51
|
Observation of mesenteric microcirculatory disturbance in rat by laser oblique scanning optical microscopy. Sci Rep 2014; 3:1762. [PMID: 23640310 PMCID: PMC3642718 DOI: 10.1038/srep01762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/15/2013] [Indexed: 12/20/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury model has been widely applied to the study of microcirculation disturbance. In this work, we used laser oblique scanning optical microscopy (LOSOM) to observe the microcirculation system in the mesentery of rat model. Utilizing a localized point-scanning detection scheme, high-contrast images of leukocytes were obtained. The extended detection capability facilitated both the automatic in vivo cell counting and the accurate measurement of the rolling velocity of leukocytes. Statistical analysis of the different treatment groups suggested that the distinction between I/R and sham groups with time lapse is significant.
Collapse
|
52
|
Abstract
Chemokines play important roles in atherosclerotic vascular disease. Expressed by not only cells of the vessel wall but also emigrated leukocytes, chemokines were initially discovered to direct leukocytes to sites of inflammation. However, chemokines can also exert multiple functions beyond cell recruitment. Here, we discuss novel and recently emerging aspects of chemokines and their involvement in atherosclerosis. While reviewing newly identified roles of chemokines and their receptors in monocyte and neutrophil recruitment during atherogenesis and atheroregression, we also revisit homeostatic functions of chemokines, including their roles in cell homeostasis and foam cell formation. The functional diversity of chemokines in atherosclerosis warrants a clear-cut mechanistic dissection and stage-specific assessment to better appreciate the full scope of their actions in vascular inflammation and to identify pathways that harbor the potential for a therapeutic targeting of chemokines in atherosclerosis.
Collapse
Affiliation(s)
- Alma Zernecke
- From the Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany (A.Z.); Department of Vascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany (A.Z.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (A.Z., C.W.); and Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (C.W.)
| | | |
Collapse
|
53
|
Abstract
Understanding the pathophysiology of atherogenesis and the progression of atherosclerosis have been major goals of cardiovascular research during the previous decades. However, the complex molecular and cellular mechanisms underlying plaque destabilization remain largely obscure. Here, we review how lesional cells undergo cell death and how failed clearance exacerbates necrotic core formation. Advanced atherosclerotic lesions are further weakened by the pronounced local activity of matrix-degrading proteases as well as immature neovessels sprouting into the lesion. To stimulate translation of the current knowledge of molecular mechanisms of plaque destabilization into clinical studies, we further summarize available animal models of plaque destabilization. Based on the molecular mechanisms leading to plaque instability, we outline the current status of clinical and preclinical trials to induce plaque stability with a focus on induction of dead cell clearance, inhibition of protease activity, and dampening of inflammatory cell recruitment.
Collapse
|
54
|
Chèvre R, González-Granado JM, Megens RTA, Sreeramkumar V, Silvestre-Roig C, Molina-Sánchez P, Weber C, Soehnlein O, Hidalgo A, Andrés V. High-resolution imaging of intravascular atherogenic inflammation in live mice. Circ Res 2013; 114:770-9. [PMID: 24366169 DOI: 10.1161/circresaha.114.302590] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE The inflammatory processes that initiate and propagate atherosclerosis remain poorly understood, largely because defining the intravascular behavior of immune cells has been technically challenging. Respiratory and pulsatile movements have hampered in vivo visualization of leukocyte accumulation in athero-prone arteries at resolutions achieved in other tissues. OBJECTIVE To establish and to validate a method that allows high-resolution imaging of inflammatory leukocytes and platelets within the carotid artery of atherosusceptible mice in vivo. METHODS AND RESULTS We have devised a procedure to stabilize the mouse carotid artery mechanically without altering blood dynamics, which dramatically enhances temporal and spatial resolutions using high-speed intravital microscopy in multiple channels of fluorescence. By applying this methodology at different stages of disease progression in atherosusceptible mice, we first validated our approach by assessing the recruitment kinetics of various leukocyte subsets and platelets in athero-prone segments of the carotid artery. The high temporal and spatial resolution allowed the dissection of both the dynamic polarization of and the formation of subcellular domains within adhered leukocytes. We further demonstrate that the secondary capture of activated platelets on the plaque is predominantly mediated by neutrophils. Finally, we couple this procedure with triggered 2-photon microscopy to visualize the 3-dimensional movement of leukocytes in intimate contact with the arterial lumen. CONCLUSIONS The improved imaging of diseased arteries at subcellular resolution presented here should help resolve many outstanding questions in atherosclerosis and other arterial disorders.
