51
|
Arroyave F, Montaño D, Lizcano F. Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21228685. [PMID: 33217903 PMCID: PMC7698772 DOI: 10.3390/ijms21228685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is one of the main causes of morbidity and mortality, with an increasing incidence worldwide. The impact of DM on public health in developing countries has triggered alarm due to the exaggerated costs of the treatment and monitoring of patients with this disease. Considerable efforts have been made to try to prevent the onset and reduce the complications of DM. However, because insulin-producing pancreatic β-cells progressively deteriorate, many people must receive insulin through subcutaneous injection. Additionally, current therapies do not have consistent results regarding the prevention of chronic complications. Leveraging the approval of real-time continuous glucose monitors and sophisticated algorithms that partially automate insulin infusion pumps has improved glycemic control, decreasing the burden of diabetes management. However, these advances are facing physiologic barriers. New findings in molecular and cellular biology have produced an extraordinary advancement in tissue development for the treatment of DM. Obtaining pancreatic β-cells from somatic cells is a great resource that currently exists for patients with DM. Although this therapeutic option has great prospects for patients, some challenges remain for this therapeutic plan to be used clinically. The purpose of this review is to describe the new techniques in cell biology and regenerative medicine as possible treatments for DM. In particular, this review highlights the origin of induced pluripotent cells (iPSCs) and how they have begun to emerge as a regenerative treatment that may mitigate the pathology of this disease.
Collapse
Affiliation(s)
- Felipe Arroyave
- Doctoral Program in Biosciences, Universidad de La Sabana, Chía 250008, CU, Colombia;
| | - Diana Montaño
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chía 250008, CU, Colombia;
| | - Fernando Lizcano
- Doctoral Program in Biosciences, Universidad de La Sabana, Chía 250008, CU, Colombia;
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chía 250008, CU, Colombia;
- Correspondence: ; Tel.: +57-3144120052 or +57-18615555 (ext. 23906)
| |
Collapse
|
52
|
Abstract
Gene expression is needed for the maintenance of heart function under normal conditions and in response to stress. Each cell type of the heart has a specific program controlling transcription. Different types of stress induce modifications of these programs and, if prolonged, can lead to altered cardiac phenotype and, eventually, to heart failure. The transcriptional status of a gene is regulated by the epigenome, a complex network of DNA and histone modifications. Until a few years ago, our understanding of the role of the epigenome in heart disease was limited to that played by histone deacetylation. But over the last decade, the consequences for the maintenance of homeostasis in the heart and for the development of cardiac hypertrophy of a number of other modifications, including DNA methylation and hydroxymethylation, histone methylation and acetylation, and changes in chromatin architecture, have become better understood. Indeed, it is now clear that many levels of regulation contribute to defining the epigenetic landscape required for correct cardiomyocyte function, and that their perturbation is responsible for cardiac hypertrophy and fibrosis. Here, we review these aspects and draw a picture of what epigenetic modification may imply at the therapeutic level for heart failure.
Collapse
Affiliation(s)
- Roberto Papait
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| | - Simone Serio
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| | - Gianluigi Condorelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| |
Collapse
|
53
|
Cibi DM, Bi-Lin KW, Shekeran SG, Sandireddy R, Tee N, Singh A, Wu Y, Srinivasan DK, Kovalik JP, Ghosh S, Seale P, Singh MK. Prdm16 Deficiency Leads to Age-Dependent Cardiac Hypertrophy, Adverse Remodeling, Mitochondrial Dysfunction, and Heart Failure. Cell Rep 2020; 33:108288. [PMID: 33086060 DOI: 10.1016/j.celrep.2020.108288] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/23/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a well-established risk factor for cardiovascular mortality worldwide. Although hypertrophy is traditionally regarded as an adaptive response to physiological or pathological stress, prolonged hypertrophy can lead to heart failure. Here we demonstrate that Prdm16 is dispensable for cardiac development. However, it is required in the adult heart to preserve mitochondrial function and inhibit hypertrophy with advanced age. Cardiac-specific deletion of Prdm16 results in cardiac hypertrophy, excessive ventricular fibrosis, mitochondrial dysfunction, and impaired metabolic flexibility, leading to heart failure. We demonstrate that Prdm16 and euchromatic histone-lysine N-methyltransferase factors (Ehmts) act together to reduce expression of fetal genes reactivated in pathological hypertrophy by inhibiting the functions of the pro-hypertrophic transcription factor Myc. Although young Prdm16 knockout mice show normal cardiac function, they are predisposed to develop heart failure in response to metabolic stress. Our study demonstrates that Prdm16 protects the heart against age-dependent cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Dasan Mary Cibi
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Kathleen Wung Bi-Lin
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Shamini Guna Shekeran
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Reddemma Sandireddy
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Nicole Tee
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609
| | - Anamika Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Jean-Paul Kovalik
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857; National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609.
