51
|
Toeg HD, Abessi O, Al-Atassi T, de Kerchove L, El-Khoury G, Labrosse M, Boodhwani M. Finding the ideal biomaterial for aortic valve repair with ex vivo porcine left heart simulator and finite element modeling. J Thorac Cardiovasc Surg 2014; 148:1739-1745.e1. [DOI: 10.1016/j.jtcvs.2014.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/13/2014] [Accepted: 05/02/2014] [Indexed: 12/12/2022]
|
52
|
Shenouda M, Molena E, Maftei N, Ali T. Remnant Prosthetic Graft in Revision or Limb-Salvage Surgery: Routine Complete Excision? Ann Vasc Surg 2014; 28:1566.e11-5. [DOI: 10.1016/j.avsg.2013.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/22/2013] [Accepted: 12/29/2013] [Indexed: 11/15/2022]
|
53
|
Wise SG, Yeo GC, Hiob MA, Rnjak-Kovacina J, Kaplan DL, Ng MKC, Weiss AS. Tropoelastin: a versatile, bioactive assembly module. Acta Biomater 2014; 10:1532-41. [PMID: 23938199 DOI: 10.1016/j.actbio.2013.08.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/24/2013] [Accepted: 08/01/2013] [Indexed: 12/27/2022]
Abstract
Elastin provides structural integrity, biological cues and persistent elasticity to a range of important tissues, including the vasculature and lungs. Its critical importance to normal physiology makes it a desirable component of biomaterials that seek to repair or replace these tissues. The recent availability of large quantities of the highly purified elastin monomer, tropoelastin, has allowed for a thorough characterization of the mechanical and biological mechanisms underpinning the benefits of mature elastin. While tropoelastin is a flexible molecule, a combination of optical and structural analyses has defined key regions of the molecule that directly contribute to the elastomeric properties and control the cell interactions of the protein. Insights into the structure and behavior of tropoelastin have translated into increasingly sophisticated elastin-like biomaterials, evolving from classically manufactured hydrogels and fibers to new forms, stabilized in the absence of incorporated cross-linkers. Tropoelastin is also compatible with synthetic and natural co-polymers, expanding the applications of its potential use beyond traditional elastin-rich tissues and facilitating finer control of biomaterial properties and the design of next-generation tailored bioactive materials.
Collapse
Affiliation(s)
- Steven G Wise
- The Heart Research Institute, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | - Giselle C Yeo
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | - Matti A Hiob
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia; The Heart Research Institute, Sydney, NSW 2042, Australia
| | - Jelena Rnjak-Kovacina
- Department of Biomedical Engineering, School of Engineering, Tufts University, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, School of Engineering, Tufts University, Medford, MA 02155, USA
| | - Martin K C Ng
- The Heart Research Institute, Sydney, NSW 2042, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Anthony S Weiss
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia; Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
54
|
Immobilisation of a fibrillin-1 fragment enhances the biocompatibility of PTFE. Colloids Surf B Biointerfaces 2014; 116:544-52. [DOI: 10.1016/j.colsurfb.2014.01.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 11/23/2022]
|
55
|
Ruiz A, Rathnam KR, Masters KS. Effect of hyaluronic acid incorporation method on the stability and biological properties of polyurethane-hyaluronic acid biomaterials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:487-498. [PMID: 24276670 PMCID: PMC3945677 DOI: 10.1007/s10856-013-5092-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 11/09/2013] [Indexed: 06/02/2023]
Abstract
The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk versus surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies.
Collapse
Affiliation(s)
- Amaliris Ruiz
- Materials Science Program, University of Wisconsin, Madison, Wisconsin
| | | | - Kristyn S. Masters
- Materials Science Program, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
56
|
Qu Z, Krishnamurthy V, Haller CA, Dorr BM, Marzec UM, Hurst S, Hinds MT, Hanson SR, Liu DR, Chaikof EL. Immobilization of actively thromboresistant assemblies on sterile blood-contacting surfaces. Adv Healthc Mater 2014; 3:30-5. [PMID: 23788402 DOI: 10.1002/adhm.201300110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Indexed: 12/13/2022]
Abstract
Rapid one-step modification of thrombomodulin with alkylamine derivatives such as azide, biotin, and PEG is achieved using an evolved sortase (eSrtA) mutant. The feasibility of a point-of-care scheme is demonstrated herein to site-specifically immobilize azido-thrombomodulin on sterilized commercial ePTFE vascular grafts, which exhibit superior thromboresistance compared with commercial heparin-coated grafts in a primate model of acute graft thrombosis.
