51
|
Vascular smooth muscle cell dysfunction in diabetes: nuclear receptors channel to relaxation. Clin Sci (Lond) 2016; 130:1837-9. [DOI: 10.1042/cs20160518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022]
Abstract
Endothelial dysfunction and impaired vascular relaxation represent a common cause of microvascular disease in patients with diabetes. Although multiple mechanisms underlying altered endothelial cell function in diabetes have been described, there is currently no specific and approved pharmacological treatment. In this edition of Clinical Science, Morales-Cano et al. characterize voltage-dependent K+ (Kv) channels as genes regulated by pharmacological activation of peroxisome proliferator-activated receptor-b/d (PPARb/d). Diabetes altered Kv channel function leading to impaired coronary artery relaxation, which was prevented by pharmacological activation of PPARb/d. These studies highlight an important mechanism of vascular dysfunction in diabetes and point to a potential approach for therapy, particularly considering that PPARb/d ligands have been developed and tested in small clinical trials.
Collapse
|
52
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
53
|
Critical contribution of KV1 channels to the regulation of coronary blood flow. Basic Res Cardiol 2016; 111:56. [PMID: 27496159 DOI: 10.1007/s00395-016-0575-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/08/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Ion channels in smooth muscle control coronary vascular tone, but the identity of the potassium channels involved requires further investigation. The purpose of this study was to evaluate the functional role of KV1 channels on porcine coronary blood flow using the selective antagonist correolide. KV1 channel gene transcripts were found in porcine coronary arteries, with KCNA5 (encoding KV1.5) being most abundant (P < 0.001). Immunohistochemical staining demonstrated KV1.5 protein in the vascular smooth muscle layer of both porcine and human coronary arteries, including microvessels. Whole-cell patch-clamp experiments demonstrated significant correolide-sensitive (1-10 µM) current in coronary smooth muscle. In vivo studies included direct intracoronary infusion of vehicle or correolide into a pressure-clamped left anterior descending artery of healthy swine (n = 5 in each group) with simultaneous measurement of coronary blood flow. Intracoronary correolide (~0.3-3 µM targeted plasma concentration) had no effect on heart rate or systemic pressure, but reduced coronary blood flow in a dose-dependent manner (P < 0.05). Dobutamine (0.3-10 µg/kg/min) elicited coronary metabolic vasodilation and intracoronary correolide (3 µM) significantly reduced coronary blood flow at any given level of myocardial oxygen consumption (P < 0.001). Coronary artery occlusions (15 s) elicited reactive hyperemia and correolide (3 µM) reduced the flow volume repayment by approximately 30 % (P < 0.05). Taken together, these data support a major role for KV1 channels in modulating baseline coronary vascular tone and, perhaps, vasodilation in response to increased metabolism and transient ischemia.