Collapse
Affiliation(s)
- Raphael Chèvre
- From the Department of Epidemiology, Atherothrombosis, and Imaging, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.C., J.M.G.-G., V.S., C.S.-R., P.M.-S., A.H., V.A.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (R.T.A.M., C.W., O.S.); Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands (R.T.A.M., C.W.); and Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (O.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Pletinck A, Glorieux G, Schepers E, Cohen G, Gondouin B, Van Landschoot M, Eloot S, Rops A, Van de Voorde J, De Vriese A, van der Vlag J, Brunet P, Van Biesen W, Vanholder R. Protein-bound uremic toxins stimulate crosstalk between leukocytes and vessel wall. J Am Soc Nephrol 2013; 24:1981-94. [PMID: 24009240 PMCID: PMC3839540 DOI: 10.1681/asn.2012030281] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/30/2013] [Indexed: 11/03/2022] Open
Abstract
Leukocyte activation and endothelial damage both contribute to cardiovascular disease, a major cause of morbidity and mortality in CKD. Experimental in vitro data link several protein-bound uremic retention solutes to the modulation of inflammatory stimuli, including endothelium and leukocyte responses and cardiovascular damage, corroborating observational in vivo data. However, the impact of these uremic toxins on the crosstalk between endothelium and leukocytes has not been assessed. This study evaluated the effects of acute and continuous exposure to uremic levels of indoxylsulfate (IS), p-cresylsulfate (pCS), and p-cresylglucuronide (pCG) on the recruitment of circulating leukocytes in the rat peritoneal vascular bed using intravital microscopy. Superfusion with IS induced strong leukocyte adhesion, enhanced extravasation, and interrupted blood flow, whereas pCS caused a rapid increase in leukocyte rolling. Superfusion with pCS and pCG combined caused impaired blood flow and vascular leakage but did not further enhance leukocyte rolling over pCS alone. Intravenous infusion with IS confirmed the superfusion results and caused shedding of heparan sulfate, pointing to disruption of the glycocalyx as the mechanism likely mediating IS-induced flow stagnation. These results provide the first clear in vivo evidence that IS, pCS, and pCG exert proinflammatory effects that contribute to vascular damage by stimulating crosstalk between leukocytes and vessels.
Collapse
Affiliation(s)
- Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Schepers
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Gerald Cohen
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bertrand Gondouin
- Centre de Néphrologie et Transplantation Rénale, Assistance Publique-Hôpitaux de Marseille, Hôpital de La Conception, Marseille, France
| | - Maria Van Landschoot
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sunny Eloot
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Angelique Rops
- Nephrology Research Laboratory, Nijmegen Centre for Molecular Life Sciences, Department of Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - An De Vriese
- Renal Unit, Department of Internal Medicine, AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium
| | - Johan van der Vlag
- Nephrology Research Laboratory, Nijmegen Centre for Molecular Life Sciences, Department of Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Philippe Brunet
- Centre de Néphrologie et Transplantation Rénale, Assistance Publique-Hôpitaux de Marseille, Hôpital de La Conception, Marseille, France
| | - Wim Van Biesen
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
56
|
Wang Z, Li H, Vuohelainen V, Tenhunen J, Hämäläinen M, Rinne T, Moilanen E, Paavonen T, Tarkka M, Mennander A. Confined ischemia may improve remote myocardial outcome after rat cardiac arrest. Scandinavian Journal of Clinical and Laboratory Investigation 2013; 74:27-36. [DOI: 10.3109/00365513.2013.855944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
57
|
Haskard DO, Boyle JJ, Evans PC, Mason JC, Randi AM. Cytoprotective signaling and gene expression in endothelial cells and macrophages-lessons for atherosclerosis. Microcirculation 2013; 20:203-16. [PMID: 23121167 DOI: 10.1111/micc.12020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/18/2012] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the medium and large arteries driven in large part by the accumulation of oxidized low-density lipoproteins and other debris at sites rendered susceptible because of the geometry of the arterial tree. As lesions develop, they acquire a pathologic microcirculation that perpetuates lesion progression, both by providing a means for further monocyte and T-lymphocyte recruitment into the arterial wall and by the physical and chemical stresses caused by micro-hemorrhage. This review summarizes work performed in our department investigating the roles of signaling pathways, alone and in combination, that lead to specific programs of gene expression in the atherosclerotic environment. Focusing particularly on cytoprotective responses that might be enhanced therapeutically, the work has encompassed the anti-inflammatory effects of arterial laminar shear stress, mechanisms of induction of membrane inhibitors that prevent complement-mediated injury, homeostatic macrophage responses to hemorrhage, and the transcriptional mechanisms that control the stability, survival, and quiescence of endothelial monolayers. Lastly, while the field has been dominated by investigation into the mechanisms of DNA transcription, we consider the importance of parallel post-transcriptional regulatory mechanisms for fine-tuning functional gene expression repertoires.