Collapse
Affiliation(s)
- Zheng Qu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School and the Wyss Institute of Biologically Inspired, Engineering of Harvard University, Boston, MA 02115, USA; Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Superior in vivo compatibility of hydrophilic polymer coated prosthetic vascular grafts. J Vasc Access 2013; 15:95-101. [PMID: 24170585 DOI: 10.5301/jva.5000166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2013] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Protein adsorption, cell adhesion and graft patency was compared in hydrophilic versus hydrophobic polymer-coated prosthetic vascular grafts. We hypothesize that in vivo compatibility of hydrophilic polymer-coated prosthetic vascular grafts is superior to in vivo compatibility of hydrophobic grafts. METHODS A pairwise side-to-side common carotid artery interposition graft was placed eight female landrace goats (mean weight 55 kg). Protein adsorption was assessed using Western Blot in two hydrophilic and two hydrophobic grafts harvested after three days. Graft patency was monitored for 28 days in six goats with continuous wave Doppler ultrasonography. Adherence of endothelial cells, leukocytes and platelets was determined with ELISA and compared between the two graft types after 28 days. RESULTS After three days, more ApoA-I, albumin and VEGF and less fibrin adsorbed to hydrophilic grafts. After 28 days, compared to hydrophobic grafts, higher numbers of endothelial cells were present on hydrophilic grafts (P=0.016), and less thrombocytes and leukocytes (P=0.012 and 0.024, respectively). Two out of eight hydrophobic grafts lost patency, while none of the hydrophilic grafts failed (P=0.157). CONCLUSIONS Hydrophilic polymer-coated vascular grafts have superior in vivo compatibility when compared to hydrophobic grafts as characterized by reduced platelet and leukocyte adherence as well as higher endothelialization.
Collapse
|
58
|
Kumar VA, Caves JM, Haller CA, Dai E, Li L, Grainger S, Chaikof EL. Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomater 2013; 9:8067-74. [PMID: 23743129 PMCID: PMC3733560 DOI: 10.1016/j.actbio.2013.05.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 01/10/2023]
Abstract
Tissue-engineered vascular grafts require long fabrication times, in part due to the requirement of cells from a variety of cell sources to produce a robust, load-bearing extracellular matrix. Herein, we propose a design strategy for the fabrication of tubular conduits comprising collagen fiber networks and elastin-like protein polymers to mimic native tissue structure and function. Dense fibrillar collagen networks exhibited an ultimate tensile strength (UTS) of 0.71±0.06 MPa, strain to failure of 37.1±2.2% and Young's modulus of 2.09±0.42 MPa, comparing favorably to a UTS and a Young's modulus for native blood vessels of 1.4-11.1 MPa and 1.5±0.3 MPa, respectively. Resilience, a measure of recovered energy during unloading of matrices, demonstrated that 58.9±4.4% of the energy was recovered during loading-unloading cycles. Rapid fabrication of multilayer tubular conduits with maintenance of native collagen ultrastructure was achieved with internal diameters ranging between 1 and 4mm. Compliance and burst pressures exceeded 2.7±0.3%/100 mmHg and 830±131 mmHg, respectively, with a significant reduction in observed platelet adherence as compared to expanded polytetrafluoroethylene (ePTFE; 6.8±0.05×10(5) vs. 62±0.05×10(5) platelets mm(-2), p<0.01). Using a rat aortic interposition model, early in vivo responses were evaluated at 2 weeks via Doppler ultrasound and CT angiography with immunohistochemistry confirming a limited early inflammatory response (n=8). Engineered collagen-elastin composites represent a promising strategy for fabricating synthetic tissues with defined extracellular matrix content, composition and architecture.