Collapse
|
54
|
Tsvetkov D, Tano JY, Kassmann M, Wang N, Schubert R, Gollasch M. The Role of DPO-1 and XE991-Sensitive Potassium Channels in Perivascular Adipose Tissue-Mediated Regulation of Vascular Tone. Front Physiol 2016; 7:335. [PMID: 27540364 PMCID: PMC4973012 DOI: 10.3389/fphys.2016.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/20/2016] [Indexed: 11/13/2022] Open
Abstract
The anti-contractile effect of perivascular adipose tissue (PVAT) is an important mechanism in the modulation of vascular tone in peripheral arteries. Recent evidence has implicated the XE991-sensitive voltage-gated KV (KCNQ) channels in the regulation of arterial tone by PVAT. However, until now the in vivo pharmacology of the involved vascular KV channels with regard to XE991 remains undetermined, since XE991 effects may involve Ca(2+) activated BKCa channels and/or voltage-dependent KV1.5 channels sensitive to diphenyl phosphine oxide-1 (DPO-1). In this study, we tested whether KV1.5 channels are involved in the control of mesenteric arterial tone and its regulation by PVAT. Our study was also aimed at extending our current knowledge on the in situ vascular pharmacology of DPO-1 and XE991 regarding KV1.5 and BKCa channels, in helping to identify the nature of K(+) channels that could contribute to PVAT-mediated relaxation. XE991 at 30 μM reduced the anti-contractile response of PVAT, but had no effects on vasocontraction induced by phenylephrine (PE) in the absence of PVAT. Similar effects were observed for XE991 at 0.3 μM, which is known to almost completely inhibit mesenteric artery VSMC KV currents. 30 μM XE991 did not affect BKCa currents in VSMCs. Kcna5 (-/-) arteries and wild-type arteries incubated with 1 μM DPO-1 showed normal vasocontractions in response to PE in the presence and absence of PVAT. KV current density and inhibition by 30 μM XE991 were normal in mesenteric artery VSMCs isolated from Kcna5 (-/-) mice. We conclude that KV channels are involved in the control of arterial vascular tone by PVAT. These channels are present in VSMCs and very potently inhibited by the KCNQ channel blocker XE991. BKCa channels and/or DPO-1 sensitive KV1.5 channels in VSMCs are not the downstream mediators of the XE991 effects on PVAT-dependent arterial vasorelaxation. Further studies will need to be undertaken to examine the role of other KV channels in the phenomenon.
Collapse
Affiliation(s)
- Dmitry Tsvetkov
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Jean-Yves Tano
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Mario Kassmann
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Ning Wang
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Rudolf Schubert
- Research Division Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim of the University Heidelberg Mannheim, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research CentresBerlin, Germany; Medical Clinic for Nephrology and Internal Intensive Care, Charité University MedicineBerlin, Germany
| |
Collapse
|
55
|
Activation of PPARβ/δ prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries. Clin Sci (Lond) 2016; 130:1823-36. [PMID: 27413020 DOI: 10.1042/cs20160141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Abstract
PPARβ/δ activation protects against endothelial dysfunction in diabetic models. Elevated glucose is known to impair cAMP-induced relaxation and Kv channel function in coronary arteries (CA). Herein, we aimed to analyse the possible protective effects of the PPARβ/δ agonist GW0742 on the hyperglycaemic-induced impairment of cAMP-induced relaxation and Kv channel function in rat CA. As compared with low glucose (LG), incubation under high glucose (HG) conditions attenuated the relaxation induced by the adenylate cyclase activator forskolin in CA and this was prevented by GW0742. The protective effect of GW0742 was supressed by a PPARβ/δ antagonist. In myocytes isolated from CA under LG, forskolin enhanced Kv currents and induced hyperpolarization. In contrast, when CA were incubated with HG, Kv currents were diminished and the electrophysiological effects of forskolin were abolished. These deleterious effects were prevented by GW0742. The protective effects of GW0742 on forskolin-induced relaxation and Kv channel function were confirmed in CA from type-1 diabetic rats. In addition, the differences in the relaxation induced by forskolin in CA incubated under LG, HG or HG + GW0742 were abolished by the Kv7 channel inhibitor XE991. Accordingly, GW0742 prevented the down-regulation of Kv7 channels induced by HG. Finally, the preventive effect of GW0742 on oxidative stress and cAMP-induced relaxation were overcome by the pyruvate dehydrogenase kinase 4 (PDK4) inhibitor dichloroacetate (DCA). Our results reveal that the PPARβ/δ agonist GW0742 prevents the impairment of the cAMP-mediated relaxation in CA under HG. This protective effect was associated with induction of PDK4, attenuation of oxidative stress and preservation of Kv7 channel function.
