mutations in this gene for the α subunit of the cardiac sodium channel have been identified in a heterogeneous subset of cardiac rhythm syndromes, including Brugada syndrome, progressive cardiac conduction defect, sick sinus node syndrome, atrial fibrillation and dilated cardiomyopathy. The aim of our study was to associate some SCN5A polymorphic variants directly with confirmed coronary stenoses in patients with non-LQTS ventricular fibrillation/flutter treated by an implantable cardioverter defibrillator. MATERIALS AND METHODS A group of 32 unrelated individuals, aged 63 ± 12 years, was included in the study. All the patients were examined, diagnosed and treated with an implantable cardioverter defibrillator at the Department of Internal Cardiology Medicine, Faculty Hospital Brno. The control group included 87 persons of similar age without afflicted coronary circulation, which was confirmed coronagraphically. Genomic DNA was extracted from samples of peripheral blood according to the standard protocol. Two SCN5A polymorphisms-IVS9-3C/A (rs41312433) and A1673G (rs1805124, H558R)-were examined in association with coronary artery stenosis in the patients. RESULTS In the case-control study, no significant differences in genotype distribution/allelic frequencies were observed for IVS9-3c>a and A1673G gene polymorphisms between patients with severe arrhythmias and healthy persons. The distribution of SCN5A double genotypes was not significantly different among different types of arrhythmias according to their ejection fraction in arrhythmic patients (p = 0.396). The ventricular arrhythmias with an ejection fraction below 40% were found to be 10.67 times more frequent in patients with multiple coronary stenosis with clinically valid sensitivity, specificity and power tests. In the genotype-phenotype study, we observed a significant association of both SCN5A polymorphisms with the stenosis of coronary vessels in the patients with severe arrhythmia. The double genotype of polymorphisms IVS9-3C/A together with A1673G (CCAA) as well as their simple genotypes were associated with significant multiple stenosis of coronary arteries (MVS) with high sensitivity and specificity (p = 0.05; OR = 5 (95% CI 0.99-23.34); sensitivity 0.70; specificity 0.682; power test 0.359) Moreover, when a concrete stenotic coronary artery was associated with SCN5A genotypes, the CCAA double genotype was observed to be five times more frequent in patients with significant stenosis in the right coronary artery (RCA) compared to those without affliction of this coronary artery (p = 0.05; OR = 5 (95% CI 0.99-23.34); sensitivity 0.682; specificity 0.700; power test 0.359). The CCAA genotype was also more frequent in patients without RCA affliction with MVS (p = 0.008); in patients with ACD affliction but without MVS (p = 0.008); and in patients with both ACD affliction and MVS compared to those without ACD affliction and MVS (p = 0.005). CONCLUSIONS Our study presents a highly sensitive and specific association of two polymorphisms in SCN5A with significant coronary artery stenoses in patients with potentially fatal ventricular arrhythmias. At the same time, these polymorphisms were not associated with arrhythmias themselves. Thus, SCN5A gene polymorphic variants may form a part of germ cell gene predisposition to ischemia.
Collapse
Affiliation(s)
- Anna Vašků
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Tomáš Novotný
- Department of Internal Medicine and Cardiology, University Hospital Brno, Masaryk University, 62500 Brno, Czech Republic;
| | - Jindřich Špinar
- First Department of Internal Medicine—Cardioangiology, St. Anne’s University Hospital, Faculty of Medicine, Masaryk University, 60200 Brno, Czech Republic;
| |
Collapse
|
53
|
Chang L, Ji R, Sa R, Huge J, An C. Whole-exome sequencing of pathogenic genes in a family with congenital heart disease: A case report. Medicine (Baltimore) 2024; 103:e36977. [PMID: 38306576 PMCID: PMC10843419 DOI: 10.1097/md.0000000000036977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 02/04/2024] Open
Abstract
RATIONALE Congenital heart disease (CHD) is the most common birth defect and an important cause of noninfectious deaths in infants and children. It has high prevalence globally, placing an enormous burden on society and families. Studies of individuals with hereditary or sporadic CHD have provided strong evidence for its genetic basis. The aim of this study was to identify causative gene variants in a Chinese family with congenital heart disease. PATIENT CONCERNS AND DIAGNOSES Three generations of a CHD family were recruited. Proband III.9 was diagnosed with congenital heart disease at age 11 months, and the echocardiogram showed arterial ductus arteriosus, with a left-to-right shunt at the level of the arteries. Precedent III.10 was a twin of Proband III.9 who was diagnosed with congenital heart disease at age 11 months, in whom the echocardiogram revealed an arterial ductus arteriosus, an unenclosed patent ductus arteriosus, and a left to right shunt at the level of the arteries (second figure). III.8 was diagnosed with congenital heart disease at age 15, but echocardiography in this study showed no abnormalities. No cardiac abnormalities were detected in any of his parents, grandparents, or maternal grandparents. We performed whole-exome sequencing on CHD sufferers and their unexpressing family members to investigate the genetic causes of CHD in this family line. Exome sequencing identified 4 mutation sites in this family line. The variant c.3245A>G (p.His1082Arg) of the AMER1 gene was consistent with concomitant X-chromosome recessive inheritance, the variant c.238G>C (p.Val80Leu) of the KCNE1 gene was consistent with autosomal accessory inheritance, and the other 2 variants did not conform to the law of the mode of inheritance of the disease. OUTCOMES The first identified variant, c.3245A>G (p.His1082Arg) of the AMER1 gene, with X-chromosome recessive inheritance, and the variant c.238G>C (p.Val80Leu) of the KCNE1 gene, which has been reported as autosomal dominant, may be the causative agent of CHD in this family line. These findings broaden the genetic scope of congenital heart disease and could help in the development of targeted drugs for the treatment of congenital heart disease.
Collapse
Affiliation(s)
- Li Chang
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
- Rehabilitation Department, Ordos Central Hospital, Ordos, China
| | - Renhui Ji
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
- Rehabilitation Department, Ordos Central Hospital, Ordos, China
| | - Rina Sa
- Rehabilitation Department, Ordos Central Hospital, Ordos, China
- Department of Pediatrics, Ordos Central Hospital, Ordos, China
| | - Jiletu Huge
- Department of Pediatrics, Ordos Central Hospital, Ordos, China
| | - Caiyan An
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
- Rehabilitation Department, Ordos Central Hospital, Ordos, China
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
54
|
Mariani MV, Pierucci N, Fanisio F, Laviola D, Silvetti G, Piro A, La Fazia VM, Chimenti C, Rebecchi M, Drago F, Miraldi F, Natale A, Vizza CD, Lavalle C. Inherited Arrhythmias in the Pediatric Population: An Updated Overview. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:94. [PMID: 38256355 PMCID: PMC10819657 DOI: 10.3390/medicina60010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Pediatric cardiomyopathies (CMs) and electrical diseases constitute a heterogeneous spectrum of disorders distinguished by structural and electrical abnormalities in the heart muscle, attributed to a genetic variant. They rank among the main causes of morbidity and mortality in the pediatric population, with an annual incidence of 1.1-1.5 per 100,000 in children under the age of 18. The most common conditions are dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Despite great enthusiasm for research in this field, studies in this population are still limited, and the management and treatment often follow adult recommendations, which have significantly more data on treatment benefits. Although adult and pediatric cardiac diseases share similar morphological and clinical manifestations, their outcomes significantly differ. This review summarizes the latest evidence on genetics, clinical characteristics, management, and updated outcomes of primary pediatric CMs and electrical diseases, including DCM, HCM, arrhythmogenic right ventricular cardiomyopathy (ARVC), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), and short QT syndrome (SQTS).
Collapse
Affiliation(s)
- Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Nicola Pierucci
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Francesca Fanisio
- Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy; (F.F.); (M.R.)
| | - Domenico Laviola
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Giacomo Silvetti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Agostino Piro
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Vincenzo Mirco La Fazia
- Department of Electrophysiology, St. David’s Medical Center, Texas Cardiac Arrhythmia Institute, Austin, TX 78705, USA; (V.M.L.F.); (A.N.)
| | - Cristina Chimenti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Marco Rebecchi
- Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy; (F.F.); (M.R.)
| | - Fabrizio Drago
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital and Research Institute, 00165 Rome, Italy;
| | - Fabio Miraldi
- Cardio Thoracic-Vascular and Organ Transplantation Surgery Department, Policlinico Umberto I Hospital, 00161 Rome, Italy;
| | - Andrea Natale
- Department of Electrophysiology, St. David’s Medical Center, Texas Cardiac Arrhythmia Institute, Austin, TX 78705, USA; (V.M.L.F.); (A.N.)
| | - Carmine Dario Vizza
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Carlo Lavalle
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| |
Collapse
|
55
|
Neves R, Bains S, Bos JM, MacIntyre C, Giudicessi JR, Ackerman MJ. Precision therapy in congenital long QT syndrome. Trends Cardiovasc Med 2024; 34:39-47. [PMID: 35772688 DOI: 10.1016/j.tcm.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Long QT syndrome (LQTS) is a potentially life-threatening, but highly treatable genetic heart disease. LQTS-directed therapies often consist of beta-blockers (BBs), left cardiac sympathetic denervation (LCSD), and/or an implantable cardioverter defibrillator (ICD). However, in clinical practice, many patient-specific and genotype-directed permutations exist. Herein, we aim to review the spectrum of treatment configurations utilized at a single, tertiary center specializing in the care of patients with LQTS to demonstrate optimal LQTS-directed management is not amenable to a "one-size-fits-all" approach but instead benefits from patient- and genotype-tailored strategies.
Collapse
Affiliation(s)
- Raquel Neves
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN
| | - Sahej Bains
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Mayo Clinic Alix School of Medicine's Medical Scientist Training Program, Mayo Clinic, Rochester, MN
| | - J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN
| | - John R Giudicessi
- Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN.
| |
Collapse
|
56
|
Huang Y, Ma D, Yang Z, Zhao Y, Guo J. Voltage-gated potassium channels KCNQs: Structures, mechanisms, and modulations. Biochem Biophys Res Commun 2023; 689:149218. [PMID: 37976835 DOI: 10.1016/j.bbrc.2023.149218] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
KCNQ (Kv7) channels are voltage-gated, phosphatidylinositol 4,5-bisphosphate- (PIP2-) modulated potassium channels that play essential roles in regulating the activity of neurons and cardiac myocytes. Hundreds of mutations in KCNQ channels are closely related to various cardiac and neurological disorders, such as long QT syndrome, epilepsy, and deafness, which makes KCNQ channels important drug targets. During the past several years, the application of single-particle cryo-electron microscopy (cryo-EM) technique in the structure determination of KCNQ channels has greatly advanced our understanding of their molecular mechanisms. In this review, we summarize the currently available structures of KCNQ channels, analyze their special voltage gating mechanism, and discuss their activation mechanisms by both the endogenous membrane lipid and the exogenous synthetic ligands. These structural studies of KCNQ channels will guide the development of drugs targeting KCNQ channels.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenni Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiwen Zhao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050011, China
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
57
|
Blomquist VG, Niu J, Choudhury P, Al Saneh A, Colecraft HM, Ahern CA. Transfer RNA-mediated restoration of potassium current and electrical correction in premature termination long-QT syndrome hERG mutants. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102032. [PMID: 37842167 PMCID: PMC10568093 DOI: 10.1016/j.omtn.2023.102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Disease-causing premature termination codons (PTCs) individually disrupt the functional expression of hundreds of genes and represent a pernicious clinical challenge. In the heart, loss-of-function mutations in the hERG potassium channel account for approximately 30% of long-QT syndrome arrhythmia, a lethal cardiac disorder with limited treatment options. Premature termination of ribosomal translation produces a truncated and, for potassium channels, a potentially dominant-negative protein that impairs the functional assembly of the wild-type homotetrameric hERG channel complex. We used high-throughput flow cytometry and patch-clamp electrophysiology to assess the trafficking and voltage-dependent activity of hERG channels carrying patient PTC variants that have been corrected by anticodon engineered tRNA. Adenoviral-mediated expression of mutant hERG channels in cultured adult guinea pig cardiomyocytes prolonged action potential durations, and this deleterious effect was corrected upon adenoviral delivery of a human ArgUGA tRNA to restore full-length hERG protein. The results demonstrate mutation-specific, context-agnostic PTC correction and elevate the therapeutic potential of this approach for rare genetic diseases caused by stop codons.