Collapse
Affiliation(s)
- Dorian O Haskard
- Vascular Science Section, National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London W12 ONN, UK.
| | | | | | | | | |
Collapse
|
58
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
59
|
Legein B, Temmerman L, Biessen EAL, Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci 2013; 70:3847-69. [PMID: 23430000 PMCID: PMC11113412 DOI: 10.1007/s00018-013-1289-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide, accounting for 16.7 million deaths each year. The underlying cause of the majority of CVD is atherosclerosis. In the past, atherosclerosis was considered to be the result of passive lipid accumulation in the vessel wall. Today's picture is far more complex. Atherosclerosis is considered a chronic inflammatory disease that results in the formation of plaques in large and mid-sized arteries. Both cells of the innate and the adaptive immune system play a crucial role in its pathogenesis. By transforming immune cells into pro- and anti-inflammatory chemokine- and cytokine-producing units, and by guiding the interactions between the different immune cells, the immune system decisively influences the propensity of a given plaque to rupture and cause clinical symptoms like myocardial infarction and stroke. In this review, we give an overview on the newest insights in the role of different immune cells and subtypes in atherosclerosis.
Collapse
Affiliation(s)
- Bart Legein
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Lieve Temmerman
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Erik A. L. Biessen
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian’s University, Pettenkoferstrasse 8a/9, 80336 Munich, Germany
| |
Collapse
|
60
|
Yla-Herttuala S, Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, Hoefer I, Jauhiainen S, Jukema JW, Krams R, Kwak BR, Marx N, Naruszewicz M, Newby A, Pasterkamp G, Serruys PWJC, Waltenberger J, Weber C, Tokgozoglu L. Stabilization of atherosclerotic plaques: an update. Eur Heart J 2013; 34:3251-8. [DOI: 10.1093/eurheartj/eht301] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
61
|
Taqueti VR, Jaffer FA. High-resolution molecular imaging via intravital microscopy: illuminating vascular biology in vivo. Integr Biol (Camb) 2013; 5:278-90. [PMID: 23135362 DOI: 10.1039/c2ib20194a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Complications of atherosclerosis and thrombosis are leading causes of death worldwide. While experimental investigations have yielded valuable insights into key molecular and cellular phenomena in these diseases of medium- and large-sized vessels, direct visualization of relevant in vivo biological processes has been limited. However, recent developments in molecular imaging technology, specifically fluorescence imaging agents coupled with high-resolution, high-speed intravital microscopy (IVM), are now enabling dynamic and longitudinal investigations into the mechanisms and progression of many vascular diseases. Here we review recent advances in IVM that have provided new in vivo biological insights into atherosclerosis and thrombosis.