Collapse
|
56
|
Carr G, Barrese V, Stott JB, Povstyan OV, Jepps TA, Figueiredo HB, Zheng D, Jamshidi Y, Greenwood IA. MicroRNA-153 targeting of KCNQ4 contributes to vascular dysfunction in hypertension. Cardiovasc Res 2016; 112:581-589. [PMID: 27389411 PMCID: PMC5079273 DOI: 10.1093/cvr/cvw177] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 07/01/2016] [Indexed: 11/30/2022] Open
Abstract
Aims Kv7.4, a voltage-dependent potassium channel expressed throughout the vasculature, controls arterial contraction and is compromised in hypertension by an unknown mechanism. MicroRNAs (miRs) are post-transcriptional regulators of protein production and are altered in disease states such as hypertension. We investigated whether miRs regulate Kv7.4 expression. Methods and results In renal and mesenteric arteries (MAs) of the spontaneously hypertensive rat (SHR), Kv7.4 protein decreased compared with the normotensive (NT) rat without a decrease in KCNQ4 mRNA, inferring that Kv7.4 abundance was determined by post-transcriptional regulation. In silico analysis of the 3′ UTR of KCNQ4 revealed seed sequences for miR26a, miR133a, miR200b, miR153, miR214, miR218, and let-7d with quantitative polymerase chain reaction showing miR153 increased in those arteries from SHRs that exhibited decreased Kv7.4 levels. Luciferase reporter assays indicated a direct targeting effect of miR153 on the 3′ UTR of KCNQ4. Introduction of high levels of miR153 to MAs increased vascular wall thickening and reduced Kv7.4 expression/Kv7 channel function compared with vessels receiving a non-targeting miR, providing a proof of concept of Kv7.4 regulation by miR153. Conclusion This study is the first to define a role for aberrant miR153 contributing to the hypertensive state through targeting of KCNQ4 in an animal model of hypertension, raising the possibility of the use of miR153-related therapies in vascular disease.
Collapse
Affiliation(s)
- Georgina Carr
- Vascular Research Centre, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Vincenzo Barrese
- Vascular Research Centre, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Jennifer B Stott
- Vascular Research Centre, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Oleksandr V Povstyan
- Vascular Research Centre, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Thomas A Jepps
- Ion Channels Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hericka B Figueiredo
- Vascular Research Centre, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Dongling Zheng
- Vascular Research Centre, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Yalda Jamshidi
- Vascular Research Centre, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Iain A Greenwood
- Vascular Research Centre, St George's University of London, Cranmer Terrace, London SW17 0RE, UK.,Ion Channels Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
57
|
Haick JM, Byron KL. Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels. Pharmacol Ther 2016; 165:14-25. [PMID: 27179745 DOI: 10.1016/j.pharmthera.2016.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body.
Collapse
Affiliation(s)
- Jennifer M Haick
- Department of Molecular Pharmacology & Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Kenneth L Byron
- Department of Molecular Pharmacology & Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
58
|
Hedegaard ER, Johnsen J, Povlsen JA, Jespersen NR, Shanmuganathan JA, Laursen MR, Kristiansen SB, Simonsen U, Bøtker HE. Inhibition of KV7 Channels Protects the Rat Heart against Myocardial Ischemia and Reperfusion Injury. J Pharmacol Exp Ther 2016; 357:94-102. [PMID: 26869667 DOI: 10.1124/jpet.115.230409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/05/2016] [Indexed: 03/08/2025] Open
Abstract