Collapse
Affiliation(s)
- Vivek A. Kumar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332
| | - Jeffrey M. Caves
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215
| | - Carolyn A. Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Liying Li
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Stephanie Grainger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215
| | - Elliot L. Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332
| |
Collapse
|
59
|
Uzarski JS, Van de Walle AB, McFetridge PS. In vitro method for real-time, direct observation of cell-vascular graft interactions under simulated blood flow. Tissue Eng Part C Methods 2013; 20:116-28. [PMID: 23679070 DOI: 10.1089/ten.tec.2012.0771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In the development of engineered vascular grafts, assessing the material's interactive properties with peripheral blood cells and its capacity to endothelialize are important for predicting in vivo graft behavior. Current in vitro techniques used for characterizing cell adhesion at the surface of engineered scaffolds under flow only facilitate a terminal quantification of cell/surface interactions. Here, we present the design of an innovative flow chamber for real-time analysis of blood-biomaterial interactions under controllable hemodynamic conditions. Decellularized human umbilical veins (dHUV) were used as model vascular allografts to characterize platelet, leukocyte, and endothelial cell (EC) adhesion dynamics. Confluent EC monolayers adhered to the lumenal surface of the grafting material were flow conditioned to resist arterial shear stress levels (up to 24 dynes/cm(2)) over a 48 h period, and shown to maintain viability over the 1 week assessment period. The basement membrane was imaged while whole blood/neutrophil suspensions were perfused across the HUV surface to quantify cell accumulation. This novel method facilitates live visualization of dynamic events, including cell adhesion, migration, and morphological adaptation at the blood-graft interface on opaque materials, and it can be used for preliminary assessment of clinically relevant biomaterials before implantation.
Collapse
Affiliation(s)
- Joseph S Uzarski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida , Gainesville, Florida
| | | | | |
Collapse
|
60
|
|
61
|
Kakade S, Mani G. A comparative study of the effects of vitamin C, sirolimus, and paclitaxel on the growth of endothelial and smooth muscle cells for cardiovascular medical device applications. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:529-44. [PMID: 23836963 PMCID: PMC3699137 DOI: 10.2147/dddt.s45162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antiproliferative drugs such as sirolimus (SIR) and paclitaxel (PAT) are currently released from stents and vascular grafts to inhibit the growth of smooth muscle cells (SMCs), thereby preventing neointimal hyperplasia. However, these drugs delay or impair the growth of endothelial cells (ECs) on implant surfaces causing late thrombosis. Hence, there is a need to use alternative drugs in these implants to encourage the growth of ECs and to inhibit the growth of SMCs. Vitamin C (L-ascorbic acid [L-AA]) is one such drug which has been shown to encourage EC growth and inhibit SMC growth when orally administered or added directly to the cell cultures. In this research, four sets of in vitro cell culture experiments were carried out to compare the effects of L-AA, SIR, and PAT on the growth of ECs and SMCs under similar conditions, and to compare the effects of different doses of L-AA to determine the optimal dose for promoting maximum EC growth and inhibiting SMC growth. The ECs and SMCs treated with different drugs were characterized for their viability and proliferation, and morphology using the quantitative resazurin assay (as well as qualitative fluorescence microscopy characterization) and phase contrast microscopy, respectively, for up to 7 days. Also, the phenotype of ECs was characterized using immunofluorescence microscopy. Both SIR and PAT significantly inhibited the EC growth while L-AA significantly encouraged EC growth even more than that of the controls with no drugs. Also, L-AA significantly inhibited SMC growth although the inhibitory effect was inferior to that of SIR and PAT. The L-AA dosage study demonstrated that 100 μg and 300 μg of L-AA showed maximum EC growth after 7 days when compared to other dosages (1 μg, 500 μg, and 1000 μg) of L-AA and controls investigated in this study. Also, the 100 μg and 300 μg L-AA doses significantly inhibited the SMC growth. Thus, this study demonstrates that L-AA is a promising drug for potential use in stents and vascular grafts, to promote their endothelialization and inhibit neointimal hyperplasia.