Collapse
Affiliation(s)
- Viggo G. Blomquist
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Jacqueline Niu
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Papiya Choudhury
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Ahmad Al Saneh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
58
|
Hu W, Zhang W, Zhang K, Al-Moubarak E, Zhang Y, Harmer SC, Hancox JC, Zhang H. Evaluating pro-arrhythmogenic effects of the T634S-hERG mutation: insights from a simulation study. Interface Focus 2023; 13:20230035. [PMID: 38106919 PMCID: PMC10722218 DOI: 10.1098/rsfs.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
A mutation to serine of a conserved threonine (T634S) in the hERG K+ channel S6 pore region has been identified as a variant of uncertain significance, showing a loss-of-function effect. However, its potential consequences for ventricular excitation and arrhythmogenesis have not been reported. This study evaluated possible functional effects of the T634S-hERG mutation on ventricular excitation and arrhythmogenesis by using multi-scale computer models of the human ventricle. A Markov chain model of the rapid delayed rectifier potassium current (IKr) was reconstructed for wild-type and T634S-hERG mutant conditions and incorporated into the ten Tusscher et al. models of human ventricles at cell and tissue (1D, 2D and 3D) levels. Possible functional impacts of the T634S-hERG mutation were evaluated by its effects on action potential durations (APDs) and their rate-dependence (APDr) at the cell level; and on the QT interval of pseudo-ECGs, tissue vulnerability to unidirectional conduction block (VW), spiral wave dynamics and repolarization dispersion at the tissue level. It was found that the T634S-hERG mutation prolonged cellular APDs, steepened APDr, prolonged the QT interval, increased VW, destablized re-entry and augmented repolarization dispersion across the ventricle. Collectively, these results imply potential pro-arrhythmic effects of the T634S-hERG mutation, consistent with LQT2.
Collapse
Affiliation(s)
- Wei Hu
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Wenfeng Zhang
- College of Computer and Information Science, Chongqing Normal University, Chongqing, People's Republic of China
| | - Kevin Zhang
- Southmead Hospital, North Bristol Trust, Bristol, UK
| | - Ehab Al-Moubarak
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Stephen C. Harmer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jules C. Hancox
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, People's Republic of China
- Beijing Academy of Artificial Intelligence, Beijing 100084, People's Republic of China
| |
Collapse
|
59
|
Spencer R, Quraishi S. Athlete Screening and Sudden Cardiac Death. Pediatr Rev 2023; 44:669-681. [PMID: 38036435 DOI: 10.1542/pir.2023-005975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
- Robert Spencer
- Division of Pediatric Cardiology, Department of Pediatrics, Staten Island University Hospital, Northwell Health, Staten Island, NY
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Shahed Quraishi
- Division of Pediatric Cardiology, Department of Pediatrics, Staten Island University Hospital, Northwell Health, Staten Island, NY
| |
Collapse
|
60
|
Dahlberg P, Axelsson KJ, Rydberg A, Lundahl G, Gransberg L, Bergfeldt L. Spatiotemporal repolarization dispersion before and after exercise in patients with long QT syndrome type 1 versus controls: probing into the arrhythmia substrate. Am J Physiol Heart Circ Physiol 2023; 325:H1279-H1289. [PMID: 37773058 DOI: 10.1152/ajpheart.00335.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Congenital long QT syndrome (LQTS) carries an increased risk for syncope and sudden death. QT prolongation promotes ventricular extrasystoles, which, in the presence of an arrhythmia substrate, might trigger ventricular tachycardia degenerating into fibrillation. Increased electrical heterogeneity (dispersion) is the suggested arrhythmia substrate in LQTS. In the most common subtype LQT1, physical exercise predisposes for arrhythmia and spatiotemporal dispersion was therefore studied in this context. Thirty-seven patients (57% on β-blockers) and 37 healthy controls (mean age, 31 vs. 35; range, 6-68 vs. 6-72 yr) performed an exercise test. Frank vectorcardiography was used to assess spatiotemporal dispersion as Tampl, Tarea, the ventricular gradient (VG), and the Tpeak-end interval from 10-s signal averages before and 7 ± 2 min after exercise; during exercise too much signal disturbance excluded analysis. Baseline and maximum heart rates as well as estimated exercise intensity were similar, but heart rate recovery was slower in patients. At baseline, QT and heart rate-corrected QT (QTcB) were significantly longer in patients (as expected), whereas dispersion parameters were numerically larger in controls. After exercise, QTpeakcB and Tpeak-endcB increased significantly more in patients (18 ± 23 vs. 7 ± 10 ms and 12 ± 17 vs. 2 ± 6 ms; P < 0.001 and P < 0.01). There was, however, no difference in the change in Tampl, Tarea, and VG between groups. In conclusion, although temporal dispersion of repolarization increased significantly more after exercise in patients with LQT1, there were no signs of exercise-induced increase in global dispersion of action potential duration and morphology. The arrhythmia substrate/mechanism in LQT1 warrants further study.NEW & NOTEWORTHY Physical activity increases the risk for life-threatening arrhythmias in LQTS type 1 (LQT1). The arrhythmia substrate is presumably altered electrical heterogeneity (a.k.a. dispersion). Spatiotemporal dispersion parameters were therefore compared before and after exercise in patients versus healthy controls using Frank vectorcardiography, a novelty. Physical exercise prolonged the time between the earliest and latest complete repolarization in patients versus controls, but did not increase parameters reflecting global dispersion of action potential duration and morphology, another novelty.
Collapse
Affiliation(s)
- Pia Dahlberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Vaestra Goetaland, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karl-Jonas Axelsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Vaestra Goetaland, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Annika Rydberg
- Division of Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Gunilla Lundahl
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Gransberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Bergfeldt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Vaestra Goetaland, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
61
|
Venkateshappa R, Hunter DV, Muralidharan P, Nagalingam RS, Huen G, Faizi S, Luthra S, Lin E, Cheng YM, Hughes J, Khelifi R, Dhunna DP, Johal R, Sergeev V, Shafaattalab S, Julian LM, Poburko DT, Laksman Z, Tibbits GF, Claydon TW. Targeted activation of human ether-à-go-go-related gene channels rescues electrical instability induced by the R56Q+/- long QT syndrome variant. Cardiovasc Res 2023; 119:2522-2535. [PMID: 37739930 PMCID: PMC10676460 DOI: 10.1093/cvr/cvad155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 09/24/2023] Open
Abstract
AIMS Long QT syndrome type 2 (LQTS2) is associated with inherited variants in the cardiac human ether-à-go-go-related gene (hERG) K+ channel. However, the pathogenicity of hERG channel gene variants is often uncertain. Using CRISPR-Cas9 gene-edited hiPSC-derived cardiomyocytes (hiPSC-CMs), we investigated the pathogenic mechanism underlying the LQTS-associated hERG R56Q variant and its phenotypic rescue by using the Type 1 hERG activator, RPR260243. METHODS AND RESULTS The above approaches enable characterization of the unclear causative mechanism of arrhythmia in the R56Q variant (an N-terminal PAS domain mutation that primarily accelerates channel deactivation) and translational investigation of the potential for targeted pharmacologic manipulation of hERG deactivation. Using perforated patch clamp electrophysiology of single hiPSC-CMs, programmed electrical stimulation showed that the hERG R56Q variant does not significantly alter the mean action potential duration (APD90). However, the R56Q variant increases the beat-to-beat variability in APD90 during pacing at constant cycle lengths, enhances the variance of APD90 during rate transitions, and increases the incidence of 2:1 block. During paired S1-S2 stimulations measuring electrical restitution properties, the R56Q variant was also found to increase the variability in rise time and duration of the response to premature stimulations. Application of the hERG channel activator, RPR260243, reduces the APD variance in hERG R56Q hiPSC-CMs, reduces the variability in responses to premature stimulations, and increases the post-repolarization refractoriness. CONCLUSION Based on our findings, we propose that the hERG R56Q variant leads to heterogeneous APD dynamics, which could result in spatial dispersion of repolarization and increased risk for re-entry without significantly affecting the average APD90. Furthermore, our data highlight the antiarrhythmic potential of targeted slowing of hERG deactivation gating, which we demonstrate increases protection against premature action potentials and reduces electrical heterogeneity in hiPSC-CMs.
Collapse
Affiliation(s)
- Ravichandra Venkateshappa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Diana V Hunter
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Priya Muralidharan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Raghu S Nagalingam
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, Canada V5Z 4H4
| | - Galvin Huen
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Shoaib Faizi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Shreya Luthra
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Eric Lin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Julia Hughes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Rania Khelifi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Daman Parduman Dhunna
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Raj Johal
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Valentine Sergeev
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Sanam Shafaattalab
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Lisa M Julian
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Damon T Poburko
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Zachary Laksman
- Department of Medicine, School of Biomedical Engineering, University of British Columbia, 2194 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Glen F Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, Canada V5Z 4H4
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Tom W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| |
Collapse
|
62
|
Lin J, Kuang H, Jiang J, Zhou H, Peng L, Yan X, Kuang J. Circadian Rhythms in Cardiovascular Function: Implications for Cardiac Diseases and Therapeutic Opportunities. Med Sci Monit 2023; 29:e942215. [PMID: 37986555 PMCID: PMC10675984 DOI: 10.12659/msm.942215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 11/22/2023] Open
Abstract
Circadian rhythms are internal 24-h intrinsic oscillations that are present in essentially all mammalian cells and can influence numerous biological processes. Cardiac function is known to exhibit a circadian rhythm and is strongly affected by the day/night cycle. Many cardiovascular variables, including heart rate, heart rate variability (HRV), electrocardiogram (ECG) waveforms, endothelial cell function, and blood pressure, demonstrate robust circadian rhythms. Many experiential and clinical studies have highlighted that disruptions in circadian rhythms can ultimately lead to maladaptive cardiac function. Factors that disrupt the circadian rhythm, including shift work, global travel, and sleep disorders, may consequently enhance the risk of cardiovascular diseases. Some cardiac diseases appear to occur at particular times of the day or night; therefore, targeting the disease at particular times of day may improve the clinical outcome. The objective of this review is to unravel the relationship between circadian rhythms and cardiovascular health. By understanding this intricate interplay, we aim to reveal the potential risks of circadian disruption and discuss the emerging therapeutic strategies, specifically those targeting circadian rhythms. In this review, we explore the important role of circadian rhythms in cardiovascular physiology and highlight the role they play in cardiac dysfunction such as ventricular hypertrophy, arrhythmia, diabetes, and myocardial infarction. Finally, we review potential translational treatments aimed at circadian rhythms. These treatments offer an innovative approach to enhancing the existing approaches for managing and treating heart-related conditions, while also opening new avenues for therapeutic development.