Collapse
Affiliation(s)
- Viviany R Taqueti
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
62
|
Abstract
Cardiovascular disease is the leading cause of death in several countries. The underlying process is atherosclerosis, a slowly progressing chronic disorder that can lead to intravascular thrombosis. There is overwhelming evidence for the underlying importance of our immune system in atherosclerosis. Monocytes, which comprise part of the innate immune system, can be recruited to inflamed endothelium and this recruitment has been shown to be proportional to the extent of atherosclerotic disease. Monocytes undergo migration into the vasculature, they differentiate into macrophage phenotypes, which are highly phagocytic and can scavenge modified lipids, leading to foam cell formation and development of the lipid-rich atheroma core. This increased influx leads to a highly inflammatory environment and along with other immune cells can increase the risk in the development of the unstable atherosclerotic plaque phenotype. The present review provides an overview and description of the immunological aspect of innate and adaptive immune cell subsets in atherosclerosis, by defining their interaction with the vascular environment, modified lipids and other cellular exchanges. There is a particular focus on monocytes and macrophages, but shorter descriptions of dendritic cells, lymphocyte populations, neutrophils, mast cells and platelets are also included.
Collapse
|
63
|
van Gils JM, Ramkhelawon B, Fernandes L, Stewart MC, Guo L, Seibert T, Menezes GB, Cara DC, Chow C, Kinane TB, Fisher EA, Balcells M, Alvarez-Leite J, Lacy-Hulbert A, Moore KJ. Endothelial expression of guidance cues in vessel wall homeostasis dysregulation under proatherosclerotic conditions. Arterioscler Thromb Vasc Biol 2013; 33:911-9. [PMID: 23430612 DOI: 10.1161/atvbaha.112.301155] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Emerging evidence suggests that neuronal guidance cues, typically expressed during development, are involved in both physiological and pathological immune responses. We hypothesized that endothelial expression of such guidance cues may regulate leukocyte trafficking into the vascular wall during atherogenesis. APPROACH AND RESULTS We demonstrate that members of the netrin, semaphorin, and ephrin family of guidance molecules are differentially regulated under conditions that promote or protect from atherosclerosis. Netrin-1 and semaphorin3A are expressed by coronary artery endothelial cells and potently inhibit chemokine-directed migration of human monocytes. Endothelial expression of these negative guidance cues is downregulated by proatherogenic factors, including oscillatory shear stress and proinflammatory cytokines associated with monocyte entry into the vessel wall. Furthermore, we show using intravital microscopy that inhibition of netrin-1 or semaphorin3A using blocking peptides increases leukocyte adhesion to the endothelium. Unlike netrin-1 and semaphorin3A, the guidance cue ephrinB2 is upregulated under proatherosclerotic flow conditions and functions as a chemoattractant, increasing leukocyte migration in the absence of additional chemokines. CONCLUSIONS The concurrent regulation of negative and positive guidance cues may facilitate leukocyte infiltration of the endothelium through a balance between chemoattraction and chemorepulsion. These data indicate a previously unappreciated role for axonal guidance cues in maintaining the endothelial barrier and regulating leukocyte trafficking during atherogenesis.
Collapse
Affiliation(s)
- Janine M van Gils
- Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, NewYork University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, Nahrendorf M, Yun SH. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res 2013; 112:891-9. [PMID: 23392842 DOI: 10.1161/circresaha.111.300484] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE High-resolution imaging of the heart in vivo is challenging owing to the difficulty in accessing the heart and the tissue motion caused by the heartbeat. OBJECTIVE Here, we describe a suction-assisted endoscope for visualizing fluorescently labeled cells and vessels in the beating heart tissue through a small incision made in the intercostal space. METHODS AND RESULTS A suction tube with a diameter of 2 to 3 mm stabilizes the local tissue motion safely and effectively at a suction pressure of 50 mm Hg. Using a minimally invasive endoscope integrated into a confocal microscope, we performed fluorescence cellular imaging in both normal and diseased hearts in live mice for an hour per session repeatedly over a few weeks. Real-time imaging revealed the surprisingly rapid infiltration of CX3CR1(+) monocytes into the injured site within several minutes after acute myocardial infarction. CONCLUSIONS The time-lapse analysis of flowing and rolling (patrolling) monocytes in the heart and the peripheral circulation provides evidence that the massively recruited monocytes come first from the vascular reservoir and later from the spleen. The imaging method requires minimal surgical preparation and can be implemented into standard intravital microscopes. Our results demonstrate the applicability of our imaging method for a wide range of cardiovascular research.