Collapse
Affiliation(s)
- Sandeep Kakade
- Biomedical Engineering Program, The University of South Dakota, Sioux Falls, SD, USA
| | | |
Collapse
|
62
|
Ercolani E, Del Gaudio C, Bianco A. Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 2013; 9:861-88. [DOI: 10.1002/term.1697] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/08/2012] [Accepted: 12/20/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Enrico Ercolani
- Department of Industrial Engineering, INSTM Research Unit Roma Tor Vergata; University of Rome ‘Tor Vergata’; Via del Politecnico 1 00133 Rome Italy
| | - Costantino Del Gaudio
- Department of Industrial Engineering, INSTM Research Unit Roma Tor Vergata; University of Rome ‘Tor Vergata’; Via del Politecnico 1 00133 Rome Italy
| | - Alessandra Bianco
- Department of Industrial Engineering, INSTM Research Unit Roma Tor Vergata; University of Rome ‘Tor Vergata’; Via del Politecnico 1 00133 Rome Italy
| |
Collapse
|
63
|
Naghavi N, de Mel A, Alavijeh OS, Cousins BG, Seifalian AM. Nitric oxide donors for cardiovascular implant applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:22-35. [PMID: 23136136 DOI: 10.1002/smll.201200458] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/13/2012] [Indexed: 06/01/2023]
Abstract
In an era of increased cardiovascular disease burden in the ageing population, there is great demand for devices that come in to contact with the blood such as heart valves, stents, and bypass grafts that offer life saving treatments. Nitric oxide (NO) elution from healthy endothelial tissue that lines the vessels maintains haemostasis throughout the vasculature. Surgical devices that release NO are desirable treatment options and N-diazeniumdiolates and S-nitrosothiols are recognized as preferred donor molecules. There is a keen interest to investigate newer methods by which NO donors can be retained within biomaterials so that their release and kinetic profiles can be optimized. A range of polymeric scaffolds incorporating microparticles and nanomaterials are presenting solutions to current challenges, and have been investigated in a range of clinical applications. This review outlines the application of NO donors for cardiovascular therapy using biomaterials that release NO locally to prevent thrombosis and intimal hyperplasia (IH) and enhance endothelialization in the fabrication of next generation cardiovascular device technology.
Collapse
Affiliation(s)
- Noora Naghavi
- UCL Centre for Nanotechnology & Regenerative Medicine, University College London, UK
| | | | | | | | | |
Collapse
|
64
|
Liu F, Grainger DW. Fluorinated Biomaterials. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
Hoshi RA, Van Lith R, Jen MC, Allen JB, Lapidos KA, Ameer G. The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials 2012; 34:30-41. [PMID: 23069711 DOI: 10.1016/j.biomaterials.2012.09.046] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/21/2012] [Indexed: 12/21/2022]
Abstract
Prosthetic vascular grafts do not mimic the antithrombogenic properties of native blood vessels and therefore have higher rates of complications that involve thrombosis and restenosis. We developed an approach for grafting bioactive heparin, a potent anticoagulant glycosaminoglycan, to the lumen of ePTFE vascular grafts to improve their interactions with blood and vascular cells. Heparin was bound to aminated poly(1,8-octanediol-co-citrate) (POC) via its carboxyl functional groups onto POC-modified ePTFE grafts. The bioactivity and stability of the POC-immobilized heparin (POC-Heparin) were characterized via platelet adhesion and clotting assays. The effects of POC-Heparin on the adhesion, viability and phenotype of primary endothelial cells (EC), blood outgrowth endothelial cells (BOECs) obtained from endothelial progenitor cells (EPCs) isolated from human peripheral blood, and smooth muscle cells were also investigated. POC-Heparin grafts maintained bioactivity under physiologically relevant conditions in vitro for at least one month. Specifically, POC-Heparin-coated ePTFE grafts significantly reduced platelet adhesion and inhibited whole blood clotting kinetics. POC-Heparin supported EC and BOEC adhesion, viability, proliferation, NO production, and expression of endothelial cell-specific markers von Willebrand factor (vWF) and vascular endothelial-cadherin (VE-cadherin). Smooth muscle cells cultured on POC-Heparin showed increased expression of α-actin and decreased cell proliferation. This approach can be easily adapted to modify other blood contacting devices such as stents where antithrombogenicity and improved endothelialization are desirable properties.