Collapse
Affiliation(s)
- Jiayue Lin
- Postgraduate School, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
- Department of Cardiovascular, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| | - Haoming Kuang
- Postgraduate School, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Jiahao Jiang
- Department of Chinese Medicine, The First People’s Hospital of Kunshan, Suzhou, Jiangsu, PR China
| | - Hui Zhou
- Department of Cardiovascular, Beibei Hospital of Chinese Medicine, Chongqing, PR China
| | - Li Peng
- Department of Cardiovascular, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| | - Xu Yan
- Department of Cardiovascular, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| | - Jianjun Kuang
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| |
Collapse
|
63
|
Pandit M, Finn C, Tahir UA, Frishman WH. Congenital Long QT Syndrome: A Review of Genetic and Pathophysiologic Etiologies, Phenotypic Subtypes, and Clinical Management. Cardiol Rev 2023; 31:318-324. [PMID: 35576393 DOI: 10.1097/crd.0000000000000459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Congenital Long QT Syndrome (CLQTS) is the most common inherited arrhythmia. The QT interval, which marks the duration of ventricular depolarization and repolarization in the myocardium, can be prolonged due to mutations in genes coding for the ion channel proteins that govern the cardiac action potential. The lengthening of the QT interval can lead to a wide range of clinical symptoms, including seizures, torsades de pointes, and fatal arrhythmias. There is a growing body of evidence that has revealed the genetic mutations responsible for the pathophysiology of CLQTS, and this has led to hypotheses regarding unique triggers and clinical features associated with specific gene mutations. Epidemiologic evidence has revealed a 1-year mortality rate of approximately 20% in untreated CLQTS patients, and a <1% of 1-year mortality rate in treated patients, underscoring the importance of timely diagnosis and effective clinical management. There are many phenotypic syndromes that constitute CLQTS, including but not limited to, Jervell and Lange-Nielsen syndrome, Romano and Ward syndrome, Andersen-Tawil syndrome, and Timothy syndrome. In this review, we aim to (1) summarize the genetic, epidemiologic, and pathophysiological basis of CLQTS and (2) outline the unique features of the phenotypic subtypes and their clinical management.
Collapse
Affiliation(s)
- Maya Pandit
- From the New York Medical College, Valhalla, NY
| | - Caitlin Finn
- Department of Medicine, Division of Cardiology, Harvard Medical School/Beth Israel Deaconess Medical Center, Boston, MA
| | - Usman A Tahir
- Department of Medicine, Division of Cardiology, Harvard Medical School/Beth Israel Deaconess Medical Center, Boston, MA
| | - William H Frishman
- Departments of Medicine and Cardiology, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
64
|
Abrahams T, Davies B, Laksman Z, Sy RW, Postema PG, Wilde AAM, Krahn AD, Han HC. Provocation testing in congenital long QT syndrome: A practical guide. Heart Rhythm 2023; 20:1570-1582. [PMID: 37481219 DOI: 10.1016/j.hrthm.2023.07.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Congenital long QT syndrome (LQTS) is a hereditary cardiac channelopathy with an estimated prevalence of 1 in 2500. A prolonged resting QT interval corrected for heart rate (QTc interval) remains a key diagnostic component; however, the QTc value may be normal in up to 40% of patients with genotype-positive LQTS and borderline in a further 30%. Provocation of QTc prolongation and T-wave changes may be pivotal to unmasking the diagnosis and useful in predicting genotype. LQTS provocation testing involves assessment of repolarization during and after exercise, in response to changes in heart rate or autonomic tone, with patients with LQTS exhibiting a maladaptive repolarization response. We review the utility and strengths and limitations of 4 forms of provocation testing-stand-up test, exercise stress test, epinephrine challenge, and mental stress test-in diagnosing LQTS and provide some practical guidance for performing provocation testing. Ultimately, exercise testing, when feasible, is the most useful form of provocation testing when considering diagnostic sensitivity and specificity.
Collapse
Affiliation(s)
- Timothy Abrahams
- Victorian Heart Institute & Monash Health Heart, Victorian Heart Hospital, Monash University, Melbourne, Victoria, Australia
| | - Brianna Davies
- Center for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary Laksman
- Center for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raymond W Sy
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Pieter G Postema
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Heart Failure & Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Academic Medical Center, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Heart Failure & Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Academic Medical Center, Amsterdam, The Netherlands
| | - Andrew D Krahn
- Center for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui-Chen Han
- Victorian Heart Institute & Monash Health Heart, Victorian Heart Hospital, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
65
|
Jin Q, Greenstein JL, Winslow RL. Estimating the probability of early afterdepolarizations and predicting arrhythmic risk associated with long QT syndrome type 1 mutations. Biophys J 2023; 122:4042-4056. [PMID: 37705243 PMCID: PMC10598291 DOI: 10.1016/j.bpj.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
Early afterdepolarizations (EADs) are action potential (AP) repolarization abnormalities that can trigger lethal arrhythmias. Simulations using biophysically detailed cardiac myocyte models can reveal how model parameters influence the probability of these cellular arrhythmias; however, such analyses can pose a huge computational burden. We have previously developed a highly simplified approach in which logistic regression models (LRMs) map parameters of complex cell models to the probability of ectopic beats. Here, we extend this approach to predict the probability of EADs (P(EAD)) as a mechanistic metric of arrhythmic risk. We use the LRM to investigate how changes in parameters of the slow-activating delayed rectifier current (IKs) affect P(EAD) for 17 different long QT syndrome type 1 (LQTS1) mutations. In this LQTS1 clinical arrhythmic risk prediction task, we compared P(EAD) for these 17 mutations with two other recently published model-based arrhythmia risk metrics (AP morphology metric across populations of myocyte models and transmural repolarization prolongation based on a one-dimensional [1D] tissue-level model). These model-based risk metrics yield similar prediction performance; however, each fails to stratify clinical risk for a significant number of the 17 studied LQTS1 mutations. Nevertheless, an interpretable ensemble model using multivariate linear regression built by combining all of these model-based risk metrics successfully predicts the clinical risk of 17 mutations. These results illustrate the potential of computational approaches in arrhythmia risk prediction.
Collapse
Affiliation(s)
- Qingchu Jin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Joseph L Greenstein
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Raimond L Winslow
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
66
|
Jowais JJ, Yazdi S, Golluscio A, Olivier-Meo V, Liin SI, Larsson HP. Mechanistic understanding of KCNQ1 activating polyunsaturated fatty acid analogs. J Gen Physiol 2023; 155:e202313339. [PMID: 37526928 PMCID: PMC10394376 DOI: 10.1085/jgp.202313339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
The KCNQ1 channel is important for the repolarization phase of the cardiac action potential. Loss of function mutations in KCNQ1 can cause long QT syndrome (LQTS), which can lead to cardiac arrythmia and even sudden cardiac death. We have previously shown that polyunsaturated fatty acids (PUFAs) and PUFA analogs can activate the cardiac KCNQ1 channel, making them potential therapeutics for the treatment of LQTS. PUFAs bind to KCNQ1 at two different binding sites: one at the voltage sensor (Site I) and one at the pore (Site II). PUFA interaction at Site I shifts the voltage dependence of the channel to the left, while interaction at Site II increases maximal conductance. The PUFA analogs, linoleic-glycine and linoleic-tyrosine, are more effective than linoleic acid at Site I, but less effective at Site II. Using both simulations and experiments, we find that the larger head groups of linoleic-glycine and linoleic-tyrosine interact with more residues than the smaller linoleic acid at Site I. We propose that this will stabilize the negatively charged PUFA head group in a position to better interact electrostatically with the positively charges in the voltage sensor. In contrast, the larger head groups of linoleic-glycine and linoleic-tyrosine compared with linoleic acid prevent a close fit of these PUFA analogs in Site II, which is more confined. In addition, we identify several KCNQ1 residues as critical PUFA-analog binding residues, thereby providing molecular models of specific interactions between PUFA analogs and KCNQ1. These interactions will aid in future drug development based on PUFA-KCNQ1 channel interactions.
Collapse
Affiliation(s)
- Jessica J. Jowais
- Department of Physiology and Biophysics, University of Miami, Miami, FL, USA
| | - Samira Yazdi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Alessia Golluscio
- Department of Physiology and Biophysics, University of Miami, Miami, FL, USA
| | - Vanessa Olivier-Meo
- Department of Physiology and Biophysics, University of Miami, Miami, FL, USA
| | - Sara I. Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - H. Peter Larsson
- Department of Physiology and Biophysics, University of Miami, Miami, FL, USA
| |
Collapse
|
67
|
Kojima A, Fukushima Y, Matsuura H. Prediction of anesthetic torsadogenicity using a human ventricular cell model. J Anesth 2023; 37:806-810. [PMID: 37524993 DOI: 10.1007/s00540-023-03238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
This simulation study was designed to predict the torsadogenicity of sevoflurane and propofol in healthy control, as well as type 1 and type 2 long QT syndrome (LQT1 and LQT2, respectively), using the O'Hara-Rudy dynamic model. LQT1 and LQT2 models were simulated by decreasing the conductances of slowly and rapidly activating delayed rectifier K+ currents (IKs and IKr, respectively) by 50%, respectively. Action potential duration at 50% repolarization level (APD50) and diastolic intracellular Ca2+ concentration were measured in epicardial cell during administration of sevoflurane (1 ~ 5%) and propofol (1 ~ 10 μM). Torsadogenicity can be predicted from the relationship between APD50 and diastolic intracellular Ca2+ concentration, which is classified by the decision boundary. Whereas the relationships in control and LQT1 models were distributed on nontorsadogenic side in the presence of sevoflurane at all tested concentrations, those in LQT2 models were shifted to torsadogenic side by concentrations of ≥ 2%. In all three models, propofol shifted the relationships in a direction away from the decision boundary on nontorsadogenic side. Our findings suggest that sevoflurane, but not propofol, exerts torsadogenicity in patients with reduced IKr, such as LQT2 patients. Caution should be paid to the occurrence of arrhythmia during sevoflurane anesthesia in patients with reduced IKr.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| | - Yutaka Fukushima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
68
|
Dubey N, Ubhadiya TJ, Garg VS, Vadnagara H, Sojitra MH, Gandhi SK, Patel P. Unlocking the Potential of Left Cardiac Sympathetic Denervation: A Scoping Review of a Promising Approach for Long QT Syndrome. Cureus 2023; 15:e47306. [PMID: 38021601 PMCID: PMC10656634 DOI: 10.7759/cureus.47306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Left cardiac sympathetic denervation (LCSD) has emerged as an alternative therapy for individuals diagnosed with long QT syndrome (LQTS), a genetic disorder characterized by abnormal electrical activity in the heart and sudden cardiac death (SCD). This review examines the history and rationale behind LCSD in LQTS treatment, as well as the procedure, its efficacy, and indications along with the adverse effects that may be associated with it. LQTS presents with prolonged QT intervals on an electrocardiogram and can manifest as seizures, fainting, and SCD. Beta-blockers are the primary treatment for LQTS but some patients do not respond well to these medications or experience side effects. Additionally, implantable cardioverter-defibrillators (ICDs) are not always effective in preventing arrhythmias and can lead to complications. LCSD might offer an alternative approach by disrupting sympathetic activity in the heart. In humans, LCSD reduces the release of norepinephrine, normalizes the QT interval, and decreases the likelihood of life-threatening heart rhythms. The procedure does not impair heart rate or cardiac function due to the compensatory effects of the right cardiac sympathetic nerves. The surgical procedure for LCSD involves the removal of the lower half of the stellate ganglion and thoracic ganglia. Complete denervation is essential for optimal outcomes, while incomplete procedures are considered unacceptable. Traditional and minimally invasive approaches, such as video-assisted thoracic surgery (VATS), are available, with VATS offering shorter hospital stays and fewer complications. In conclusion, LCSD provides a viable treatment option for individuals with LQTS who do not respond well to beta-blockers or require additional protection beyond medication or ICDs. Further research and clinical experience are needed to enhance its acceptance and implementation in routine practice.