| |
Collapse
|
54
|
Szulik MW, Davis K, Bakhtina A, Azarcon P, Bia R, Horiuchi E, Franklin S. Transcriptional regulation by methyltransferases and their role in the heart: highlighting novel emerging functionality. Am J Physiol Heart Circ Physiol 2020; 319:H847-H865. [PMID: 32822544 DOI: 10.1152/ajpheart.00382.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methyltransferases are a superfamily of enzymes that transfer methyl groups to proteins, nucleic acids, and small molecules. Traditionally, these enzymes have been shown to carry out a specific modification (mono-, di-, or trimethylation) on a single, or limited number of, amino acid(s). The largest subgroup of this family, protein methyltransferases, target arginine and lysine side chains of histone molecules to regulate gene expression. Although there is a large number of functional studies that have been performed on individual methyltransferases describing their methylation targets and effects on biological processes, no analyses exist describing the spatial distribution across tissues or their differential expression in the diseased heart. For this review, we performed tissue profiling in protein databases of 199 confirmed or putative methyltransferases to demonstrate the unique tissue-specific expression of these individual proteins. In addition, we examined transcript data sets from human heart failure patients and murine models of heart disease to identify 40 methyltransferases in humans and 15 in mice, which are differentially regulated in the heart, although many have never been functionally interrogated. Lastly, we focused our analysis on the largest subgroup, that of protein methyltransferases, and present a newly emerging phenomenon in which 16 of these enzymes have been shown to play dual roles in regulating transcription by maintaining the ability to both activate and repress transcription through methyltransferase-dependent or -independent mechanisms. Overall, this review highlights a novel paradigm shift in our understanding of the function of histone methyltransferases and correlates their expression in heart disease.
Collapse
Affiliation(s)
- Marta W Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Presley Azarcon
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Emilee Horiuchi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
55
|
Yan Z, Ji L, Huo X, Wang Q, Zhang Y, Wen B. G9a/GLP-sensitivity of H3K9me2 Demarcates Two Types of Genomic Compartments. GENOMICS, PROTEOMICS & BIOINFORMATICS 2020; 18:359-370. [PMID: 33285284 PMCID: PMC8242262 DOI: 10.1016/j.gpb.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/01/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022]
Abstract
In the nucleus, chromatin is folded into hierarchical architecture that is tightly linked to various nuclear functions. However, the underlying molecular mechanisms that confer these architectures remain incompletely understood. Here, we investigated the functional roles of H3 lysine 9 dimethylation (H3K9me2), one of the abundant histone modifications, in three-dimensional (3D) genome organization. Unlike in mouse embryonic stem cells, inhibition of methyltransferases G9a and GLP in differentiated cells eliminated H3K9me2 predominantly at A-type (active) genomic compartments, and the level of residual H3K9me2 modifications was strongly associated with B-type (inactive) genomic compartments. Furthermore, chemical inhibition of G9a/GLP in mouse hepatocytes led to decreased chromatin-nuclear lamina interactions mainly at G9a/GLP-sensitive regions, increased degree of genomic compartmentalization, and up-regulation of hundreds of genes that were associated with alterations of the 3D chromatin. Collectively, our data demonstrated essential roles of H3K9me2 in 3D genome organization.
Collapse
Affiliation(s)
- Zixiang Yan
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Luzhang Ji
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiangru Huo
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qianfeng Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuwen Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bo Wen
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China.
| |
Collapse
|
56
|
Cai S, Wang P, Xie T, Li Z, Li J, Lan R, Ding Y, Lu J, Ye J, Wang J, Li Z, Liu P. Histone H4R3 symmetric di-methylation by Prmt5 protects against cardiac hypertrophy via regulation of Filip1L/β-catenin. Pharmacol Res 2020; 161:105104. [PMID: 32739429 DOI: 10.1016/j.phrs.2020.105104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/21/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Although histone lysine methylation has been extensively studied for their participation in pathological cardiac hypertrophy, the potential regulatory role of histone arginine methylation remains to be elucidated. The present study focused on H4R3 symmetric di-methylation (H4R3me2s) induced by protein arginine methyltransferase 5 (Prmt5), and explored its epigenetic regulation and underlying mechanisms in cardiomyocyte hypertrophy. METHODS AND RESULTS 1. The expressions of Prmt5 and H4R3me2s were suppressed in cardiac hypertrophy models in vivo and in vitro; 2. Prmt5 silencing or its inhibitor EPZ, or knockdown of cooperator of Prmt5 (Copr5) to disrupt H4R3me2s, facilitated cardiomyocyte hypertrophy, whereas overexpression of wild type Prmt5 rather than the inactive mutant protected cardiomyocytes against hypertrophy; 3. ChIP-sequence analysis identified Filip1L as a target gene of Prmt5-induced H4R3me2s; 4. Knockdown or inhibition of Prmt5 impaired Filip1L transcription and subsequently prevented β-catenin degradation, thus augmenting cardiomyocyte hypertrophy. CONCLUSIONS The present study reveals that Prmt5-induced H4R3me2s ameliorates cardiomyocyte hypertrophy by transcriptional upregulation of Filip1L and subsequent enhancement of β-catenin degradation. Deficiency of Prmt5 and the resulting suppression of H4R3me2s might facilitate the development of pathological cardiac hypertrophy. Prmt5 might serve as a key epigenetic regulator in pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Sidong Cai
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Panxia Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Tingting Xie
- School of Nursing, Guangdong Pharmaceutical University, 283 Jianghai Avenue, Haizhu District, Guangzhou, China
| | - Zhenzhen Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Jingyan Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Rui Lan
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Yanqing Ding
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Jing Lu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Jiantao Ye
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Junjian Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Zhuoming Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China.