Collapse
Affiliation(s)
- Keehoon Jung
- Wellman Center for Photomedicine, Departments of Dermatology, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Pilhan Kim
- Wellman Center for Photomedicine, Departments of Dermatology, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.,Graduate School of Nanoscience and Technology (WCU), Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Florian Leuschner
- Center for Systems Biology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Rostic Gorbatov
- Center for Systems Biology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jun Ki Kim
- Wellman Center for Photomedicine, Departments of Dermatology, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.,Graduate School of Nanoscience and Technology (WCU), Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Takuya Ueno
- Center for Systems Biology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Departments of Dermatology, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.,Graduate School of Nanoscience and Technology (WCU), Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea.,The Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
65
|
Rademakers T, Douma K, Hackeng TM, Post MJ, Sluimer JC, Daemen MJAP, Biessen EAL, Heeneman S, van Zandvoort MAMJ. Plaque-Associated Vasa Vasorum in Aged Apolipoprotein E–Deficient Mice Exhibit Proatherogenic Functional Features In Vivo. Arterioscler Thromb Vasc Biol 2013; 33:249-56. [DOI: 10.1161/atvbaha.112.300087] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Neovascularization of human atherosclerotic plaques is implicated in plaque progression and destabilization, although its functional implications are yet unresolved. Here, we aimed to elucidate functional and morphological properties of plaque microvessels in mice in vivo.
Methods and Results—
Atherosclerotic carotid arteries from aged (>40 weeks) apolipoprotein E–deficient mice were imaged in vivo using multiphoton laser scanning microscopy. Two distinct groups of vasa vasorum microvessels were observed at sites of atherosclerosis development (median diameters of 18.5 and 5.9 μm, respectively), whereas microvessels within the plaque could only rarely be found. In vivo imaging showed ongoing angiogenic activity and injection of fluorescein isothiocyanate-dextran confirmed active perfusion. Plaque vasa vasorum showed increased microvascular leakage, combined with a loss of endothelial glycocalyx. Mean blood flow velocity in plaque-associated vasa vasorum was reduced by ±50% compared with diameter-matched control capillaries, whereas mean blood flow was reduced 8-fold. Leukocyte adhesion and extravasation were increased 6-fold in vasa vasorum versus control capillaries.
Conclusion—
Using a novel in vivo functional imaging strategy, we showed that plaque-associated vasa vasorum were angiogenically active and, albeit poorly, perfused. Moreover, plaque-associated vasa vasorum showed increased permeability, reduced blood flow, and increased leukocyte adhesion and extravasation (ie, characteristics that could contribute to plaque progression and destabilization).
Collapse
Affiliation(s)
- Timo Rademakers
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Kim Douma
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Tilman M. Hackeng
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Mark J. Post
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Judith C. Sluimer
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Mat J. A. P. Daemen
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Erik A. L. Biessen
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Sylvia Heeneman
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Marc A. M. J. van Zandvoort
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| |
Collapse
|
66
|
Mulligan-Kehoe MJ. Anti-angiogenic activity of rPAI-1(23) and vasa vasorum regression. Trends Cardiovasc Med 2013; 23:114-20. [PMID: 23313168 DOI: 10.1016/j.tcm.2012.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 12/23/2022]
Abstract
The vasa vasorum are unique networks of vessels that become angiogenic in response to changes in the vessel wall. Structural studies, using various imaging modalities, show that the vasa vasorum form a plexus of microvessels during the atherosclerotic disease process. The events that stimulate vasa vasorum neovascularization remain unclear. Anti-angiogenic molecules have been shown to inhibit/regress the neovascularization; they provide significant insight into vasa vasorum function, structure, and specific requirements for growth and stability. This review discusses evidence for and against potential stimulators of vasa vasorum neovascularization. Anti-angiogenic rPAI-123, a truncated isoform of plasminogen activator inhibitor-1 (PAI-1) stimulates a novel pathway for regulating plasmin activity. This mechanism contributes significantly to vasa vasorum regression/collapse and is discussed as a model of regression.