Collapse
Affiliation(s)
- Nidhi Dubey
- Department of Internal Medicine, Civil Hospital Ahmedabad, Ahmedabad, IND
| | - Tyagi J Ubhadiya
- Department of Internal Medicine, Civil Hospital Ahmedabad, Ahmedabad, IND
| | - Vasudha S Garg
- Department of Internal Medicine, Civil Hospital Ahmedabad, Ahmedabad, IND
| | - Harsh Vadnagara
- Department of Internal Medicine, Civil Hospital Ahmedabad, Ahmedabad, IND
| | - Mihir H Sojitra
- Department of Neurology, Civil Hospital Ahmedabad, Ahmedabad, IND
| | - Siddharth Kamal Gandhi
- Department of Internal Medicine, Shri M. P. Shah Government Medical College, Jamnagar, IND
| | - Priyansh Patel
- Department of Internal Medicine, Medical College Baroda, Vadodara, IND
| |
Collapse
|
69
|
Campagna N, Wall E, Lee K, Guo J, Li W, Yang T, Baranchuk A, El-Diasty M, Zhang S. Differential Effects of Remdesivir and Lumacaftor on Homomeric and Heteromeric hERG Channels. Mol Pharmacol 2023; 104:164-173. [PMID: 37419691 DOI: 10.1124/molpharm.123.000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes for the pore-forming subunit of the channel that conducts the rapidly activating delayed K+ current (IKr) in the heart. The hERG channel is important for cardiac repolarization, and reduction of its expression in the plasma membrane due to mutations causes long QT syndrome type 2 (LQT2). As such, promoting hERG membrane expression is a strategy to rescue mutant channel function. In the present study, we applied patch clamp, western blots, immunocytochemistry, and quantitative reverse transcription polymerase chain reaction techniques to investigate the rescue effects of two drugs, remdesivir and lumacaftor, on trafficking-defective mutant hERG channels. As our group has recently reported that the antiviral drug remdesivir increases wild-type (WT) hERG current and surface expression, we studied the effects of remdesivir on trafficking-defective LQT2-causing hERG mutants G601S and R582C expressed in HEK293 cells. We also investigated the effects of lumacaftor, a drug used to treat cystic fibrosis, that promotes CFTR protein trafficking and has been shown to rescue membrane expression of some hERG mutations. Our results show that neither remdesivir nor lumacaftor rescued the current or cell-surface expression of homomeric mutants G601S and R582C. However, remdesivir decreased while lumacaftor increased the current and cell-surface expression of heteromeric channels formed by WT hERG and mutant G601S or R582C hERG. We concluded that drugs can differentially affect homomeric WT and heteromeric WT+G601S (or WT+R582C) hERG channels. These findings extend our understanding of drug-channel interaction and may have clinical implications for patients with hERG mutations. SIGNIFICANCE STATEMENT: Various naturally occurring mutations in a cardiac potassium channel called hERG can impair channel function by decreasing cell-surface channel expression, resulting in cardiac electrical disturbances and even sudden cardiac death. Promotion of cell-surface expression of mutant hERG channels represents a strategy to rescue channel function. This work demonstrates that drugs such as remdesivir and lumacaftor can differently affect homomeric and heteromeric mutant hERG channels, which have biological and clinical implications.
Collapse
Affiliation(s)
- Noah Campagna
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Erika Wall
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Kevin Lee
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Mohammad El-Diasty
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
70
|
Elizalde Uribe IA, Mendoza Lagos D, Cazares Diazleal AC, Andrade Cuellar EN, Payró Ramírez G. Family long QT syndrome type 2 associated with KCNH2 gene mutation: aborted sudden cardiac death. Monaldi Arch Chest Dis 2023; 94. [PMID: 37702700 DOI: 10.4081/monaldi.2023.2663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
A complete screening was performed in a family after one of its members presented with a sudden cardiac death event. A genetic analysis revealed a mutation that led to a long QT syndrome.
Collapse
Affiliation(s)
| | - Diego Mendoza Lagos
- Cardiology Department, National Institute of Medical Science and Nutrition "Salvador Zubiran", Mexico City
| | | | | | - Gerardo Payró Ramírez
- Cardiology Department, National Institute of Medical Science and Nutrition "Salvador Zubiran", Mexico City
| |
Collapse
|
71
|
MacIntyre CJ, Ackerman MJ. Personalized Care in Long QT Syndrome: Better Management, More Sports, and Fewer Devices. Card Electrophysiol Clin 2023; 15:285-291. [PMID: 37558299 DOI: 10.1016/j.ccep.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Long QT Syndrome (LQTS) is a potentially life-threatening yet highly treatable inherited cardiac channelopathy. When evaluating these patients, it is important to consider patient-specific as well as genotype-specific factors in order to adequately encompass the many nuances to care that exist in its management. The tendency to follow a "one-size-fits-all" approach needs to be replaced by treatment strategies that embrace the unique considerations of the individual patient in the context of their genotype. Herein, the authors aim to review the spectrum of LQTS, including the considerations when tailoring a personalized, genotype-tailored treatment program for a patient's LQTS.
Collapse
Affiliation(s)
- Ciorsti J MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA.
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
72
|
McCormick L, Wadmore K, Milburn A, Gupta N, Morris R, Held M, Prakash O, Carr J, Barrett‐Jolley R, Dart C, Helassa N. Long QT syndrome-associated calmodulin variants disrupt the activity of the slowly activating delayed rectifier potassium channel. J Physiol 2023; 601:3739-3764. [PMID: 37428651 PMCID: PMC10952621 DOI: 10.1113/jp284994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
Calmodulin (CaM) is a highly conserved mediator of calcium (Ca2+ )-dependent signalling and modulates various cardiac ion channels. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS). LQTS patients display prolonged ventricular recovery times (QT interval), increasing their risk of incurring life-threatening arrhythmic events. Loss-of-function mutations to Kv7.1 (which drives the slow delayed rectifier potassium current, IKs, a key ventricular repolarising current) are the largest contributor to congenital LQTS (>50% of cases). CaM modulates Kv7.1 to produce a Ca2+ -sensitive IKs, but little is known about the consequences of LQTS-associated CaM mutations on Kv7.1 function. Here, we present novel data characterising the biophysical and modulatory properties of three LQTS-associated CaM variants (D95V, N97I and D131H). We showed that mutations induced structural alterations in CaM and reduced affinity for Kv7.1, when compared with wild-type (WT). Using HEK293T cells expressing Kv7.1 channel subunits (KCNQ1/KCNE1) and patch-clamp electrophysiology, we demonstrated that LQTS-associated CaM variants reduced current density at systolic Ca2+ concentrations (1 μm), revealing a direct QT-prolonging modulatory effect. Our data highlight for the first time that LQTS-associated perturbations to CaM's structure impede complex formation with Kv7.1 and subsequently result in reduced IKs. This provides a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype. KEY POINTS: Calmodulin (CaM) is a ubiquitous, highly conserved calcium (Ca2+ ) sensor playing a key role in cardiac muscle contraction. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS), a life-threatening cardiac arrhythmia syndrome. LQTS-associated CaM variants (D95V, N97I and D131H) induced structural alterations, altered binding to Kv7.1 and reduced IKs. Our data provide a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype.
Collapse
Affiliation(s)
- Liam McCormick
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory HubSaint Mary's HospitalManchesterUK
| | - Kirsty Wadmore
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Amy Milburn
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nitika Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Marie Held
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ohm Prakash
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Joseph Carr
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Richard Barrett‐Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
73
|
Zou X, Shanmugam SK, Kanner SA, Sampson KJ, Kass RS, Colecraft HM. Divergent regulation of KCNQ1/E1 by targeted recruitment of protein kinase A to distinct sites on the channel complex. eLife 2023; 12:e83466. [PMID: 37650513 PMCID: PMC10499372 DOI: 10.7554/elife.83466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/30/2023] [Indexed: 09/01/2023] Open
Abstract
The slow delayed rectifier potassium current, IKs, conducted through pore-forming Q1 and auxiliary E1 ion channel complexes is important for human cardiac action potential repolarization. During exercise or fright, IKs is up-regulated by protein kinase A (PKA)-mediated Q1 phosphorylation to maintain heart rhythm and optimum cardiac performance. Sympathetic up-regulation of IKs requires recruitment of PKA holoenzyme (two regulatory - RI or RII - and two catalytic Cα subunits) to Q1 C-terminus by an A kinase anchoring protein (AKAP9). Mutations in Q1 or AKAP9 that abolish their functional interaction result in long QT syndrome type 1 and 11, respectively, which increases the risk of sudden cardiac death during exercise. Here, we investigated the utility of a targeted protein phosphorylation (TPP) approach to reconstitute PKA regulation of IKs in the absence of AKAP9. Targeted recruitment of endogenous Cα to E1-YFP using a GFP/YFP nanobody (nano) fused to RIIα enabled acute cAMP-mediated enhancement of IKs, reconstituting physiological regulation of the channel complex. By contrast, nano-mediated tethering of RIIα or Cα to Q1-YFP constitutively inhibited IKs by retaining the channel intracellularly in the endoplasmic reticulum and Golgi. Proteomic analysis revealed that distinct phosphorylation sites are modified by Cα targeted to Q1-YFP compared to free Cα. Thus, functional outcomes of synthetically recruited PKA on IKs regulation is critically dependent on the site of recruitment within the channel complex. The results reveal insights into divergent regulation of IKs by phosphorylation across different spatial and time scales, and suggest a TPP approach to develop new drugs to prevent exercise-induced sudden cardiac death.
Collapse
Affiliation(s)
- Xinle Zou
- Department of Molecular Pharmacology and Therapeutics, Columbia UniversityNew YorkUnited States
| | - Sri Karthika Shanmugam
- Department of Physiology and Cellular Biophysics, Columbia UniversityNew YorkUnited States
| | - Scott A Kanner
- Doctoral Program in Neurobiology and Behavior, Columbia UniversityNew YorkUnited States
| | - Kevin J Sampson
- Department of Molecular Pharmacology and Therapeutics, Columbia UniversityNew YorkUnited States
| | - Robert S Kass
- Department of Molecular Pharmacology and Therapeutics, Columbia UniversityNew YorkUnited States
| | - Henry M Colecraft
- Department of Molecular Pharmacology and Therapeutics, Columbia UniversityNew YorkUnited States
- Doctoral Program in Neurobiology and Behavior, Columbia UniversityNew YorkUnited States
| |
Collapse
|
74
|
Zhao N, Yu Z, Cai Z, Chen W, He X, Huo Z, Lin X. Novel combinations of variations in KCNQ1 were associated with patients with long QT syndrome or Jervell and Lange-Nielsen syndrome. BMC Cardiovasc Disord 2023; 23:399. [PMID: 37568094 PMCID: PMC10422715 DOI: 10.1186/s12872-023-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
OBJECTIVES Long QT syndrome (LQTS) is one of the primary causes of sudden cardiac death (SCD) in youth. Studies have identified mutations in ion channel genes as key players in the pathogenesis of LQTS. However, the specific etiology in individual families remains unknown. METHODS Three unrelated Chinese pedigrees diagnosed with LQTS or Jervell and Lange-Nielsen syndrome (JLNS) were recruited clinically. Whole exome sequencing (WES) was performed and further validated by multiplex ligation-dependent probe amplification (MLPA) and Sanger sequencing. RESULTS All of the probands in our study experienced syncope episodes and featured typically prolonged QTc-intervals. Two probands also presented with congenital hearing loss and iron-deficiency anemia and thus were diagnosed with JLNS. A total of five different variants in KCNQ1, encoding a subunit of the voltage-gated potassium channel, were identified in 3 probands. The heterozygous variants, KCNQ1 c.749T > C was responsible for LQTS in Case 1, transmitting in an autosomal dominant pattern. Two patterns of compound heterozygous variants were responsible for JLNS, including a large deletion causing loss of the exon 16 and missense variant c.1663 C > T in Case 2, and splicing variant c.605-2 A > G and frame-shift variant c.1265del in Case 3. To our knowledge, the compound heterozygous mutations containing a large deletion and missense variant were first reported in patients with JLNS. CONCLUSION Our study expanded the LQTS genetic spectrum, thus favoring disease screening and diagnosis, personalized treatment, and genetic consultation.