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
57
|
Henry S, Szabó V, Sutus E, Pirity MK. RYBP is important for cardiac progenitor cell development and sarcomere formation. PLoS One 2020; 15:e0235922. [PMID: 32673370 PMCID: PMC7365410 DOI: 10.1371/journal.pone.0235922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
We have previously established that epigenetic regulator RING1 and YY1 binding protein (RYBP) is required for the contractility of embryonic stem (ES) cell derived cardiomyocytes (CMCs), suggesting its essential role in contractility. In order to investigate the underlying molecular events of this phenotype, we compared the transcriptomic profile of the wild type and Rybp null mutant ES cells and CMCs differentiated from these cell lines. We identified genes related to ion homeostasis, cell adhesion and sarcomeric organization affected in the Rybp null mutant CMCs, by using hierarchical gene clustering and Gene Ontology analysis. We have also demonstrated that the amount of RYBP is drastically reduced in the terminally differentiated wild type CMCs whilst it is broadly expressed in the early phase of differentiation when progenitors form. We also describe that RYBP is important for the proper expression of key cardiac transcription factors including Mesp1, Shh and Mef2c. These findings identify Rybp as a gene important for both early cardiac gene transcription and consequent sarcomere formation necessary for contractility. Since impairment of sarcomeric function and contractility plays a central role in reduced cardiac pump function leading to heart failures in human, current results might be relevant to the pathophysiology of cardiomyopathies.
Collapse
Affiliation(s)
- Surya Henry
- Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Viktória Szabó
- Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Enikő Sutus
- Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
58
|
Abstract
Cardiac hypertrophy is a significant risk factor for cardiovascular disease, including heart failure, arrhythmia, and sudden death. Cardiac hypertrophy involves both embryonic gene expression and transcriptional reprogramming, which are tightly regulated by epigenetic mechanisms. An increasing number of studies have demonstrated that epigenetics plays an influential role in the occurrence and development of cardiac hypertrophy. Here, we summarize the latest research progress on epigenetics in cardiac hypertrophy involving DNA methylation, histone modification, and non-coding RNA, to help understand the mechanism of epigenetics in cardiac hypertrophy. The expression of both embryonic and functional genes can be precisely regulated by epigenetic mechanisms during cardiac hypertrophy, providing a substantial number of therapeutic targets. Thus, epigenetic treatment is expected to become a novel therapeutic strategy for cardiac hypertrophy. According to the research performed to date, epigenetic mechanisms associated with cardiac hypertrophy remain far from completely understood. Therefore, epigenetic mechanisms require further exploration to improve the prevention, diagnosis, and treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Hao Lei
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Jiahui Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Kaijun Sun
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
59
|
Naidoo N, Bajwa G, Duvuru R, Banerjee Y. Thanatogenomic Investigation of the Hydroxymethylome and Mitochondrial Genome of Cadaveric Cardiomyocytes: Proposal for a Proof-of-Concept Study. JMIR Res Protoc 2020; 9:e17241. [PMID: 32134392 PMCID: PMC7082735 DOI: 10.2196/17241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background Cardiovascular disease (CVD) remains the leading cause of death in the United Arab Emirates (UAE). One of the common CVDs is hypertrophic cardiomyopathy (HCM). Recent studies conducted in heart cells of mice have shown that this condition involves a chemical modification called hydroxymethylation of the DNA of heart cells. Objective Objectives of the proposed research are to profile the distribution of 5-hydroxymethylation in the cardiomyocyte (CMC) genome of cadaveric cardiac tissue and cardiac biopsy specimens; to compare the hydroxymethylome of cadaveric CMCs with that of cardiac biopsy specimens from HCM patients and/or cardiac transplant patients (control) undergoing cardiac catheterization; to histologically appraise sarcomere distribution and mitochondrial morphology of CMCs in the presence of HCM; to correlate the mitochondrial genome with the HCM phenotype; and to integrate anatomy with biochemistry and genetics into the instructional design of HCM in the core medical curriculum at Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU). Methods Normal and hypertrophic heart specimens will be obtained from 8 whole-body cadavers (2/8, 25% control and 6/8, 75% HCM). Myocardial biopsy specimens will be obtained from cardiothoracic and transplant units at the Cleveland Clinic in Abu Dhabi, UAE. As this is a proof-of-concept study, we plan to recruit 5 patients with HCM, where HCM has been diagnosed according to the guidelines of the 2014 European Society of Cardiology Guidelines. Patients with valvular heart disease, history of myocarditis, regular alcohol consumption, or cardiotoxic chemotherapy will be excluded. The control biopsy specimens will be obtained from patients who had received heart transplants. Three investigational approaches will then be employed: (1) gross anatomical evaluation, (2) histological analysis, and (3) profiling and analysis of the hydroxymethylome. These investigations will be pursued with minor modifications, if required, to the standard protocols and in accordance with institutional policy. The objective associated with the education of health professionals will be addressed through a strategy based on Graham’s knowledge translation model. Results This study is at the protocol-development stage. The validated questionnaires have been identified in relation to the objectives. The MBRU and the Cleveland Clinic Abu Dhabi Institutional Review Board (IRB) are reviewing this study. Further clarification and information can be obtained from the MBRU IRB. There is funding in place for this study (MBRU-CM-RG2019-08). Currently, we are in the process of standardizing the protocols with respect to the various molecular techniques to be employed during the course of the study. The total duration of the proposed research is 24 months, with a provision for 6 months of a no-cost extension. Conclusions The spectrum of CVDs has recently received significant focus from the public health sector in the UAE. HCM is a common familial heart disease, contributing to the sudden increase in the mortality rate of young Emiratis in the UAE. Incorporating artificial intelligence into the identification of epigenetic risk factors associated with HCM will promote accurate diagnosis and lead to the development of improved management plans, hence, positive patient outcomes. Furthermore, integration of these findings into the instructional design of undergraduate, postgraduate, and continuous professional development medical curricula will further contribute to the body of knowledge regarding HCM. International Registered Report Identifier (IRRID) PRR1-10.2196/17241
Collapse
Affiliation(s)
- Nerissa Naidoo
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Gurjyot Bajwa
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi, United Arab Emirates
| | - Ruthwik Duvuru
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Yajnavalka Banerjee
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Center for Medical Education, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
60
|
Liu CF, Tang WW. Epigenetics in Cardiac Hypertrophy and Heart Failure. JACC Basic Transl Sci 2019; 4:976-993. [PMID: 31909304 PMCID: PMC6938823 DOI: 10.1016/j.jacbts.2019.05.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is a complex syndrome affecting millions of people around the world. Over the past decade, the therapeutic potential of targeting epigenetic regulators in HF has been discussed extensively. Recent advances in next-generation sequencing techniques have contributed substantial progress in our understanding of the role of DNA methylation, post-translational modifications of histones, adenosine triphosphate (ATP)-dependent chromatin conformation and remodeling, and non-coding RNAs in HF pathophysiology. In this review, we summarize epigenomic studies on human and animal models in HF.