The voltage-gated KV7 (KCNQ) potassium channels are activated by ischemia and involved in hypoxic vasodilatation. We investigated the effect of KV7 channel modulation on cardiac ischemia and reperfusion injury and its interaction with cardioprotection by ischemic preconditioning (IPC). Reverse-transcription polymerase chain reaction revealed expression of KV7.1, KV7.4, and KV7.5 in the left anterior descending rat coronary artery and all KV7 subtypes (KV7.1-KV7.5) in the left and right ventricles of the heart. Isolated hearts were subjected to no-flow global ischemia and reperfusion with and without IPC. Infarct size was quantified by 2,3,5-triphenyltetrazolium chloride staining. Two blockers of KV7 channels, XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone] (10 µM) and linopirdine (10 µM), reduced infarct size and exerted additive infarct reduction to IPC. An opener of KV7 channels, flupirtine (10 µM) abolished infarct size reduction by IPC. Hemodynamics were measured using a catheter inserted in the left ventricle and postischemic left ventricular recovery improved in accordance with reduction of infarct size and deteriorated with increased infarct size. XE991 (10 µM) reduced coronary flow in the reperfusion phase and inhibited vasodilatation in isolated small branches of the left anterior descending coronary artery during both simulated ischemia and reoxygenation. KV7 channels are expressed in rat coronary arteries and myocardium. Inhibition of KV7 channels exerts cardioprotection and opening of KV7 channels abrogates cardioprotection by IPC. Although safety issues should be further addressed, our findings suggest a potential role for KV7 blockers in the treatment of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Elise R Hedegaard
- Departments of Biomedicine, Pulmonary and Cardiovascular Pharmacology (E.R.H., J.A.S., U.S.), Clinical Medicine (J.J., J.A.P., N.R.J., M.R.L., S.B.K., H.E.B), and Forensic Medicine (M.R.L), Aarhus University, Aarhus, Denmark; and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (J.J., J.A.P., N.R.J., S.B.K., H.E.B)
| | - Jacob Johnsen
- Departments of Biomedicine, Pulmonary and Cardiovascular Pharmacology (E.R.H., J.A.S., U.S.), Clinical Medicine (J.J., J.A.P., N.R.J., M.R.L., S.B.K., H.E.B), and Forensic Medicine (M.R.L), Aarhus University, Aarhus, Denmark; and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (J.J., J.A.P., N.R.J., S.B.K., H.E.B)
| | - Jonas A Povlsen
- Departments of Biomedicine, Pulmonary and Cardiovascular Pharmacology (E.R.H., J.A.S., U.S.), Clinical Medicine (J.J., J.A.P., N.R.J., M.R.L., S.B.K., H.E.B), and Forensic Medicine (M.R.L), Aarhus University, Aarhus, Denmark; and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (J.J., J.A.P., N.R.J., S.B.K., H.E.B)
| | - Nichlas R Jespersen
- Departments of Biomedicine, Pulmonary and Cardiovascular Pharmacology (E.R.H., J.A.S., U.S.), Clinical Medicine (J.J., J.A.P., N.R.J., M.R.L., S.B.K., H.E.B), and Forensic Medicine (M.R.L), Aarhus University, Aarhus, Denmark; and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (J.J., J.A.P., N.R.J., S.B.K., H.E.B)
| | - Jeffrey A Shanmuganathan
- Departments of Biomedicine, Pulmonary and Cardiovascular Pharmacology (E.R.H., J.A.S., U.S.), Clinical Medicine (J.J., J.A.P., N.R.J., M.R.L., S.B.K., H.E.B), and Forensic Medicine (M.R.L), Aarhus University, Aarhus, Denmark; and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (J.J., J.A.P., N.R.J., S.B.K., H.E.B)
| | - Mia R Laursen
- Departments of Biomedicine, Pulmonary and Cardiovascular Pharmacology (E.R.H., J.A.S., U.S.), Clinical Medicine (J.J., J.A.P., N.R.J., M.R.L., S.B.K., H.E.B), and Forensic Medicine (M.R.L), Aarhus University, Aarhus, Denmark; and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (J.J., J.A.P., N.R.J., S.B.K., H.E.B)
| | - Steen B Kristiansen
- Departments of Biomedicine, Pulmonary and Cardiovascular Pharmacology (E.R.H., J.A.S., U.S.), Clinical Medicine (J.J., J.A.P., N.R.J., M.R.L., S.B.K., H.E.B), and Forensic Medicine (M.R.L), Aarhus University, Aarhus, Denmark; and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (J.J., J.A.P., N.R.J., S.B.K., H.E.B)
| | - Ulf Simonsen
- Departments of Biomedicine, Pulmonary and Cardiovascular Pharmacology (E.R.H., J.A.S., U.S.), Clinical Medicine (J.J., J.A.P., N.R.J., M.R.L., S.B.K., H.E.B), and Forensic Medicine (M.R.L), Aarhus University, Aarhus, Denmark; and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (J.J., J.A.P., N.R.J., S.B.K., H.E.B)