Collapse
Affiliation(s)
- Nongnong Zhao
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Yuyao People's Hospital of Zhejiang Province, Yuyao, Ningbo, 315400, Zhejiang, China
| | - Zhengyang Yu
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhejun Cai
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Wenai Chen
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xiaopeng He
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhaoxia Huo
- Experimental Teaching Center, School of Basic Medical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| | - Xiaoping Lin
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
75
|
Asad ZUA, Krishan S, Roman D, Yousaf AF, Stavrakis S. Same Gene, Different Story (a Case Report of Congenital Long QT Syndrome Subtype 8 With a Novel Mutation). Am J Cardiol 2023; 200:13-17. [PMID: 37271119 DOI: 10.1016/j.amjcard.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/15/2023] [Accepted: 05/07/2023] [Indexed: 06/06/2023]
Abstract
Long QT syndrome (LQTS) 8 is a rare inherited channelopathy caused by CACNA1C gene mutations that affects calcium channels, and when combined with congenital heart defects, musculoskeletal defects, and neurodevelopmental defects, it is referred to as Timothy syndrome. A female patient, aged 17 years, presented with a witnessed episode of syncope secondary to ventricular fibrillation that was successfully cardioverted. Electrocardiogram showed sinus bradycardia 52/min, normal axis, and a QTc of 626 ms. In the hospital, she had another episode of asystole and Torsade de pointes and underwent successful cardiopulmonary resuscitation. Echocardiogram showed severely reduced left ventricular systolic function from postcardiac arrest myocardial dysfunction and no congenital heart defects. Long QT genetic test detected a missense mutation in the CACNA1C gene (NM_199460.3, variant c.2573G>A, p Arg858His, heterozygous, autosomal dominant), resulting in replacement of arginine with histidine at position 858(R858H), leading to the gain of function in the L-type calcium channel. Given the absence of congenital cardiac defects, musculoskeletal deformities, or neurodevelopmental delay a final diagnosis of LQTS subtype 8 was made. A cardioverter defibrillator was implanted. In conclusion, our case highlights the importance of genetic testing in the diagnosis of LQTS. Some CACNA1C mutations, such as R858H described here, cause LQTS without the extracardiac manifestations observed in classic Timothy syndrome and should be included in the genetic testing for LQTS. To the best of our knowledge, our case is the first one from United States with the R585H mutation. Three cases with similar mutations have been reported from Japan and one from New Zealand.
Collapse
Affiliation(s)
- Zain Ul Abideen Asad
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Satyam Krishan
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Darwin Roman
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ali F Yousaf
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stavros Stavrakis
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
76
|
Yee-ming Li J, Kwok SY, Tsao S, Hoi-yan Chung C, Hing-sang Wong W, Cheung YF. Detection of QT interval prolongation using Apple Watch electrocardiogram in children and adolescents with congenital long QT syndrome. IJC HEART & VASCULATURE 2023; 47:101232. [PMID: 37346232 PMCID: PMC10279543 DOI: 10.1016/j.ijcha.2023.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Background Apple watch-derived electrocardiogram (awECG) may help identify prolongation of corrected QT (QTc) interval. This study aimed to determine its usefulness for assessment of prolongation of QTc interval in children and adolescents with long QT syndrome (LQTS). Methods Children and adolescents with and without LQTS were recruited for measurement of QTc intervals based on standard 12-lead (sECG) and awECG lead I, II and V5 tracings. Bland-Altman analysis of reproducibility, concordance assessment of T wave morphologies, and receiver operating characteristic (ROC) analysis of sensitivity and specificity of awECG-derived QTc interval for detecting QTc prolongation were performed. Results Forty-nine patients, 19 with and 30 without LQTS, aged 3-22 years were studied. The intraclass correlation coefficient was 1.00 for both intra- and inter-observer variability in the measurement of QTc interval. The awECG- and sECG-derived QTc intervals correlated strongly in all three leads (r = 0.90-0.93, all p < 0.001). Concordance between awECG and sECG in assessing T wave morphologies was 84% (16/19). For detection of QTc prolongation, awECG lead V5 had the best specificity (94.4% and 87.5%, respectively) and positive predictive value (87.5% and 80.0%, respectively), and for identification of patients with LQTS, awECG leads II and V5 had the greatest specificity (92.3%-94.1%) and positive predictive value (85.7% to 91.7%) in both males and females. Conclusions Apple Watch leads II and V5 tracings can be used for reproducible and accurate measurement of QTc interval, ascertainment of abnormal T wave morphologies, and detection of prolonged QTc interval in children and adolescents with LQTS.
Collapse
Affiliation(s)
- Jennifer Yee-ming Li
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong
| | - Sit-yee Kwok
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong
| | - Sabrina Tsao
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Charis Hoi-yan Chung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong
| | - Wilfred Hing-sang Wong
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong
| | - Yiu-fai Cheung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
77
|
De la Cruz A, Wu X, Rainer QC, Hiniesto-Iñigo I, Perez ME, Edler I, Liin SI, Larsson HP. Pharmacological Screening of Kv7.1 and Kv7.1/KCNE1 Activators as Potential Antiarrhythmic Drugs in the Zebrafish Heart. Int J Mol Sci 2023; 24:12092. [PMID: 37569465 PMCID: PMC10418701 DOI: 10.3390/ijms241512092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Long QT syndrome (LQTS) can lead to ventricular arrhythmia and sudden cardiac death. The most common congenital cause of LQTS is mutations in the channel subunits generating the cardiac potassium current IKs. Zebrafish (Danio rerio) have been proposed as a powerful system to model human cardiac diseases due to the similar electrical properties of the zebrafish heart and the human heart. We used high-resolution all-optical electrophysiology on ex vivo zebrafish hearts to assess the effects of IKs analogues on the cardiac action potential. We found that chromanol 293B (an IKs inhibitor) prolonged the action potential duration (APD) in the presence of E4031 (an IKr inhibitor applied to drug-induced LQT2), and to a lesser extent, in the absence of E4031. Moreover, we showed that PUFA analogues slightly shortened the APD of the zebrafish heart. However, PUFA analogues failed to reverse the APD prolongation in drug-induced LQT2. However, a more potent IKs activator, ML-277, partially reversed the APD prolongation in drug-induced LQT2 zebrafish hearts. Our results suggest that IKs plays a limited role in ventricular repolarizations in the zebrafish heart under resting conditions, although it plays a more important role when the IKr is compromised, as if the IKs in zebrafish serves as a repolarization reserve as in human hearts. This study shows that potent IKs activators can restore the action potential duration in drug-induced LQT2 in the zebrafish heart.
Collapse
Affiliation(s)
- Alicia De la Cruz
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | - Quinn C. Rainer
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | - Irene Hiniesto-Iñigo
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Marta E. Perez
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | - Isak Edler
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, FL 33136, USA
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Sara I. Liin
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - H. Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
78
|
Sveinbjornsson G, Benediktsdottir BD, Sigfusson G, Norland K, Davidsson OB, Thorolfsdottir RB, Tragante V, Arnadottir GA, Jensson BO, Katrinardottir H, Fridriksdottir R, Gudmundsdottir H, Aegisdottir HM, Fridriksson B, Thorgeirsson G, Magnusson V, Oddsson A, Sulem P, Gudbjartsson DF, Holm H, Arnar DO, Stefansson K. Screening for Rare Coding Variants That Associate With the QTc Interval in Iceland. J Am Heart Assoc 2023:e029845. [PMID: 37449562 PMCID: PMC10382112 DOI: 10.1161/jaha.123.029845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 07/18/2023]
Abstract
Background Long-QT syndrome (LQTS) is a cardiac repolarization abnormality that can lead to sudden cardiac death. The most common causes are rare coding variants in the genes KCNQ1, KCNH2, and SCN5A. The data on LQTS epidemiology are limited, and information on expressivity and penetrance of pathogenic variants is sparse. Methods and Results We screened for rare coding variants associated with the corrected QT (QTc) interval in Iceland. We explored the frequency of the identified variants, their penetrance, and their association with severe events. Twelve variants were associated with the QTc interval. Five in KCNQ1, 3 in KCNH2, 2 in cardiomyopathy genes MYBPC3 and PKP2, and 2 in genes where coding variants have not been associated with the QTc interval, ISOC1 and MYOM2. The combined carrier frequency of the 8 variants in the previously known LQTS genes was 530 per 100 000 individuals (1:190). p.Tyr315Cys and p.Leu273Phe in KCNQ1 were associated with having a mean QTc interval longer than 500 ms (P=4.2×10-7; odds ratio [OR], 38.6; P=8.4×10-10, OR, 26.5; respectively), and p.Leu273Phe was associated with sudden cardiac death (P=0.0034; OR, 2.99). p.Val215Met in KCNQ1 was carried by 1 in 280 Icelanders, had a smaller effect on the QTc interval (P=1.8×10-44; effect, 22.8 ms), and did not associate with severe clinical events. Conclusions The carrier frequency of associating variants in LQTS genes was higher than previous estimates of the prevalence of LQTS. The variants have variable effects on the QTc interval, and carriers of p.Tyr315Cys and p.Leu273Phe have a more severe disease than carriers of p.Val215Met. These data could lead to improved identification, risk stratification, and a more precise clinical approach to those with QTc prolongation.
Collapse
Affiliation(s)
| | - Bara D Benediktsdottir
- Internal Medicine, Landspitali-The National University Hospital of Iceland Reykjavik Iceland
| | - Gunnlaugur Sigfusson
- Children's Medical Center Landspítali-The National University Hospital of Iceland Reykjavík Iceland
| | | | | | | | | | | | | | | | | | | | | | | | | | - Vidar Magnusson
- The Capital District Fire and Rescue Service Reykjavik Iceland
- Department of Anesthesia, Landspitali The National University Hospital of Iceland Reykjavik Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc. Reykjavik Iceland
- Faculty of Electrical and Computer Engineering University of Iceland Reykjavik Iceland
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc. Reykjavik Iceland
| | - David O Arnar
- deCODE Genetics/Amgen, Inc. Reykjavik Iceland
- Faculty of Medicine University of Iceland Reykjavik Iceland
- Cardiovascular Center, Landspitali The National University Hospital of Iceland Reykjavik Iceland
| | | |
Collapse
|
79
|
Peltenburg PJ, Crotti L, Roston TM, van der Werf C. Current gaps in knowledge in inherited arrhythmia syndromes. Neth Heart J 2023:10.1007/s12471-023-01797-w. [PMID: 37410339 PMCID: PMC10400500 DOI: 10.1007/s12471-023-01797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
The 3 most common inherited arrhythmia syndromes-Brugada syndrome, congenital long QT syndrome and catecholaminergic polymorphic ventricular tachycardia-were initially described in the previous century. Since then, research has evolved, which has enabled us to identify patients prior to the onset of potentially life-threatening symptoms. However, there are significant gaps in knowledge that complicate clinical management of these patients today. With this review paper, we aim to highlight the most important knowledge gaps in clinical research of these inherited arrhythmia syndromes.