Collapse
Key Words
- BET, bromodomain
- EZH2, Enhancer of zeste homolog 2
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- HDM, histone demethylase
- HF, heart failure
- HMT, histone methyltransferase
- PRC2, polycomb repressor complex 2
- PTMs, post-translational modifications
- TAD, topologically associating domains
- TMAO, trimethylamine N-oxide
- cardiac hypertrophy
- epigenetics
- heart failure
- lnc-RNAs, long ncRNAs
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - W.H. Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
61
|
Transcriptome Analysis of Hypertrophic Heart Tissues from Murine Transverse Aortic Constriction and Human Aortic Stenosis Reveals Key Genes and Transcription Factors Involved in Cardiac Remodeling Induced by Mechanical Stress. DISEASE MARKERS 2019; 2019:5058313. [PMID: 31772688 PMCID: PMC6854968 DOI: 10.1155/2019/5058313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022]
Abstract
Background Mechanical stress-induced cardiac remodeling that results in heart failure is characterized by transcriptional reprogramming of gene expression. However, a systematic study of genomic changes involved in this process has not been performed to date. To investigate the genomic changes and underlying mechanism of cardiac remodeling, we collected and analyzed DNA microarray data for murine transverse aortic constriction (TAC) and human aortic stenosis (AS) from the Gene Expression Omnibus database and the European Bioinformatics Institute. Methods and Results The differential expression genes (DEGs) across the datasets were merged. The Venn diagrams showed that the number of intersections for early and late cardiac remodeling was 74 and 16, respectively. Gene ontology and protein–protein interaction network analysis showed that metabolic changes, cell differentiation and growth, cell cycling, and collagen fibril organization accounted for a great portion of the DEGs in the TAC model, while in AS patients' immune system signaling and cytokine signaling displayed the most significant changes. The intersections between the TAC model and AS patients were few. Nevertheless, the DEGs of the two species shared some common regulatory transcription factors (TFs), including SP1, CEBPB, PPARG, and NFKB1, when the heart was challenged by applied mechanical stress. Conclusions This study unravels the complex transcriptome profiles of the heart tissues and highlighting the candidate genes involved in cardiac remodeling induced by mechanical stress may usher in a new era of precision diagnostics and treatment in patients with cardiac remodeling.
Collapse
|
62
|
Abstract
Aging is associated with a progressive decline in cardiovascular structure and function. Accumulating evidence links cardiovascular aging to epigenetic alterations encompassing a complex interplay of DNA methylation, histone posttranslational modifications, and dynamic nucleosome occupancy governed by numerous epigenetic factors. Advances in genomics technology have led to a profound understanding of chromatin reorganization in both cardiovascular aging and diseases. This review summarizes recent discoveries in epigenetic mechanisms involved in cardiovascular aging and diseases and discusses potential therapeutic strategies to retard cardiovascular aging and conquer related diseases through the rejuvenation of epigenetic signatures to a young state.
Collapse
Affiliation(s)
- Weiqi Zhang
- From the Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China (W.Z., G.-H.L.).,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics (W.Z., G.-H.L.), Chinese Academy of Sciences, Beijing.,Institute of Stem Cell and Regeneration (W.Z., M.S., J.Q., G.-H.L.), Chinese Academy of Sciences, Beijing.,University of Chinese Academy of Sciences, Beijing (W.Z., M.S., J.Q., G.-H.L.)
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology (M.S.), Chinese Academy of Sciences, Beijing.,Institute of Stem Cell and Regeneration (W.Z., M.S., J.Q., G.-H.L.), Chinese Academy of Sciences, Beijing.,University of Chinese Academy of Sciences, Beijing (W.Z., M.S., J.Q., G.-H.L.)
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology (J.Q.), Chinese Academy of Sciences, Beijing.,Institute of Stem Cell and Regeneration (W.Z., M.S., J.Q., G.-H.L.), Chinese Academy of Sciences, Beijing.,University of Chinese Academy of Sciences, Beijing (W.Z., M.S., J.Q., G.-H.L.)
| | - Guang-Hui Liu
- From the Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China (W.Z., G.-H.L.).,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics (W.Z., G.-H.L.), Chinese Academy of Sciences, Beijing.,Institute of Stem Cell and Regeneration (W.Z., M.S., J.Q., G.-H.L.), Chinese Academy of Sciences, Beijing.,University of Chinese Academy of Sciences, Beijing (W.Z., M.S., J.Q., G.-H.L.)