Collapse
Affiliation(s)
- Mary Jo Mulligan-Kehoe
- Department of Surgery, Vascular Section, The Geisel School of Medicine at Dartmouth, Borwell 530E, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|
67
|
Ivetic A. Signals regulating L-selectin-dependent leucocyte adhesion and transmigration. Int J Biochem Cell Biol 2013; 45:550-5. [PMID: 23299028 DOI: 10.1016/j.biocel.2012.12.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 01/17/2023]
Abstract
L-selectin is a type I transmembrane cell adhesion molecule that is expressed on the surface of most circulating leukocytes. Studies in L-selectin knockout mice reveal a prominent role for this glycoprotein in health and disease, regulating leucocyte recruitment to peripheral lymph nodes (e.g. naïve T-cells) and sites of acute and chronic inflammation (e.g. monocytes and neutrophils). Clinical trials have revealed L-selectin as a promising target in some acute and chronic inflammatory diseases. Unearthing the intracellular signals that act directly downstream of L-selectin may also expose novel therapeutic targets in a cell type/disease-specific manner. This review will focus on L-selectin-dependent signalling - exploring the different signals that potentially arise from distinct phases of the multi-step adhesion cascade and the contribution of known binding partners of L-selectin in this response.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- Membrane/Cytoskeleton Signalling Group, Cardiovascular Division, British Heart Foundation, Centre of Research Excellence, King's College London, London SE5 9NU, United Kingdom.
| |
Collapse
|
68
|
Abstract
Macrophages are central regulators of disease progression in both atherosclerosis and myocardial infarction (MI). In atherosclerosis, macrophages are the dominant leukocyte population that influences lesional development. In MI, which is caused by atherosclerosis, macrophages accumulate readily and have important roles in inflammation and healing. Molecular imaging has grown considerably as a field and can reveal biological process at the molecular, cellular and tissue levels. Here, we explore how various imaging modalities, from intravital microscopy in mice to organ-level imaging in patients, are contributing to our understanding of macrophages and their progenitors in cardiovascular disease.
Collapse
|
69
|
Abstract
Atherosclerotic plaques develop in a nonrandom manner along the vasculature following a hemodynamically determined distribution profile. The pathogenesis of shear stress-induced inflammation and atherosclerotic lesion formation has led to discussions about personalized strategies in prevention and treatment. Recent discoveries involving the tyrosine kinase receptor Tie1 in (1) mechanotransduction, (2) inflammation, and (3) neovascularization have invigorated these efforts. In this review, we present the current understanding on Tie1 and its role in these key components of atherogenesis.
Collapse
Affiliation(s)
- Kel Vin Woo
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
70
|
Wang X, Wolf MP, Keel RB, Lehner R, Hunziker PR. Polydimethylsiloxane embedded mouse aorta ex vivo perfusion model: proof-of-concept study focusing on atherosclerosis. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:076006. [PMID: 22894489 DOI: 10.1117/1.jbo.17.7.076006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Existing mouse artery ex vivo perfusion models have utilized arteries such as carotid, uterine, and mesenteric arteries, but not the aorta. However, the aorta is the principal vessel analyzed for atherosclerosis studies in vivo. We have devised a mouse aorta ex vivo perfusion model that can bridge this gap. Aortas from apoE((-/-)) mice are embedded in a transparent, gas-permeable, and elastic polymer matrix [polydimethylsiloxane (PDMS)] and artificially perfused with cell culture medium under cell culture conditions. After 24 h of artificial ex vivo perfusion, no evidence of cellular apoptosis is detected. Utilizing a standard confocal microscope, it is possible to image specific receptor targeting of cells in atherosclerotic plaques during 24 h. Imaging motion artifacts are minimal due to the polymer matrix embedding. Re-embedding of the aorta enables tissue sectioning and immuno-histochemical analysis. The ex vivo data are validated by comparison with in vivo experiments. This model can save animal lives via production of multiple endpoints in a single experiment, is easy to apply, and enables straightforward comparability with pre-existing atherosclerosis in vivo data. It is suited to investigate atherosclerotic disease in particular and vascular biology in general.