Collapse
Affiliation(s)
- Puck J Peltenburg
- Heart Centre, Amsterdam University Medical Centres, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Paediatric Cardiology, Emma Children's Hospital, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.
| | - Lia Crotti
- Department of Cardiology, IRCCS Istituto Auxologico Italiano, Department of Cardiovascular, Neural and Metabolic Sciences, Ospedale San Luca, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Thomas M Roston
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, Canada
| | - Christian van der Werf
- Heart Centre, Amsterdam University Medical Centres, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
80
|
Zhang X, Tan CL. Total Intravenous Anaesthesia for Laparoscopic Cholecystectomy in a Patient With Congenital Long QT Syndrome: A Case Report. Cureus 2023; 15:e42707. [PMID: 37654919 PMCID: PMC10465816 DOI: 10.7759/cureus.42707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 09/02/2023] Open
Abstract
Long QT syndrome (LQTS) is characterised by QT interval prolongation and ventricular arrhythmia, leading to sudden cardiac death. Patients with acquired or congenital LQTS pose special challenges to anaesthetists perioperatively due to the risk of developing life-threatening arrhythmia. A variety of medications, including commonly used volatile anaesthetic agents are known to prolong QT interval and there has been growing evidence of using total intravenous anaesthesia (TIVA) instead of volatile agents for such patients. This is a case report of a 30-year-old patient with congenital LQTS and subcutaneous implantable cardioverter defibrillator (SICD) in situ who underwent laparoscopic cholecystectomy and endoscopic retrograde cholangiopancreatography (ERCP) under TIVA safely within two months. There were no arrhythmic events observed perioperatively. This case highlights the importance of comprehensive planning and meticulous preparation to avoid all possible QT-prolonging conditions during the perioperative period, especially in patients with acquired or congenital LQTS.
Collapse
Affiliation(s)
- Xinyan Zhang
- Anaesthesiology, Changi General Hospital/Singhealth, Singapore, SGP
| | - Chun Lei Tan
- Anaesthesiology, Changi General Hospital/Singhealth, Singapore, SGP
| |
Collapse
|
81
|
Ma J, Wang NY, Jagani R, Wang HS. Proarrhythmic toxicity of low dose bisphenol A and its analogs in human iPSC-derived cardiomyocytes and human cardiac organoids through delay of cardiac repolarization. CHEMOSPHERE 2023; 328:138562. [PMID: 37004823 PMCID: PMC10121900 DOI: 10.1016/j.chemosphere.2023.138562] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Bisphenol A (BPA) and its analogs are common environmental chemicals with many potential adverse health effects. The impact of environmentally relevant low dose BPA on human heart, including cardiac electrical properties, is not understood. Perturbation of cardiac electrical properties is a key arrhythmogenic mechanism. In particular, delay of cardiac repolarization can cause ectopic excitation of cardiomyocytes and malignant arrhythmia. This can occur as a result of genetic mutations (i.e., long QT (LQT) syndrome), or cardiotoxicity of drugs and environmental chemicals. To define the impact of low dose BPA on electrical properties of cardiomyocytes in a human-relevant model system, we examined the rapid effects of 1 nM BPA in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using patch-clamp and confocal fluorescence imaging. Acute exposure to BPA delayed repolarization and prolonged action potential duration (APD) in hiPSC-CMs through inhibition of the hERG K+ channel. In nodal-like hiPSC-CMs, BPA acutely increased pacing rate through stimulation of the If pacemaker channel. Existing arrhythmia susceptibility determines the response of hiPSC-CMs to BPA. BPA resulted in modest APD prolongation but no ectopic excitation in baseline condition, while rapidly promoted aberrant excitations and tachycardia-like events in myocytes that had drug-simulated LQT phenotype. In hiPSC-CM-based human cardiac organoids, the effects of BPA on APD and aberrant excitation were shared by its analog chemicals, which are often used in "BPA-free" products, with bisphenol AF having the largest effects. Our results reveal that BPA and its analogs have repolarization delay-associated pro-arrhythmic toxicity in human cardiomyocytes, particularly in myocytes that are prone to arrhythmias. The toxicity of these chemicals depends on existing pathophysiological conditions of the heart, and may be particularly pronounced in susceptible individuals. An individualized approach is needed in risk assessment and protection.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | | | - Ravikumar Jagani
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
82
|
Patterson DR, Pan JA, Hosadurg N, Morsy M. Sudden Cardiac Arrest in the Postpartum Period Due to Long QT Syndrome and Dilated Cardiomyopathy. JACC Case Rep 2023; 16:101882. [PMID: 37396328 PMCID: PMC10313482 DOI: 10.1016/j.jaccas.2023.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 07/04/2023]
Abstract
We describe the case of a previously healthy patient presenting with sudden cardiac arrest in the postpartum period as a result of concomitant congenital type 1 long QT syndrome and BAG3 dilated cardiomyopathy. This case highlights the increased rate of cardiac events for patients with long QT syndrome in the postpartum period. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
| | | | | | - Mohamed Morsy
- University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
83
|
Sono R, Larrinaga TM, Huang A, Makhlouf F, Kang X, Su J, Lau R, Arboleda VA, Biniwale R, Fishbein GA, Khanlou N, Si MS, Satou GM, Halnon N, UCLA Congenital Heart Defects-BioCore Faculty, Van Arsdell GS, Gregorio CC, Nelson S, Touma M. Whole-Exome Sequencing Identifies Homozygote Nonsense Variants in LMOD2 Gene Causing Infantile Dilated Cardiomyopathy. Cells 2023; 12:1455. [PMID: 37296576 PMCID: PMC10252268 DOI: 10.3390/cells12111455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
As an essential component of the sarcomere, actin thin filament stems from the Z-disk extend toward the middle of the sarcomere and overlaps with myosin thick filaments. Elongation of the cardiac thin filament is essential for normal sarcomere maturation and heart function. This process is regulated by the actin-binding proteins Leiomodins (LMODs), among which LMOD2 has recently been identified as a key regulator of thin filament elongation to reach a mature length. Few reports have implicated homozygous loss of function variants of LMOD2 in neonatal dilated cardiomyopathy (DCM) associated with thin filament shortening. We present the fifth case of DCM due to biallelic variants in the LMOD2 gene and the second case with the c.1193G>A (p.W398*) nonsense variant identified by whole-exome sequencing. The proband is a 4-month male infant of Hispanic descent with advanced heart failure. Consistent with previous reports, a myocardial biopsy exhibited remarkably short thin filaments. However, compared to other cases of identical or similar biallelic variants, the patient presented here has an unusually late onset of cardiomyopathy during infancy. Herein, we present the phenotypic and histological features of this variant, confirm the pathogenic impact on protein expression and sarcomere structure, and discuss the current knowledge of LMOD2-related cardiomyopathy.
Collapse
Affiliation(s)
- Reiri Sono
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tania M. Larrinaga
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85721, USA; (T.M.L.); (C.C.G.)
| | - Alden Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Frank Makhlouf
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xuedong Kang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jonathan Su
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ryan Lau
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Valerie A. Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Reshma Biniwale
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gregory A. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Negar Khanlou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ming-Sing Si
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gary M. Satou
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Nancy Halnon
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | - Glen S. Van Arsdell
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85721, USA; (T.M.L.); (C.C.G.)
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stanly Nelson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, University of California, Los Angeles, CA 90095, USA
- Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
84
|
Giannetti F, Barbieri M, Shiti A, Casini S, Sager PT, Das S, Pradhananga S, Srinivasan D, Nimani S, Alerni N, Louradour J, Mura M, Gnecchi M, Brink P, Zehender M, Koren G, Zaza A, Crotti L, Wilde AAM, Schwartz PJ, Remme CA, Gepstein L, Sala L, Odening KE. Gene- and variant-specific efficacy of serum/glucocorticoid-regulated kinase 1 inhibition in long QT syndrome types 1 and 2. Europace 2023; 25:euad094. [PMID: 37099628 PMCID: PMC10228615 DOI: 10.1093/europace/euad094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
AIMS Current long QT syndrome (LQTS) therapy, largely based on beta-blockade, does not prevent arrhythmias in all patients; therefore, novel therapies are warranted. Pharmacological inhibition of the serum/glucocorticoid-regulated kinase 1 (SGK1-Inh) has been shown to shorten action potential duration (APD) in LQTS type 3. We aimed to investigate whether SGK1-Inh could similarly shorten APD in LQTS types 1 and 2. METHODS AND RESULTS Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hiPSC-cardiac cell sheets (CCS) were obtained from LQT1 and LQT2 patients; CMs were isolated from transgenic LQT1, LQT2, and wild-type (WT) rabbits. Serum/glucocorticoid-regulated kinase 1 inhibition effects (300 nM-10 µM) on field potential durations (FPD) were investigated in hiPSC-CMs with multielectrode arrays; optical mapping was performed in LQT2 CCS. Whole-cell and perforated patch clamp recordings were performed in isolated LQT1, LQT2, and WT rabbit CMs to investigate SGK1-Inh (3 µM) effects on APD. In all LQT2 models across different species (hiPSC-CMs, hiPSC-CCS, and rabbit CMs) and independent of the disease-causing variant (KCNH2-p.A561V/p.A614V/p.G628S/IVS9-28A/G), SGK1-Inh dose-dependently shortened FPD/APD at 0.3-10 µM (by 20-32%/25-30%/44-45%). Importantly, in LQT2 rabbit CMs, 3 µM SGK1-Inh normalized APD to its WT value. A significant FPD shortening was observed in KCNQ1-p.R594Q hiPSC-CMs at 1/3/10 µM (by 19/26/35%) and in KCNQ1-p.A341V hiPSC-CMs at 10 µM (by 29%). No SGK1-Inh-induced FPD/APD shortening effect was observed in LQT1 KCNQ1-p.A341V hiPSC-CMs or KCNQ1-p.Y315S rabbit CMs at 0.3-3 µM. CONCLUSION A robust SGK1-Inh-induced APD shortening was observed across different LQT2 models, species, and genetic variants but less consistently in LQT1 models. This suggests a genotype- and variant-specific beneficial effect of this novel therapeutic approach in LQTS.
Collapse
Affiliation(s)
- Federica Giannetti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Miriam Barbieri
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Assad Shiti
- Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel
| | - Simona Casini
- Amsterdam UMC Location AMC Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam, The Netherlands
| | - Philip T Sager
- Thryv Therapeutics Inc., Montreal, Canada
- Cardiovascular Research Institute, Stanford University, Palo Alto, CA, USA
| | - Saumya Das
- Thryv Therapeutics Inc., Montreal, Canada
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Saranda Nimani
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Nicolò Alerni
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Julien Louradour
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Manuela Mura
- Department of Cardiothoracic and Vascular Sciences–Translational Cardiology Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Massimiliano Gnecchi
- Department of Cardiothoracic and Vascular Sciences–Translational Cardiology Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy
| | - Paul Brink
- Department of Medicine, University of Stellenbosch, Tygerberg, South Africa
| | - Manfred Zehender
- Department of Cardiology and Angiology I, University Heart Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Brown University, Providence, RI, USA
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Lia Crotti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Arthur A M Wilde
- Amsterdam UMC Location AMC Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam, The Netherlands
| | - Peter J Schwartz
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Carol Ann Remme
- Amsterdam UMC Location AMC Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam, The Netherlands
| | - Lior Gepstein
- Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| |
Collapse
|
85
|
Patel MA, Malhotra A, Mpondo FHM, Gupta V, Jain R, Gupta S, Jain R. Sudden cardiac death in the adolescent population: a narrative review. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2023; 35:36. [PMID: 37220484 PMCID: PMC10195126 DOI: 10.1186/s43162-023-00222-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
Background Death from unexpected circulatory arrest within 60 min of onset of symptom is known as sudden cardiac death (SCD). In spite of the advancement in treatment and prevention strategies, SCD remains the most common cause of death worldwide especially in the young. Main body This review focuses on highlighting how different cardiovascular diseases contribute to SCD. We discuss the clinical symptoms that the patient experience prior to sudden cardiac arrest and the treatment strategies including pharmacological and surgical treatment. Conclusions We conclude that since there are many causes of SCD and very few treatment options, prevention strategies, early detection, and resuscitation of those at greatest risk is important.