| |
Collapse
|
63
|
Abstract
Supplemental Digital Content is available in the text. If unifying principles could be revealed for how the same genome encodes different eukaryotic cells and for how genetic variability and environmental input are integrated to impact cardiovascular health, grand challenges in basic cell biology and translational medicine may succumb to experimental dissection. A rich body of work in model systems has implicated chromatin-modifying enzymes, DNA methylation, noncoding RNAs, and other transcriptome-shaping factors in adult health and in the development, progression, and mitigation of cardiovascular disease. Meanwhile, deployment of epigenomic tools, powered by next-generation sequencing technologies in cardiovascular models and human populations, has enabled description of epigenomic landscapes underpinning cellular function in the cardiovascular system. This essay aims to unpack the conceptual framework in which epigenomes are studied and to stimulate discussion on how principles of chromatin function may inform investigations of cardiovascular disease and the development of new therapies.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Douglas J Chapski
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Thomas M Vondriska
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles.
| |
Collapse
|
64
|
Epigenetic therapies in heart failure. J Mol Cell Cardiol 2019; 130:197-204. [PMID: 30991033 DOI: 10.1016/j.yjmcc.2019.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is a dominant cause of morbidity and mortality in the developed world, with available pharmacotherapies limited by high rates of residual mortality and a failure to directly target the changes in cell state that drive adverse cardiac remodeling. Pathologic cardiac remodeling is driven by stress-activated cardiac signaling cascades that converge on defined components of the chromatin regulatory apparatus in the nucleus, triggering broad shifts in transcription and cell state. Thus, studies focusing on how cytosolic signaling pathways couple to the nuclear gene control machinery has been an area of therapeutic interest in HF. In this review, we discuss current concepts pertaining to the role of chromatin regulators in HF pathogenesis, with a focus on specific proteins and RNA-containing macromolecular complexes that have shown promise as druggable targets in the experimental setting.
Collapse
|
65
|
Yan K, Wang K, Li P. The role of post-translational modifications in cardiac hypertrophy. J Cell Mol Med 2019; 23:3795-3807. [PMID: 30950211 PMCID: PMC6533522 DOI: 10.1111/jcmm.14330] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/06/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Pathological cardiac hypertrophy involves excessive protein synthesis, increased cardiac myocyte size and ultimately the development of heart failure. Thus, pathological cardiac hypertrophy is a major risk factor for many cardiovascular diseases and death in humans. Extensive research in the last decade has revealed that post‐translational modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, O‐GlcNAcylation, methylation and acetylation, play important roles in pathological cardiac hypertrophy pathways. These PTMs potently mediate myocardial hypertrophy responses via the interaction, stability, degradation, cellular translocation and activation of receptors, adaptors and signal transduction events. These changes occur in response to pathological hypertrophy stimuli. In this review, we summarize the roles of PTMs in regulating the development of pathological cardiac hypertrophy. Furthermore, PTMs are discussed as potential targets for treating or preventing cardiac hypertrophy.
Collapse
Affiliation(s)
- Kaowen Yan
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
66
|
Li Y, Quan X, Li X, Pan Y, Zhang T, Liang Z, Wang Y. Kdm6A Protects Against Hypoxia-Induced Cardiomyocyte Apoptosis via H3K27me3 Demethylation of Ncx Gene. J Cardiovasc Transl Res 2019; 12:488-495. [DOI: 10.1007/s12265-019-09882-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/05/2019] [Indexed: 12/28/2022]
|
67
|
Zhang S, Yin Z, Dai F, Wang H, Zhou M, Yang M, Zhang S, Fu Z, Mei Y, Zang M, Xue L. miR‐29a attenuates cardiac hypertrophy through inhibition of PPARδ expression. J Cell Physiol 2018; 234:13252-13262. [PMID: 30580435 DOI: 10.1002/jcp.27997] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Si Zhang
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
- Department of Clinical Laboratory The Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Zhongnan Yin
- Biobank, Peking University Third Hospital Beijing Peoples's Republic of China
| | - Fei‐Fei Dai
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Hao Wang
- Medical Research Center Peking University Third Hospital Beijing Peoples's Republic of China
| | - Meng‐Jiao Zhou
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Ming‐Hui Yang
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Shu‐Feng Zhang
- Department of Pediatrics, The People's Hospital of Henan Province Zhengzhou Henan Peoples's Republic of China
| | - Zhi‐Feng Fu
- Statistics and Actuarial Science Department, Faculty of Science The University of Hong Kong Pok Fu Lam Hong Kong SAR Peoples's Republic of China
| | - Ying‐Wu Mei
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Ming‐Xi Zang
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Lixiang Xue
- Biobank, Peking University Third Hospital Beijing Peoples's Republic of China
- Medical Research Center Peking University Third Hospital Beijing Peoples's Republic of China
| |
Collapse
|
68
|
Elia L, Condorelli G. The involvement of epigenetics in vascular disease development. Int J Biochem Cell Biol 2018; 107:27-31. [PMID: 30543933 DOI: 10.1016/j.biocel.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases are a major cause of death and disability. Despite enormous progress in diagnosis, prevention, and treatment over the years, the incidence of this group of pathologies continues to increase worldwide. An important step in reversing this situation is filling in the gaps we have in our understanding of cardiovascular homeostasis and of the pathogenic processes leading to disease. On this point, the discovery of epigenetics - heritable chemical modifications of DNA bases and histone proteins, as well as non-coding RNA-based mechanisms regulating gene expression - has opened up new vistas. Here, we will review recent findings regarding the epigenetics of three main vascular diseases (atherosclerosis, restenosis, and aortic aneurysm), with a focus on DNA methylation and histone modification. The emerging fundamental nature of epigenetics for cardiovascular physiopathology and, importantly, the amenability to manipulation with pharmacological techniques are an indication that epigenetics-based prognostic and therapeutics procedures might be developed in the future.