Collapse
Affiliation(s)
- Ryan A Hoshi
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | |
Collapse
|
66
|
Abi-Jaoudeh N, Pritchard WF, Amalou H, Linguraru M, Chiesa OA, Adams JD, Gacchina C, Wesley R, Maruvada S, McDowell B, Frenkel V, Karanian JW, Wood BJ. Pulsed high-intensity-focused US and tissue plasminogen activator (TPA) versus TPA alone for thrombolysis of occluded bypass graft in swine. J Vasc Interv Radiol 2012; 23:953-961.e2. [PMID: 22609287 PMCID: PMC3511867 DOI: 10.1016/j.jvir.2012.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/14/2012] [Accepted: 04/02/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Prosthetic arteriovenous or arterial-arterial bypass grafts can thrombose and be resistant to revascularization. A thrombosed bypass graft model was created to evaluate the potential therapeutic enhancement and safety profile of pulsed high-intensity-focused ultrasound (pHIFU) on pharmaceutical thrombolysis. MATERIALS AND METHODS In swine, a right carotid-carotid expanded polytetrafluoroethylene bypass graft was surgically constructed, containing a 40% stenosis at its distal end to induce graft thrombosis. The revascularization procedure was performed 7 days after surgery. After model development and dose response experiments (n = 11), two cohorts were studied: pHIFU with tissue plasminogen activator (TPA; n = 4) and sham pHIFU with TPA (n = 3). The experiments were identical in both groups except no energy was delivered in the sham pHIFU group. Serial angiograms were obtained in all cases. The area of graft opacified by contrast medium on angiograms was quantified with digital image processing software. A blinded reviewer calculated the change in the graft area opacified by contrast medium and expressed it as a percentage, representing percentage of thrombolysis. RESULTS Combining pHIFU with 0.5 mg of TPA resulted in a 52% ± 4% increase in thrombolysis on angiograms obtained at 30 minutes, compared with a 9% ± 14% increase with sham pHIFU and 0.5 mg TPA (P = .003). Histopathologic examination demonstrated no differences between the groups. CONCLUSIONS Thrombolysis of occluded bypass grafts was significantly increased when combining pHIFU and TPA versus sham pHIFU and TPA. These results suggest that application of pHIFU may augment thrombolysis with a reduced time and dose.
Collapse
Affiliation(s)
- Nadine Abi-Jaoudeh
- Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Xie X, Eberhart A, Guidoin R, Marois Y, Douville Y, Zhang Z. Five Types of Polyurethane Vascular Grafts in Dogs: The Importance of Structural Design and Material Selection. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:1239-64. [DOI: 10.1163/092050609x12481751806295] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Xingyi Xie
- a Department of Polymeric Biomaterials and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China; Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; The Research Center of Saint-François d'Assise Hospital, CHUQ, 10 Espinay Street, Room E0-165, Quebec City, Quebec, Canada G1L 3L5
| | - Andreas Eberhart
- b Department of Surgery, Faculty of Medicine, Laval University; The Research Center of Saint-François d'Assise Hospital, CHUQ, 10 Espinay Street, Room E0-165, Quebec City, Quebec, Canada G1L 3L5
| | - Robert Guidoin
- c Department of Surgery, Faculty of Medicine, Laval University; The Research Center of Saint-François d'Assise Hospital, CHUQ, 10 Espinay Street, Room E0-165, Quebec City, Quebec, Canada G1L 3L5
| | - Yves Marois
- d Department of Surgery, Faculty of Medicine, Laval University; The Research Center of Saint-François d'Assise Hospital, CHUQ, 10 Espinay Street, Room E0-165, Quebec City, Quebec, Canada G1L 3L5
| | - Yvan Douville
- e Department of Surgery, Faculty of Medicine, Laval University; The Research Center of Saint-François d'Assise Hospital, CHUQ, 10 Espinay Street, Room E0-165, Quebec City, Quebec, Canada G1L 3L5
| | - Ze Zhang
- f Department of Surgery, Faculty of Medicine, Laval University; The Research Center of Saint-François d'Assise Hospital, CHUQ, 10 Espinay Street, Room E0-165, Quebec City, Quebec, Canada G1L 3L5;,
| |
Collapse
|
68
|
Recommendations for processing cardiovascular surgical pathology specimens: a consensus statement from the Standards and Definitions Committee of the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology. Cardiovasc Pathol 2012; 21:2-16. [DOI: 10.1016/j.carpath.2011.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 01/07/2011] [Indexed: 01/12/2023] Open
|
69
|
WANG JUNPING, ZHU YIZHOU, DU JIAN. BACTERIAL CELLULOSE: A NATURAL NANOMATERIAL FOR BIOMEDICAL APPLICATIONS. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519411004058] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial cellulose (BC) synthesized from Acetobacter xylinum has drawn lots of attention and interest from biomedical device field due to its unique structure and properties. Characterized by its remarkable physical strength and extremely hydrophilic surface, BC has become a favorable material for wound healing, neuron protection, and vascular grafts. Moreover, due to its homologous structure with native extracellular matrix, BC nanofibrous matrix could also be a potent candidate for tissue-engineered scaffolding materials. In this review, the characters and properties of BC, as a promising material for regenerative medicine, are summarized. The progresses made on application of BC to wound dressing, vascular grafts, meniscus and cartilage repair, bone healing, and other biomedical fields are expatiated in details. In the end, the future expectation of BC is briefly discussed. Overall, this low cost, biocompatible, and versatile nanomaterial could eventually be developed as an excellent platform for a new generation of medical device and regenerative medicine.