| | - Hans Erik Bøtker
- Departments of Biomedicine, Pulmonary and Cardiovascular Pharmacology (E.R.H., J.A.S., U.S.), Clinical Medicine (J.J., J.A.P., N.R.J., M.R.L., S.B.K., H.E.B), and Forensic Medicine (M.R.L), Aarhus University, Aarhus, Denmark; and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (J.J., J.A.P., N.R.J., S.B.K., H.E.B)
| |
Collapse
|
59
|
Stott JB, Greenwood IA. Complex role of Kv7 channels in cGMP and cAMP-mediated relaxations. Channels (Austin) 2016; 9:117-8. [PMID: 25975669 DOI: 10.1080/19336950.2015.1046732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- J B Stott
- a Vascular Research Group; Institute of Cardiovascular & Cell Sciences; St George's University of London ; London , UK
| | | |
Collapse
|
60
|
Mani BK, Robakowski C, Brueggemann LI, Cribbs LL, Tripathi A, Majetschak M, Byron KL. Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents. Mol Pharmacol 2016; 89:323-34. [PMID: 26700561 PMCID: PMC4767407 DOI: 10.1124/mol.115.101758] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022] Open
Abstract
Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K(+) currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 >> Kv7.4/Kv7.5 > Kv7.4.
Collapse
Affiliation(s)
- Bharath K Mani
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| | - Christina Robakowski
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| | - Lyubov I Brueggemann
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| | - Leanne L Cribbs
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| | - Abhishek Tripathi
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| | - Matthias Majetschak
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| | - Kenneth L Byron
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
61
|
Jepps TA, Olesen SP, Greenwood IA, Dalsgaard T. Molecular and functional characterization of Kv 7 channels in penile arteries and corpus cavernosum of healthy and metabolic syndrome rats. Br J Pharmacol 2016; 173:1478-90. [PMID: 26802314 DOI: 10.1111/bph.13444] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE KCNQ-encoded voltage-dependent potassium channels (Kv 7) are involved in the regulation of vascular tone. In this study we evaluated the influence of Kv 7 channel activation on smooth muscle relaxation in rat penile arteries and corpus cavernosum from normal and spontaneously hypertensive, heart failure-prone (SHHF) rats - a rat model of human metabolic syndrome. EXPERIMENTAL APPROACH Quantitative PCR and immunohistochemistry were used to determine the expression of KCNQ isoforms in penile tissue. Isometric tension was measured in intracavernous arterial rings and corpus cavernosum strips isolated from normal and SHHF rats. KEY RESULTS Transcripts for KCNQ3, KCNQ4 and KCNQ5 were detected in penile arteries and corpus cavernosum. KCNQ1 was only found in corpus cavernosum. Immunofluorescence signals to Kv 7.4 and Kv 7.5 were found in penile arteries, penile veins and corpus cavernosum. The Kv 7.2-7.5 activators, ML213 and BMS204352, relaxed pre-contracted penile arteries and corpus cavernosum independently of nitric oxide synthase or endothelium-derived hyperpolarization. Relaxations to sildenafil, a PDE5 inhibitor, and sodium nitroprusside (SNP), an nitric oxide donor, were reduced by blocking Kv 7 channels with linopirdine in penile arteries and corpus cavernosum. In SHHF rat penile arteries and corpus cavernosum, relaxations to ML213 and BMS204352 were attenuated, and the blocking effect of linopirdine on sildenafil-induced and SNP-induced relaxations reduced. KCNQ3, KCNQ4 and KCNQ5 were down-regulated, and KCNQ1 was up-regulated in corpus cavernosum from SHHF rats. KCNQ1-5 transcripts remained unchanged in penile arteries from SHHF rats. CONCLUSIONS AND IMPLICATIONS These data suggest that Kv 7 channels play a role in erectile function and contribute to the pathophysiology of erectile dysfunction, an early indicator of cardiovascular disease.