Collapse
Affiliation(s)
- Meet A. Patel
- Tianjin Medical University, Tianjin, People’s Republic of China
| | | | | | - Vasu Gupta
- Dayanad Medical College & Hospital, Ludhiana, India
| | - Rahul Jain
- Avalon University School of Medicine, Willemstad, Curaçao
| | - Sachin Gupta
- Department of Internal Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA USA
| | - Rohit Jain
- Avalon University School of Medicine, Willemstad, Curaçao
| |
Collapse
|
86
|
Shortland J, Marquez D, Al-Radi O, Sanatani S. Left Cardiac Sympathetic Denervation as an Acute Treatment of Torsades in a Paediatric Case of Long QT. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:57-60. [PMID: 37970524 PMCID: PMC10642101 DOI: 10.1016/j.cjcpc.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2023]
Affiliation(s)
- Jennifer Shortland
- Division of Cardiology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diego Marquez
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Osman Al-Radi
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shubhayan Sanatani
- Division of Cardiology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
87
|
Janzen ML, Davies B, Laksman ZW, Roberts JD, Sanatani S, Steinberg C, Tadros R, Cadrin-Tourigny J, MacIntyre C, Atallah J, Fournier A, Green MS, Hamilton R, Khan HR, Kimber S, White S, Joza J, Makanjee B, Ilhan E, Lee D, Hansom S, Hadjis A, Arbour L, Leather R, Seifer C, Angaran P, Simpson CS, Healey JS, Gardner M, Talajic M, Krahn AD. Management of Inherited Arrhythmia Syndromes: A HiRO Consensus Handbook on Process of Care. CJC Open 2023; 5:268-284. [PMID: 37124966 PMCID: PMC10140751 DOI: 10.1016/j.cjco.2023.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
Inherited arrhythmia syndromes are rare genetic conditions that predispose seemingly healthy individuals to sudden cardiac arrest and death. The Hearts in Rhythm Organization is a multidisciplinary Canadian network of clinicians, researchers, patients, and families that aims to improve care for patients and families with inherited cardiac conditions, focused on those that confer predisposition to arrhythmia and sudden cardiac arrest and/or death. The field is rapidly evolving as research discoveries increase. A streamlined, practical guide for providers to diagnose and follow pediatric and adult patients with inherited cardiac conditions represents a useful tool to improve health system utilization, clinical management, and research related to these conditions. This review provides consensus care pathways for 7 conditions, including the 4 most common inherited cardiac conditions that confer predisposition to arrhythmia, with scenarios to guide investigation, diagnosis, risk stratification, and management. These conditions include Brugada syndrome, long QT syndrome, arrhythmogenic right ventricular cardiomyopathy and related arrhythmogenic cardiomyopathies, and catecholaminergic polymorphic ventricular tachycardia. In addition, an approach to investigating and managing sudden cardiac arrest, sudden unexpected death, and first-degree family members of affected individuals is provided. Referral to specialized cardiogenetic clinics should be considered in most cases. The intention of this review is to offer a framework for the process of care that is useful for both experts and nonexperts, and related allied disciplines such as hospital management, diagnostic services, coroners, and pathologists, in order to provide high-quality, multidisciplinary, standardized care.
Collapse
Affiliation(s)
- Mikyla L. Janzen
- Centre for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brianna Davies
- Centre for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary W.M. Laksman
- Centre for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Shubhayan Sanatani
- Children’s Heart Centre, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Christian Steinberg
- Institut Universitaire de Cardiologie et Pneumologie de Quebec, Laval University, Quebec City, Quebec, Canada
| | - Rafik Tadros
- Cardiovascular Genetics Centre, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Centre, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph Atallah
- Division of Cardiology, Department of Pediatrics, University of Alberta Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Anne Fournier
- Division of Pediatric Cardiology, CHU Sante-Justine, Universite de Montreal, Montreal, Quebec, Canada
| | - Martin S. Green
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Robert Hamilton
- Division of Cardiology, The Hospital for Sick Children (SickKids), Toronto, Ontario, Canada
| | - Habib R. Khan
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Shane Kimber
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Steven White
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacqueline Joza
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bhavanesh Makanjee
- Heart Health Institute, Scarborough Health Network, Scarborough, Ontario, Canada
| | - Erkan Ilhan
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - David Lee
- Division of Cardiology, QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Simon Hansom
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Alexios Hadjis
- Division of Cardiology, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | - Laura Arbour
- Royal Jubilee Hospital, Victoria, British Columbia, Canada
| | | | - Colette Seifer
- St Boniface Hospital, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Angaran
- Unity Health, St Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Martin Gardner
- Division of Cardiology, QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Mario Talajic
- Cardiovascular Genetics Centre, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Andrew D. Krahn
- Centre for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
88
|
Khan Z. Polypharmacy-Induced Long QT Syndrome in a Patient With Newly Diagnosed Acute Myeloid Leukaemia: A Case Report. Cureus 2023; 15:e36914. [PMID: 37143491 PMCID: PMC10153016 DOI: 10.7759/cureus.36914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Long QT syndrome is a type of disease caused by ion channels in the heart not working properly. It is a rare condition that can affect up to one in 2000 people. Many people with this condition do not develop any symptoms; however, this can lead to heart rhythm abnormality, known as torsades de pointes, and can sometimes be fatal. The cause of this condition is often inherited; however, it can also be triggered by certain medications. But the latter tends to affect those who already tend to develop this condition. The medications causing this condition include antiarrhythmics, antibiotics, antihistamines, antiemetics, antidepressants, antipsychotics, and many more. In this case report, we will be discussing a 63-year-old female who developed long QT syndrome as a result of the multiple drug therapy which is associated with long QT syndrome. Our patient was admitted to the hospital with dyspnoea, fatigue, and weight loss and was diagnosed with acute myeloid leukaemia. The patient was commenced on several medications leading to a prolonged QTc interval which resolved after stopping the culprit medications.
Collapse
|
89
|
Alizadeh A, Shahrbaf MA, Khorgami M, Zeighami M, Keikhavani A, Mokhtari Torshizi H, Teimouri‐jervekani Z. QTc interval measurement in patients with right bundle branch block: A practical method. Ann Noninvasive Electrocardiol 2023; 28:e13047. [PMID: 36683354 PMCID: PMC10023888 DOI: 10.1111/anec.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND AIM Prolonging the QT interval in the right bundle branch block (RBBB) can create challenges for electrophysiologists in estimating repolarization time and eliminating the effect of depolarization changes on QT interval. In this study, we aimed to develop a practice formula to eliminate the effect of depolarization changes on QT interval in patients with RBBB. METHODS This prospective study evaluated accidentally induced RBBB in patients undergoing electrophysiological study. Two expert electrophysiologists recorded the ECG parameters, including QRS duration, QT interval, and cycle length, in the patients. The formula was developed based on QT interval differences (with and without RBBB) and its proportion to QRS. Additionally, the Bazzet, Rautaharju, and Hodge formulas were used to evaluate QTc. RESULTS We evaluated 96 patients in this study. The mean QT interval without RBBB was 369.39 ± 37.38, reaching 404.22 ± 39.23 after inducing RBBB. ΔQT was calculated as 34.83 ± 17.61, and the ratio of ΔQT/QRS with RBBB was almost 23%. Our formula is: (QTwith RBBB - 23% × QRS). Subtraction of 25% instead of 23% seems more straightforward and practical. Our formula could also predict the QTc interval in RBBB based on the Bazzet, Rautaharju, and Hodge formulas. CONCLUSION Previous formulas for QT correction were hard to apply in the clinical setting or were not specified for RBBB. Our new formula allows a rapid and practical method for QT correction in RBBB in clinical practice.
Collapse
Affiliation(s)
- Abolfath Alizadeh
- Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | | | - Mohammadrafie Khorgami
- Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mahboubeh Zeighami
- Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Ala Keikhavani
- Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Hamid Mokhtari Torshizi
- Department of Biomedical Engineering and Physics, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Zahra Teimouri‐jervekani
- Cardiac Rehabilitation Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
90
|
Mildeberger L, Bueto J, Wilmes V, Scheiper-Welling S, Niess C, Gradhand E, Verhoff MA, Kauferstein S. Suitable biomarkers for post-mortem differentiation of cardiac death causes: Quantitative analysis of miR-1, miR-133a and miR-26a in heart tissue and whole blood. Forensic Sci Int Genet 2023; 65:102867. [PMID: 37178622 DOI: 10.1016/j.fsigen.2023.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Cardiovascular diseases are the most common causes of death worldwide. Cardiac death can occur as reaction to myocardial infarction (MI). A diagnostic challenge arises for sudden unexpected death (SUD) cases with structural abnormalities (SA) or without any structural abnormalities (without SA). Therefore, the identification of reliable biomarkers to differentiate cardiac cases from each other is necessary. In the current study, the potential of different microRNAs (miRNAs) as biomarkers in tissue and blood samples of cardiac death cases was analyzed. Blood and tissue samples of 24 MI, 21 SUD and 5 control (C) cases were collected during autopsy. Testing for significance and receiver operating characteristic analysis (ROC) were performed. The results show that miR-1, miR-133a and miR-26a possess a high diagnostic power to discriminate between different cardiac death causes in whole blood and in tissue.
Collapse
|
91
|
Phenotypes of Overdiagnosed Long QT Syndrome. J Am Coll Cardiol 2023; 81:477-486. [PMID: 36725176 DOI: 10.1016/j.jacc.2022.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Long QT syndrome (LQTS) predisposes individuals to arrhythmic syncope or seizure, sudden cardiac arrest, or sudden cardiac death (SCD). Increased physician and public awareness of LQTS-associated warning signs and an increase in electrocardiographic screening programs may contribute to overdiagnosis of LQTS. OBJECTIVES This study sought to identify the diagnostic miscues underlying the continued overdiagnosis of LQTS. METHODS Electronic medical records were reviewed for patients who arrived with an outside diagnosis of LQTS but were dismissed as having normal findings subsequently. Data were abstracted for details on referral, clinical history, and both cardiologic and genetic test results. RESULTS Overall, 290 of 1,841 (16%) patients with original diagnosis of LQTS (174 [60%] female; mean age at first Mayo Clinic evaluation, 22 ± 14 years; mean QTc interval, 427 ± 25 milliseconds) were dismissed as having normal findings. The main cause of LQTS misdiagnosis or overdiagnosis was a prolonged QTc interval secondary to vasovagal syncope (n = 87; 30%), followed by a seemingly positive genetic test result for a variant in 1 of the main LQTS genes (n = 68; 23%) that was ultimately deemed not to be of clinical significance. Furthermore, patients received misdiagnoses because of a positive family history of SCD that was deemed unrelated to LQTS (n = 46; 16%), isolated/transient QT prolongation (n = 44; 15%), or misinterpretation of the QTc interval as a result of inclusion of the U-wave (n = 40, 14%). CONCLUSIONS Knowing the 5 main determinants of discordance between a previously rendered diagnosis of LQTS and full diagnostic reversal or removal (vasovagal syncope, "pseudo"-positive genetic test result in LQTS-causative genes, family history of SCD, transient QT prolongation, and misinterpretation of the QTc interval) increases awareness and provides critical guidance to reduce this burden of overdiagnosed LQTS.
Collapse
|
92
|
Cai D, Zheng Z, Jin X, Fu Y, Cen L, Ye J, Song Y, Lian J. The Advantages, Challenges, and Future of Human-Induced Pluripotent Stem Cell Lines in Type 2 Long QT Syndrome. J Cardiovasc Transl Res 2023; 16:209-220. [PMID: 35976484 DOI: 10.1007/s12265-022-10298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023]
Abstract
Type 2 long QT syndrome (LQT2) is the second most common subtype of long QT syndrome and is caused by mutations in KCHN2 encoding the rapidly activating delayed rectifier potassium channel vital for ventricular repolarization. Sudden cardiac death is a sentinel event of LQT2. Preclinical diagnosis by genetic testing is potentially life-saving.Traditional LQT2 models cannot wholly recapitulate genetic and phenotypic features; therefore, there is a demand for a reliable experimental model. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) meet this challenge. This review introduces the advantages of the hiPSC-CM model over the traditional model and discusses how hiPSC-CM and gene editing are used to decipher mechanisms of LQT2, screen for cardiotoxicity, and identify therapeutic strategies, thus promoting the realization of precision medicine for LQT2 patients.