Collapse
Affiliation(s)
- Leonardo Elia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Gianluigi Condorelli
- Humanitas Research Hospital, Rozzano, Milan, Italy; Humanitas University, Rozzano, Milan, Italy.
| |
Collapse
|
69
|
Zhou XL, Zhu RR, Wu X, Xu H, Li YY, Xu QR, Liu S, Huang H, Xu X, Wan L, Wu QC, Liu JC. NSD2 promotes ventricular remodelling mediated by the regulation of H3K36me2. J Cell Mol Med 2018; 23:568-575. [PMID: 30334333 PMCID: PMC6307761 DOI: 10.1111/jcmm.13961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/13/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022] Open
Abstract
Histone lysine methylation plays an important role in the regulation of ventricular remodelling. NSD2 is involved in many types of tumours through enhancing H3K36me2 expression. However, the role of NSD2 in the regulation of histone lysine methylation during ventricular remodelling remains unclear. In this study, we established cardiac hypertrophy model in C57BL/6 mice by transverse aortic constriction and found that histone lysine methylation participated in ventricular remodelling regulation via the up‐regulation of H3K27me2 and H3K36me2 expression. In addition, we constructed transgenic C57BL/6 mice with conditional knockout of NSD2 (NSD2−/−) in the myocardium. NSD2−/− C57BL/6 mice had milder ventricular remodelling and significantly improved cardiac function compared with wild‐type mice, and the expression of H3K36me2 but not H3K27me2 was down‐regulated. In conclusion, NSD2 promotes ventricular remodelling mediated by the regulation of H3K36me2.
Collapse
Affiliation(s)
- Xue-Liang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Rong-Rong Zhu
- Department of Obstetrics and Gynecology, Jiangxi Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, China
| | - Xia Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hua Xu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yun-Yun Li
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Qi-Rong Xu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Sheng Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Huang Huang
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xinping Xu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Li Wan
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Qi-Cai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
70
|
Yerra VG, Advani A. Histones and heart failure in diabetes. Cell Mol Life Sci 2018; 75:3193-3213. [PMID: 29934664 PMCID: PMC6063320 DOI: 10.1007/s00018-018-2857-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/22/2022]
Abstract
Although heart failure is now accepted as being a major long-term complication of diabetes, many of the recent advances in our understanding of the pathobiology of diabetes complications have come about through the study of more traditional microvascular or macrovascular diseases. This has been the case, for example, in the evolving field of the epigenetics of diabetes complications and, in particular, the post-translational modification of histone proteins. However, histone modifications also occur in human heart failure and their perturbation also occurs in diabetic hearts. Here, we review the principal histone modifications and their enzymatic writers and erasers that have been studied to date; we discuss what is currently known about their roles in heart failure and in the diabetic heart; we draw on lessons learned from the studies of microvascular and macrovascular complications; and we speculate that therapeutically manipulating histone modifications may alter the natural history of heart failure in diabetes.
Collapse
Affiliation(s)
- Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, 6-151, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, 6-151, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada.
| |
Collapse
|
71
|
Jiang J, Lan C, Li L, Yang D, Xia X, Liao Q, Fu W, Chen X, An S, Wang WE, Zeng C. A novel porcupine inhibitor blocks WNT pathways and attenuates cardiac hypertrophy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3459-3467. [PMID: 30076960 DOI: 10.1016/j.bbadis.2018.07.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 11/29/2022]
Abstract
WNT pathways are critically involved in the cardiac hypertrophy growth. Porcupine, an acyltransferase that specifically enables secretion of all WNT ligands, became a highly druggable target for inhibiting WNT pathways. Here we test if a novel small-molecule porcupine inhibitor CGX1321, which has entered human clinical trials as an anti-cancer agent, exerts an anti-hypertrophic effect. Transverse aortic constriction (TAC) was performed to induce cardiac hypertrophy on four-month-old male C57 mice. Cardiac function was measured with echocardiography. Histological analysis was performed to detect cardiomyocyte size and molecular expressions. CGX1321 was administrated daily for 4 weeks post TAC injury. As a result, CGX1321 improved cardiac function and animal survival of post-TAC mice. CGX1321 significantly reduced cardiomyocyte hypertrophy, cardiomyocyte apoptosis and fibrosis induced by TAC injury. CGX1321 significantly inhibited TAC induced nuclear translocation of β-catenin and the elevation of Frizzled-2, cyclin-D1 and c-myc expression, indicating its inhibitory effect on canonical WNT pathway. Furthermore, CGX1321 inhibited TAC induced nuclear translocation of nuclear factor of activated T-cells and the elevation of phosphorylated c-Jun expression, suggesting its inhibitory function on non-canonical WNT pathway. We conclude that CGX1321 inhibits both canonical and non-canonical WNT pathways, and attenuates cardiac hypertrophy. Our findings support the porcupine inhibitors as a class of new drugs to be potentially used for treating patients with cardiac hypertrophy.