Collapse
Affiliation(s)
- JUNPING WANG
- Xylos Corporation, 838 Town Center Drive, Langhorne, PA 19047, USA
| | - YIZHOU ZHU
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - JIAN DU
- Department of Biomedical Engineering, John Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
70
|
Yoshida S, Nabzdyk CS, Pradhan L, LoGerfo FW. Thrombospondin-2 gene silencing in human aortic smooth muscle cells improves cell attachment. J Am Coll Surg 2011; 213:668-76. [PMID: 21840228 DOI: 10.1016/j.jamcollsurg.2011.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/10/2011] [Accepted: 07/12/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Despite decades of research, anastomotic intimal hyperplasia remains a major cause of delayed prosthetic arterial graft failure. Previously, we reported profound upregulation of thrombospondin-2 (TSP-2) mRNA in neointimal smooth muscle cells after prosthetic arterial bypass graft placement. TSP-2 is an antiangiogenic matricellular protein with specific functions yet unknown. In this study, we hypothesized that inhibition of TSP-2 in human aortic smooth muscle cells (HAoSMCs) would reduce cell proliferation and migration in vitro, providing a therapeutic target to mitigate intimal hyperplasia. STUDY DESIGN HAoSMCs were transfected with TSP-2 small interfering ribonucleic acid (siRNA) using a commercial transfection reagent. Gene silencing was evaluated using semiquantitative real-time polymerase chain reaction. ELISA was used to measure TSP-2 protein levels in cell culture supernatants. Cell migration and proliferation were assessed using scratch wound assays and alamar blue assays, respectively. Attachment assays were performed to assess the effect of TSP-2 silencing on HAoSMC adhesion to fibronectin. RESULTS TSP-2 siRNA achieved consistent target gene silencing at 48 hours post-transfection in HAoSMCs. This single transfection allowed suppression of TSP-2 protein expression for more than 30 days. TSP-2 gene silencing did not affect HAoSMC migration or proliferation. MMP-2 levels were also unaffected by changes in TSP-2 protein levels. However, HAoSMC attachment to fibronectin improved significantly in cells treated with TSP-2 siRNA. CONCLUSIONS siRNA-mediated TSP-2 silencing of human aortic HAoSMCs improved cell attachment but had no effect on cell migration or proliferation. The effect on cell attachment was unrelated to changes in MMP activity.
Collapse
Affiliation(s)
- Shunsuke Yoshida
- Department of Surgery, Division of Vascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
71
|
Tefft BJ, Kopacz AM, Liu WK, Liu SQ. Enhancing Endothelial Cell Retention on ePTFE Constructs by siRNA-Mediated SHP-1 Gene Silencing. J Nanotechnol Eng Med 2011. [DOI: 10.1115/1.4003273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polymeric vascular grafts hold great promise for vascular reconstruction, but the lack of endothelial cells renders these grafts susceptible to intimal hyperplasia and restenosis, precluding widespread clinical applications. The purpose of this study is to establish a stable endothelium on expanded polytetrafluoroethylene (ePTFE) membrane by small interfering RNA (siRNA)-induced suppression of the cell adhesion inhibitor SH2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were treated with scrambled siRNA as a control or SHP-1 specific siRNA. Treated cells were seeded onto fibronectin-coated ePTFE scaffolds and exposed to a physiological range of pulsatile fluid shear stresses for 1 h in a variable-width parallel plate flow chamber. Retention of cells was measured and compared between various shear stress levels and between groups treated with scrambled siRNA and SHP-1 specific siRNA. HUVECs seeded on ePTFE membrane exhibited shear stress-dependent retention. Exposure to physiological shear stress (10 dyn/cm2) induced a reduction in the retention of scrambled siRNA treated cells from 100% to 85% at 1 h. Increased shear stress (20 dyn/cm2) further reduced retention of scrambled siRNA treated cells to 55% at 1 h. SHP-1 knockdown mediated by siRNA enhanced endothelial cell retention from approximately 60% to 85% after 1 h of exposure to average shear stresses in the range of 15–30 dyn/cm2. This study demonstrates that siRNA-mediated gene silencing may be an effective strategy for improving the retention of endothelial cells within vascular grafts.