Collapse
Affiliation(s)
- Dihui Cai
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Zequn Zheng
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
- Department of Cardiovascular, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaojun Jin
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Yin Fu
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Lichao Cen
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Jiachun Ye
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Yongfei Song
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China.
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.
| |
Collapse
|
93
|
Yao Q, Gorevic P, Shen B, Gibson G. Genetically transitional disease: a new concept in genomic medicine. Trends Genet 2023; 39:98-108. [PMID: 36564319 DOI: 10.1016/j.tig.2022.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Traditional classification of genetic diseases as monogenic and polygenic has lagged far behind scientific progress. In this opinion article, we propose and define a new terminology, genetically transitional disease (GTD), referring to cases where a large-effect mutation is necessary, but not sufficient, to cause disease. This leads to a working disease nosology based on gradients of four types of genetic architecture: monogenic, polygenic, GTD, and mixed. We present four scenarios under which GTD may occur; namely, subsets of traditionally Mendelian disease, modifiable Tier 1 monogenic conditions, variable penetrance, and situations where a genetic mutational spectrum produces qualitatively divergent pathologies. The implications of the new nosology in precision medicine are discussed, in which therapeutic options may target the molecular cause or the disease phenotype.
Collapse
Affiliation(s)
- Qingping Yao
- Division of Rheumatology, Allergy, and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA.
| | - Peter Gorevic
- Division of Rheumatology, Allergy, and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Bo Shen
- Center for Inflammatory Bowel Diseases, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Greg Gibson
- Center for Integrative Genomics, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
94
|
Sieliwonczyk E, Alaerts M, Simons E, Snyders D, Nijak A, Vandendriessche B, Schepers D, Akdeniz D, Van Craenenbroeck E, Knaepen K, Rabaut L, Heidbuchel H, Van Laer L, Saenen J, Labro AJ, Loeys B. Clinical and functional characterisation of a recurrent KCNQ1 variant in the Belgian population. Orphanet J Rare Dis 2023; 18:23. [PMID: 36721196 PMCID: PMC9887867 DOI: 10.1186/s13023-023-02618-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/15/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The c.1124_1127delTTCA p.(Ile375Argfs*43) pathogenic variant is the most frequently identified molecular defect in the KCNQ1 gene in the cardiogenetics clinic of the Antwerp University Hospital. This variant was observed in nine families presenting with either Jervell-Lange-Nielsen syndrome or long QT syndrome (LQTS). Here, we report on the molecular, clinical and functional characterization of the KCNQ1 c.1124_1127delTTCA variant. RESULTS Forty-one heterozygous variant harboring individuals demonstrated a predominantly mild clinical and electrophysiological phenotype, compared to individuals harboring other KCNQ1 pathogenic variants (5% symptomatic before 40 years of age, compared to 24% and 29% in p.(Tyr111Cys) and p.(Ala341Val) variant carriers, respectively, 33% with QTc ≤ 440 ms compared to 10% in p.(Tyr111Cys) and p.(Ala341Val) variant carriers). The LQTS phenotype was most comparable to that observed for the Swedish p.(Arg518*) founder mutation (7% symptomatic at any age, compared to 17% in p.(Arg518*) variant carriers, 33% with QTc ≤ 440 ms compared to 16% in p.(Arg518*) variant carriers). Surprisingly, short tandem repeat analysis did not reveal a common haplotype for all families. One KCNQ1 c.1124_1127delTTCA harboring patient was diagnosed with Brugada syndrome (BrS). The hypothesis of a LQTS/BrS overlap syndrome was supported by electrophysiological evidence for both loss-of-function and gain-of-function (acceleration of channel kinetics) in a heterologous expression system. However, BrS phenotypes were not identified in other affected individuals and allelic KCNQ1 expression testing in patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) showed nonsense mediated decay of the c.1124_1127delTTCA allele. CONCLUSIONS The c.1124_1127delTTCA frameshift variant shows a high prevalence in our region, despite not being confirmed as a founder mutation. This variant leads to a mild LQTS phenotype in the heterozygous state. Despite initial evidence for a gain-of-function effect based on in vitro electrophysiological assessment in CHO cells and expression of the KCNQ1 c.1124_1127delTTCA allele in patient blood cells, additional testing in iPSC-CMs showed lack of expression of the mutant allele. This suggests haploinsufficiency as the pathogenic mechanism. Nonetheless, as inter-individual differences in allele expression in (iPSC-) cardiomyocytes have not been assessed, a modifying effect on the BrS phenotype through potassium current modulation cannot be excluded.
Collapse
Affiliation(s)
- Ewa Sieliwonczyk
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium. .,Medical Genetics (MEDGEN), GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Maaike Alaerts
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Medical Genetics (MEDGEN), GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Eline Simons
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Dirk Snyders
- grid.5284.b0000 0001 0790 3681Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Aleksandra Nijak
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Bert Vandendriessche
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Dorien Schepers
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Medical Genetics (MEDGEN), GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Dogan Akdeniz
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Emeline Van Craenenbroeck
- grid.5284.b0000 0001 0790 3681Department of Cardiology, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Cardiovascular Research, GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Katleen Knaepen
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Laura Rabaut
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- grid.5284.b0000 0001 0790 3681Department of Cardiology, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Cardiovascular Research, GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Lut Van Laer
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Medical Genetics (MEDGEN), GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Johan Saenen
- grid.5284.b0000 0001 0790 3681Department of Cardiology, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Cardiovascular Research, GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Alain J. Labro
- grid.5284.b0000 0001 0790 3681Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium ,grid.5342.00000 0001 2069 7798Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bart Loeys
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Medical Genetics (MEDGEN), GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
95
|
Abstract
Cardiac alternans arises from dynamical instabilities in the electrical and calcium cycling systems of the heart, and often precedes ventricular arrhythmias and sudden cardiac death. In this review, we integrate clinical observations with theory and experiment to paint a holistic portrait of cardiac alternans: the underlying mechanisms, arrhythmic manifestations and electrocardiographic signatures. We first summarize the cellular and tissue mechanisms of alternans that have been demonstrated both theoretically and experimentally, including 3 voltage-driven and 2 calcium-driven alternans mechanisms. Based on experimental and simulation results, we describe their relevance to mechanisms of arrhythmogenesis under different disease conditions, and their link to electrocardiographic characteristics of alternans observed in patients. Our major conclusion is that alternans is not only a predictor, but also a causal mechanism of potentially lethal ventricular and atrial arrhythmias across the full spectrum of arrhythmia mechanisms that culminate in functional reentry, although less important for anatomic reentry and focal arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - James N. Weiss
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
96
|
Asatryan B, Barth AS. Sex-related differences in incidence, phenotype and risk of sudden cardiac death in inherited arrhythmia syndromes. Front Cardiovasc Med 2023; 9:1010748. [PMID: 36684594 PMCID: PMC9845907 DOI: 10.3389/fcvm.2022.1010748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Inherited Arrhythmia Syndromes (IAS) including long QT and Brugada Syndrome, are characterized by life-threatening arrhythmias in the absence of apparent structural heart disease and are caused by pathogenic variants in genes encoding cardiac ion channels or associated proteins. Studies of large pedigrees of families affected by IAS have demonstrated incomplete penetrance and variable expressivity. Biological sex is one of several factors that have been recognized to modulate disease severity in IAS. There is a growing body of evidence linking sex hormones to the susceptibility to arrhythmias, yet, many sex-specific disease aspects remain underrecognized as female sex and women with IAS are underinvestigated and findings from male-predominant cohorts are often generalized to both sexes with minimal to no consideration of relevant sex-associated differences in prevalence, disease manifestations and outcome. In this review, we highlight current knowledge of sex-related biological differences in normal cardiac electrophysiology and sex-associated factors that influence IAS phenotypes.
Collapse
Affiliation(s)
- Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas S. Barth
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Andreas S. Barth ✉
| |
Collapse
|
97
|
Abstract
Long QT syndrome (LQTS) is a detrimental arrhythmia syndrome mainly caused by dysregulated expression or aberrant function of ion channels. The major clinical symptoms of ventricular arrhythmia, palpitations and syncope vary among LQTS subtypes. Susceptibility to malignant arrhythmia is a result of delayed repolarisation of the cardiomyocyte action potential (AP). There are 17 distinct subtypes of LQTS linked to 15 autosomal dominant genes with monogenic mutations. However, due to the presence of modifier genes, the identical mutation may result in completely different clinical manifestations in different carriers. In this review, we describe the roles of various ion channels in orchestrating APs and discuss molecular aetiologies of various types of LQTS. We highlight the usage of patient-specific induced pluripotent stem cell (iPSC) models in characterising fundamental mechanisms associated with LQTS. To mitigate the outcomes of LQTS, treatment strategies are initially focused on small molecules targeting ion channel activities. Next-generation treatments will reap the benefits from development of LQTS patient-specific iPSC platform, which is bolstered by the state-of-the-art technologies including whole-genome sequencing, CRISPR genome editing and machine learning. Deep phenotyping and high-throughput drug testing using LQTS patient-specific cardiomyocytes herald the upcoming precision medicine in LQTS.
Collapse
|
98
|
Keefe JA, Moore OM, Ho KS, Wehrens XHT. Role of Ca 2+ in healthy and pathologic cardiac function: from normal excitation-contraction coupling to mutations that cause inherited arrhythmia. Arch Toxicol 2023; 97:73-92. [PMID: 36214829 PMCID: PMC10122835 DOI: 10.1007/s00204-022-03385-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/19/2023]
Abstract
Calcium (Ca2+) ions are a key second messenger involved in the rhythmic excitation and contraction of cardiomyocytes throughout the heart. Proper function of Ca2+-handling proteins is required for healthy cardiac function, whereas disruption in any of these can cause cardiac arrhythmias. This comprehensive review provides a broad overview of the roles of Ca2+-handling proteins and their regulators in healthy cardiac function and the mechanisms by which mutations in these proteins contribute to inherited arrhythmias. Major Ca2+ channels and Ca2+-sensitive regulatory proteins involved in cardiac excitation-contraction coupling are discussed, with special emphasis on the function of the RyR2 macromolecular complex. Inherited arrhythmia disorders including catecholaminergic polymorphic ventricular tachycardia, long QT syndrome, Brugada syndrome, short QT syndrome, and arrhythmogenic right-ventricular cardiomyopathy are discussed with particular emphasis on subtypes caused by mutations in Ca2+-handling proteins.
Collapse
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Oliver M Moore
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kevin S Ho
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA. .,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
99
|
Krijger Juárez C, Amin AS, Offerhaus JA, Bezzina CR, Boukens BJ. Cardiac Repolarization in Health and Disease. JACC Clin Electrophysiol 2023; 9:124-138. [PMID: 36697193 DOI: 10.1016/j.jacep.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022]
Abstract
Abnormal cardiac repolarization is at the basis of life-threatening arrhythmias in various congenital and acquired cardiac diseases. Dysfunction of ion channels involved in repolarization at the cellular level are often the underlying cause of the repolarization abnormality. The expression pattern of the gene encoding the affected ion channel dictates its impact on the shape of the T-wave and duration of the QT interval, thereby setting the stage for both the occurrence of the trigger and the substrate for maintenance of the arrhythmia. Here we discuss how research into the genetic and electrophysiological basis of repolarization has provided us with insights into cardiac repolarization in health and disease and how this in turn may provide the basis for future improved patient-specific management.
Collapse
Affiliation(s)
- Christian Krijger Juárez
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ahmad S Amin
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Joost A Offerhaus
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
100
|
Lalaguna L, Ramos-Hernández L, Priori SG, Lara-Pezzi E. Genome Editing and Inherited Cardiac Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:115-127. [DOI: 10.1007/978-981-19-5642-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|