Collapse
Affiliation(s)
- Jiahui Jiang
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Cong Lan
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Dezhong Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Xuewei Xia
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Wenbin Fu
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Xiongwen Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China; Cardiovascular Research Center, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Songzhu An
- Guangzhou Curegenix Co. Ltd., International Business Incubator, Guangzhou Science City, Guangzhou 510663, China
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| |
Collapse
|
72
|
Lu H, Lei X, Zhang Q. Liver-specific knockout of histone methyltransferase G9a impairs liver maturation and dysregulates inflammatory, cytoprotective, and drug-processing genes. Xenobiotica 2018; 49:740-752. [PMID: 29912608 DOI: 10.1080/00498254.2018.1490044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methyltransferase G9a is essential for a key gene silencing mark, histone H3 dimethylation at lysine-9 (H3K9me2). Hepatic G9a expression is down-regulated by xenobiotics and diabetes. However, little is known about the role of G9a in liver. Thus, we generated mice with liver-specific knockout (Liv-KO) of G9a. Adult G9a Liv-KO mice had marked loss of H3K9me2 proteins in liver, without overt liver injury or infiltration of inflammatory cells. However, G9a-null livers had ectopic induction of certain genes normally expressed in neural and immune systems. Additionally, G9a-null livers had moderate down-regulation of cytoprotective genes, markedly altered expression of certain important drug-processing genes, elevated endogenous reactive oxygen species, induction of ER stress marker Chop, but decreased glutathione and nuclear Nrf2. microRNA-383, a negative regulator of the PI3K/Akt pathway, was strongly induced in G9a Liv-KO mice. After LPS treatment, G9a Liv-KO mice had aggravated lipid peroxidation and proinflammatory response. Taken together, the present study demonstrates that G9a regulates liver maturation by silencing neural and proinflammatory genes but maintaining/activating cytoprotective and drug-processing genes, in which the G9a/miR-383/PI3K/Akt/Nrf2 (Chop) pathways may play important roles. G9a deficiency due to genetic polymorphism and/or environmental exposure may alter xenobiotic metabolism and aggravate inflammation and liver dysfunction.
Collapse
Affiliation(s)
- Hong Lu
- a Department of Pharmacology , SUNY Upstate Medical University , Syracuse , USA
| | - Xiaohong Lei
- a Department of Pharmacology , SUNY Upstate Medical University , Syracuse , USA
| | - Qinghao Zhang
- a Department of Pharmacology , SUNY Upstate Medical University , Syracuse , USA
| |
Collapse
|
73
|
Yan S. Integrative analysis of promising molecular biomarkers and pathways for coronary artery disease using WGCNA and MetaDE methods. Mol Med Rep 2018; 18:2789-2797. [PMID: 30015926 PMCID: PMC6102698 DOI: 10.3892/mmr.2018.9277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/31/2018] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to examine the molecular mechanisms of coronary artery disease (CAD). A total of four microarray datasets (training dataset no. GSE12288; validation dataset nos. GSE20680, GSE20681 and GSE42148) were downloaded from the Gene Expression Omnibus database, which included CAD and healthy samples. Weighted gene co-expression network analysis was applied to identify highly preserved modules across the four datasets. Differentially expressed genes (DEGs) with significant consistency in the four datasets were selected using the MetaDE method. The overlapping genes amongst the DEGs with significant consistency and in the preserved modules were used to construct a protein-protein interaction (PPI) network, followed by functional enrichment analysis. A total of 11 modules were established in the training dataset, and five of them were highly preserved across all four datasets, including 873 genes. There was a total of 836 DEGs with significant consistency in the four datasets. A total of 177 overlapping genes were selected, with which a PPI network was constructed. The top five genes of the PPI network were identified based on their degrees: LCK proto-oncogene, Src family tyrosine kinase (LCK), euchromatic histone lysine methyltransferase 2 (EHMT2), inosine monophosphate dehydrogenase 2 (IMPDH2), protein phosphatase 4 catalytic subunit (PPP4C) and ζ-chain of T-cell receptor associated protein kinase 70 (ZAP70). Genes in the PPI network were significantly involved in a number of Kyoto Encyclopedia Genes and Genomes pathways, including the ‘natural killer cell mediated cytotoxicity’, ‘primary immunodeficiency’ and ‘Fc gamma R-mediated phagocytosis’ pathways. LCK, EHMT2, IMPDH2, PPP4C and ZAP70 are suggested as promising molecular biomarkers for CAD. The ‘natural killer cell mediated cytotoxicity’, ‘primary immunodeficiency’ and ‘Fc gamma R-mediated phagocytosis’ pathways may serve important roles in CAD.
Collapse
Affiliation(s)
- Shilin Yan
- Department of Cardiology, Yangling Demonstration Zone Hospital, Xianyang, Shaanxi 712100, P.R. China
| |
Collapse
|
74
|
|
75
|
Gilsbach R, Schwaderer M, Preissl S, Grüning BA, Kranzhöfer D, Schneider P, Nührenberg TG, Mulero-Navarro S, Weichenhan D, Braun C, Dreßen M, Jacobs AR, Lahm H, Doenst T, Backofen R, Krane M, Gelb BD, Hein L. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat Commun 2018; 9:391. [PMID: 29374152 PMCID: PMC5786002 DOI: 10.1038/s41467-017-02762-z] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 12/22/2017] [Indexed: 02/04/2023] Open
Abstract
Epigenetic mechanisms and transcription factor networks essential for differentiation of cardiac myocytes have been uncovered. However, reshaping of the epigenome of these terminally differentiated cells during fetal development, postnatal maturation, and in disease remains unknown. Here, we investigate the dynamics of the cardiac myocyte epigenome during development and in chronic heart failure. We find that prenatal development and postnatal maturation are characterized by a cooperation of active CpG methylation and histone marks at cis-regulatory and genic regions to shape the cardiac myocyte transcriptome. In contrast, pathological gene expression in terminal heart failure is accompanied by changes in active histone marks without major alterations in CpG methylation and repressive chromatin marks. Notably, cis-regulatory regions in cardiac myocytes are significantly enriched for cardiovascular disease-associated variants. This study uncovers distinct layers of epigenetic regulation not only during prenatal development and postnatal maturation but also in diseased human cardiac myocytes.