Collapse
Affiliation(s)
- Brandon J. Tefft
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, IL 60208
| | - Adrian M. Kopacz
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Tech B224, Evanston, IL 60208
| | - Wing Kam Liu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Tech B224, Evanston, IL 60208
| | - Shu Q. Liu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, IL 60208
| |
Collapse
|
72
|
Waterhouse A, Wise SG, Ng MKC, Weiss AS. Elastin as a nonthrombogenic biomaterial. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:93-9. [PMID: 21166482 DOI: 10.1089/ten.teb.2010.0432] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Surface-induced thrombosis is a significant issue for artificial blood-contacting materials used in the treatment of cardiovascular diseases. The development of biomaterials and tissue-engineered constructs that mimic the vasculature represents a way to overcome this problem. Elastin is an extracellular matrix macromolecule that imparts arterial elasticity where it comprises up to 50% of the nonhydrated mass of the vessel. In addition to its critical role in maintaining vessel integrity and elastic properties under pulsatile flow, elastin plays an important role in signaling and regulating luminal endothelial cells and smooth muscle cells in the arterial wall. Despite its well-established significance in the vasculature and its growing use as a biomaterial in tissue engineering, the hemocompatibility of elastin is often overlooked. Past studies pointing to the potential of arterial elastin and decellularized elastin as nonthrombogenic materials have begun to be realized, with elastin scaffolds and coatings displaying increased hemocomptibility. This review explores the mechanisms of elastin's nonthrombogenicity and highlights the current problems limiting its wider application as a biomaterial. We discuss the benefits of constructing biomaterials encompassing the relevant mechanical and biological features of elastin to provide enhanced hemocompatibility to biomaterials.
Collapse
Affiliation(s)
- Anna Waterhouse
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
73
|
Xie X, Guidoin R, Nutley M, Zhang Z. Fluoropassivation and gelatin sealing of polyester arterial prostheses to skip preclotting and constrain the chronic inflammatory response. J Biomed Mater Res B Appl Biomater 2010; 93:497-509. [PMID: 20186827 DOI: 10.1002/jbm.b.31609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fluoropassivation and gelatin coating have been applied to polyethylene terephthalate (PET) vascular prosthesis to combine the advantages of both polytetrafluoroethylene (PTFE) and PET materials, and to eliminate the preclotting procedure. The morphological, chemical, physical, and mechanical properties of such prostheses were investigated and compared with its original model. Fluoropassivation introduced -OCF(3), -CF(3), and -CFCF(2)- structures onto the surface of the polyester fibers. However, the surface fluorine content was only 28-32% compared to the 66% in expanded PTFE (ePTFE) grafts. The fluoropassivation decreased the hydrophilicity, slightly increased the water permeability, and marginally lowered the melting point and the crystallinity of the PET fibers. After gelatin coating, the fluoropassivated and nonfluoropassivated prostheses showed similar surface morphology and chemistry. While gelatin coating eliminated preclotting, it also renders the prostheses slightly stiffer. The original prosthesis had the highest bursting strength (275 N), with the fluoropassivated and gelatin-sealed devices showing similar bursting strength between 210 and 230 N. Fluoropassivation and gelatin coating lowered the retention strength by 23 and 30% on average, respectively. In vitro enzymatic incubation had only marginal effect on the surface fluorine content of the nongelatin-sealed prostheses. However, the gelatin-sealed ones significantly lost their surface fluorine after in vitro enzymatic incubation (by 69-85%) or in vivo 6-month implantation (by 51-60%), showing the lability of the fluoropolymer layer under the hostile biological environment.