Collapse
Affiliation(s)
- Xueya Wang
- University Hospital Basel, Nanomedicine Group, Clinic for Intensive Care, Petersgraben 4, CH-4031 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
71
|
Spectre G, Zhu L, Ersoy M, Hjemdahl P, Savion N, Varon D, Li N. Platelets selectively enhance lymphocyte adhesion on subendothelial matrix under arterial flow conditions. Thromb Haemost 2012; 108:328-37. [PMID: 22688347 DOI: 10.1160/th12-02-0064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022]
Abstract
Platelet adhesion at sites of cardiovascular injury may facilitate leukocyte deposition. We asked if and how platelets enhance lymphocyte adhesion on different subendothelial matrix protein (SEMP)-coated surface at arterial shear stress. Hirudinised whole blood was subjected to an arterial shear rate (500 s(-1)) in a Cone and Plate(let) analyser (CPA) for 5 minutes using plates coated with bovine serum albumin (BSA), collagen, fibrinogen, von Willebrand factor (vWF), or fibronectin. Platelet and lymphocyte adhesion were monitored by CPA and flow cytometry. Exposure of blood to collagen, fibrinogen, and vWF-coated surfaces induced platelet activation. The most marked effect was seen with collagen-coating, which markedly enhanced the adhesion of all lymphocyte subpopulations compared to BSA-coating. Fibrinogen-coating supported both T and NK cell adhesion, while vWF-coated surface only enhanced NK cell deposition. In contrast, fibronectin enhanced neither platelet activation nor lymphocyte adhesion. Moreover, platelets preferentially facilitated adhesion of large CD4(+) and CD8(+) T cells and NK cells, and of small B cells. Enhanced cell adhesion of larger lymphocytes was associated with elevated platelet conjugation and higher lymphocyte expression of PSGL-1, Mac-1, and CD40L. The enhancement of lymphocyte adhesion was totally platelet-dependent, and was abolished in platelet-depleted blood. Moreover, blockade of the platelet adhesion molecules P-selectin, GPIIb/IIIa, and CD40L attenuated platelet-dependent lymphocyte deposition. In conclusion, platelets support lymphocyte adhesion on SEMP-coated surfaces under arterial shear. The enhancement is selective for large T and NK cells and small B cells.
Collapse
Affiliation(s)
- Galia Spectre
- Department of Medicine-Solna, Clinical Pharmacology Unit, Karolinska Institute, Karolinska University Hospital-Solna, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Because of their rare detection in atherosclerotic lesions, the involvement of neutrophils in the pathophysiology of atherosclerosis has been largely denied. However, over the past couple of years, studies have provided convincing evidence for the presence of neutrophils in atherosclerotic plaques and further revealed the causal contribution of neutrophils during various stages of atherosclerosis. This review describes mechanisms underlying hyperlipidemia-mediated neutrophilia and how neutrophils may enter atherosclerotic lesions. It also highlights possible mechanisms of neutrophil-driven atherogenesis and plaque destabilization. Knowledge of the contribution of neutrophils to atherosclerosis will allow for exploration of new avenues in the treatment of atherogenesis and atherothrombosis.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
73
|
Newby AC. Matrix metalloproteinase inhibition therapy for vascular diseases. Vascul Pharmacol 2012; 56:232-44. [PMID: 22326338 DOI: 10.1016/j.vph.2012.01.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 10/25/2022]
Abstract
The matrix metalloproteinases (MMPs) are 23 secreted or cell surface proteases that act together and with other protease classes to turn over the extracellular matrix, cleave cell surface proteins and alter the function of many secreted bioactive molecules. In the vasculature MMPs influence the migration proliferation and apoptosis of vascular smooth muscle, endothelial cells and inflammatory cells, thereby affecting intima formation, atherosclerosis and aneurysms, as substantiated in clinical and mouse knockout and transgenic studies. Prominent counterbalancing roles for MMPs in tissue destruction and repair emerge from these experiments. Naturally occurring tissue inhibitors of MMPs (TIMPs), pleiotropic mediators such as tetracyclines, chemically-synthesised small molecular weight MMP inhibitors (MMPis) and inhibitory antibodies have all shown effects in animal models of vascular disease but only doxycycline has been evaluated extensively in patients. A limitation of broad specificity MMPis is that they prevent both matrix degradation and tissue repair functions of different MMPs. Hence MMPis with more restricted specificity have been developed and recent studies in models of atherosclerosis accurately replicate the phenotypes of the corresponding gene knockouts. This review documents the established actions of MMPs and their inhibitors in vascular pathologies and considers the prospects for translating these findings into new treatments.
Collapse
|