Collapse
Affiliation(s)
- Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Martin Schwaderer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Björn A Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
| | - David Kranzhöfer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Pedro Schneider
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas G Nührenberg
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Department for Cardiology und Angiology II, University Heart Center Freiburg • Bad Krozingen, 79189, Bad Krozingen, Germany
| | - Sonia Mulero-Navarro
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6542, USA
| | - Dieter Weichenhan
- Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Christian Braun
- Forensic Institute, Ludwig-Maximilians-University, 80046, Munich, Germany
| | - Martina Dreßen
- Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, 80636, Munich, Germany
- Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, 80636, Munich, Germany
| | - Adam R Jacobs
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Harald Lahm
- Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, 80636, Munich, Germany
- Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, 80636, Munich, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University, 07740, Jena, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, 80636, Munich, Germany
- Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, 80636, Munich, Germany
- DZHK (German Center for Cardiovascular Research) - Partner Site Munich Heart Alliance, Munich, 60046, Germany
| | - Bruce D Gelb
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6542, USA
- Department of Genetics and Genomic Sciences & Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
76
|
Cunningham CM, Eghbali M. An Introduction to Epigenetics in Cardiovascular Development, Disease, and Sexualization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:31-47. [PMID: 30051375 DOI: 10.1007/978-3-319-77932-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic regulation of gene expression is integral to cell differentiation, development, and disease. Modes of epigenetic regulation-including DNA methylation, histone modifications, and ncRNA-based regulation-alter chromatin structure, promotor accessibility, and contribute to posttranscriptional modifications. In the cardiovascular system, epigenetic regulation is necessary for proper cardiovascular development and homeostasis, while epigenetic dysfunction is associated with improper cardiac development and disease.Early sexualization of tissues, including X-inactivation in females and maternal and paternal imprinting, is also orchestrated through epigenetic mechanisms. Furthermore, sex chromosomes encode various sex-specific genes involved in epigenetic regulation, while sex hormones can act as regulatory cofactors that may predispose or protect males and females against developing diseases with a marked sex bias.The following book chapter summarizes the field of epigenetics in the context of cardiovascular development and disease while also highlighting the role of epigenetic regulation as a powerful source of sex differences within the cardiovascular system.
Collapse
Affiliation(s)
- Christine M Cunningham
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
77
|
Li C, Matsushita S, Li Z, Guan J, Amano A. c-kit Positive Cardiac Outgrowth Cells Demonstrate Better Ability for Cardiac Recovery Against Ischemic Myopathy. ACTA ACUST UNITED AC 2017; 7. [PMID: 29238626 PMCID: PMC5726283 DOI: 10.4172/2157-7633.1000402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective Resident cardiac stem cells are expected to be a therapeutic option for patients who suffer from severe heart failure. However, uncertainty remains over whether sorting cells for c-kit, a stem cell marker, improves therapeutic outcomes. Materials and methods Cardiac outgrowth cells cultured from explants of rat heart atrium were sorted according to their positivity (+) or negativity (−) for c-kit. These cells were exposed to hypoxia for 3 d, and subsequently harvested for mRNA expression measurement. The cell medium was also collected to assess cytokine secretion. To test for a functional benefit in animals, myocardial infarction (MI) was induced in rats, and c-kit+ or c-kit− cells were injected. The left ventricular ejection fraction (LVEF) was measured for up to 4 weeks, after which the heart was harvested for biological and histological analyses. Results and conclusion Expression of the angiogenesis-related genes, VEGF and ANGPTL2, was significantly higher in c-kit+ cells after 3 d of hypoxic culture, although we found no such difference prior to hypoxia. Secretion of VEGF and ANGPTL2 was greater in the c-kit+ group than in the c-kit− group, while hypoxia tended to increase cytokine expression in both groups. In addition, IGF-1 was significantly increased in the c-kit+ group, consistent with the relatively low expression of cleaved-caspase 3 revealed by western blot assay, and the relatively low count of apoptotic cells revealed by histochemical analysis. Administration of c-kit+cells into the MI heart improved the LVEF and increased neovascularization. These results indicate that c-kit+cells may be useful in cardiac stem cell therapy.
Collapse
Affiliation(s)
- Chuan Li
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Satoshi Matsushita
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Zhengqing Li
- Department of Materials Science and Engineering, Ohio State University, Columbus, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, Ohio State University, Columbus, USA
| | - Atsushi Amano
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
78
|
Spearman AD. Epigenetics for the pediatric cardiologist. CONGENIT HEART DIS 2017; 12:828-833. [PMID: 28984030 DOI: 10.1111/chd.12543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
Abstract
A genetic basis of congenital heart disease (CHD) has been known for decades. In addition to the sequence of the genome, the contribution of epigenetics to pediatric cardiology is increasingly recognized. Multiple epigenetic mechanisms, including DNA methylation, histone modification, and RNA-based regulation, are known mediators of cardiovascular disease, including both development and progression of CHD and its sequelae. Basic understanding of the concepts of epigenetics will be essential to all pediatric cardiologists in order to understand mechanisms of pathophysiology, pharmacotherapeutic concepts, and to understand the role of epigenetics in precision medicine.
Collapse
Affiliation(s)
- Andrew D Spearman
- Medical College of Wisconsin, 9000 Wisconsin Avenue, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|