Collapse
Affiliation(s)
- Xingyi Xie
- Department of Polymeric Biomaterials and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | |
Collapse
|
74
|
Kibbe MR, Martinez J, Popowich DA, Kapadia MR, Ahanchi SS, Aalami OO, Jiang Q, Webb AR, Yang J, Carroll T, Ameer GA. Citric acid-based elastomers provide a biocompatible interface for vascular grafts. J Biomed Mater Res A 2010; 93:314-24. [PMID: 19569210 DOI: 10.1002/jbm.a.32537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prosthetic vascular bypass grafting is associated with poor long-term patency rates. Herein, we report on the mid-term performance of expanded polytetrafluoroethylene (ePTFE) vascular grafts modified with a citric acid-based biodegradable elastomer. Through a spin-shearing method, ePTFE grafts were modified by mechanically coating a layer of poly(1,8 octanediol citrate) (POC) onto the luminal nodes and fibrils of the ePTFE. Control and POC-ePTFE grafts were implanted into the porcine carotid artery circulation as end-to-side bypass grafts. Grafts were assessed by duplex ultrasonography, magnetic resonance angiography, and digital subtraction contrast angiography and were all found to be patent with no hemodynamically significant stenoses. At 4 weeks, POC-ePTFE grafts were found to be biocompatible and resulted in a similar extent of neointimal hyperplasia as well as leukocyte and monocyte/macrophage infiltration as control ePTFE grafts. Furthermore, POC supported endothelial cell growth. Lastly, scanning electron microscopy confirmed the presence of POC on the ePTFE grafts at 4 weeks. Thus, these data reveal that surface modification of blood-contacting surfaces with POC results in a biocompatible surface that does not induce any untoward effects or inflammation in the vasculature. These findings are important as they will serve as the foundation for the development of a drug-eluting vascular graft.
Collapse
Affiliation(s)
- Melina R Kibbe
- Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Williams C, Liao J, Joyce E, Wang B, Leach J, Sacks M, Wong J. Altered structural and mechanical properties in decellularized rabbit carotid arteries. Acta Biomater 2009; 5:993-1005. [PMID: 19135421 PMCID: PMC2680318 DOI: 10.1016/j.actbio.2008.11.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Recently, major achievements in creating decellularized whole tissue scaffolds have drawn considerable attention to decellularization as a promising approach for tissue engineering. Decellularized tissues are expected to have mechanical strength and structure similar to the native tissues from which they are derived. However, numerous studies have shown that mechanical properties change after decellularization. Often, tissue structure is observed by histology and electron microscopy, but the structural alterations that may have occurred are not always evident. Here, a variety of techniques were used to investigate changes in tissue structure and relate them to altered mechanical behavior in decellularized rabbit carotid arteries. Histology and scanning electron microscopy revealed that major extracellular matrix components were preserved and fibers appeared intact, although collagen appeared looser and less crimped after decellularization. Transmission electron microscopy confirmed the presence of proteoglycans (PG), but there was decreased PG density and increased spacing between collagen fibrils. Mechanical testing and opening angle measurements showed that decellularized arteries had significantly increased stiffness, decreased extensibility and decreased residual stress compared with native arteries. Small-angle light scattering revealed that fibers had increased mobility and that structural integrity was compromised in decellularized arteries. Taken together, these studies revealed structural alterations that could be related to changes in mechanical properties. Further studies are warranted to determine the specific effects of different decellularization methods on the structure and performance of decellularized arteries used as vascular grafts.
Collapse
Affiliation(s)
- C. Williams
- Biomimetic Materials Engineering Laboratory, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - J. Liao
- Cardiovascular Tissue Biomechanics Laboratory, Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, USA
- Engineered Tissue Mechanics Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - E.M. Joyce
- Engineered Tissue Mechanics Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - B. Wang
- Cardiovascular Tissue Biomechanics Laboratory, Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, USA
| | - J.B. Leach
- Biomimetic Materials Engineering Laboratory, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - M.S. Sacks
- Engineered Tissue Mechanics Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - J.Y. Wong
- Biomimetic Materials Engineering Laboratory, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
77
|
Mutsuga M, Narita Y, Yamawaki A, Satake M, Kaneko H, Suematsu Y, Usui A, Ueda Y. A new strategy for prevention of anastomotic stricture using tacrolimus-eluting biodegradable nanofiber. J Thorac Cardiovasc Surg 2009; 137:703-9. [PMID: 19258093 DOI: 10.1016/j.jtcvs.2008.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 10/02/2008] [Accepted: 11/15/2008] [Indexed: 10/21/2022]
|
78
|
|