Collapse
Affiliation(s)
- T A Jepps
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S P Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - I A Greenwood
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,The Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St George's, London, UK
| | - T Dalsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
62
|
Goodwill AG, Fu L, Noblet JN, Casalini ED, Sassoon D, Berwick ZC, Kassab GS, Tune JD, Dick GM. KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine. Am J Physiol Heart Circ Physiol 2016; 310:H693-704. [PMID: 26825518 DOI: 10.1152/ajpheart.00688.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/20/2016] [Indexed: 12/30/2022]
Abstract
Hydrogen peroxide (H2O2) and voltage-dependent K(+) (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed. Thus we examined the hypothesis that KV7 channels are present in cells of the coronary vascular wall and regulate vasodilation in swine. We performed a variety of molecular, biochemical, and functional (in vivo and ex vivo) studies. Coronary arteries expressed KCNQ genes (quantitative PCR) and KV7.4 protein (Western blot). Immunostaining demonstrated KV7.4 expression in conduit and resistance vessels, perhaps most prominently in the endothelial and adventitial layers. Flupirtine, a KV7 opener, relaxed coronary artery rings, and this was attenuated by linopirdine, a KV7 blocker. Endothelial denudation inhibited the flupirtine-induced and linopirdine-sensitive relaxation of coronary artery rings. Moreover, linopirdine diminished bradykinin-induced endothelial-dependent relaxation of coronary artery rings. There was no effect of intracoronary flupirtine or linopirdine on coronary blood flow at the resting heart rate in vivo. Linopirdine had no effect on coronary vasodilation in vivo elicited by ischemia, H2O2, or tachycardia. However, bradykinin increased coronary blood flow in vivo, and this was attenuated by linopirdine. These data indicate that KV7 channels are expressed in some coronary cell type(s) and influence endothelial function. Other physiological functions of coronary vascular KV7 channels remain unclear, but they do appear to contribute to endothelium-dependent responses to paracrine stimuli.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Lijuan Fu
- California Medical Innovations Institute, San Diego, California
| | - Jillian N Noblet
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Eli D Casalini
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Daniel Sassoon
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | | | | | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Gregory M Dick
- California Medical Innovations Institute, San Diego, California
| |
Collapse
|
63
|
Testai L, Barrese V, Soldovieri MV, Ambrosino P, Martelli A, Vinciguerra I, Miceli F, Greenwood IA, Curtis MJ, Breschi MC, Sisalli MJ, Scorziello A, Canduela MJ, Grandes P, Calderone V, Taglialatela M. Expression and function of Kv7.4 channels in rat cardiac mitochondria: possible targets for cardioprotection. Cardiovasc Res 2015; 110:40-50. [PMID: 26718475 DOI: 10.1093/cvr/cvv281] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
AIMS Plasmalemmal Kv7.1 (KCNQ1) channels are critical players in cardiac excitability; however, little is known on the functional role of additional Kv7 family members (Kv7.2-5) in cardiac cells. In this work, the expression, function, cellular and subcellular localization, and potential cardioprotective role against anoxic-ischaemic cardiac injury of Kv7.4 channels have been investigated. METHODS AND RESULTS Expression of Kv7.1 and Kv7.4 transcripts was found in rat heart tissue by quantitative polymerase chain reaction. Western blots detected Kv7.4 subunits in mitochondria from Kv7.4-transfected cells, H9c2 cardiomyoblasts, freshly isolated adult cardiomyocytes, and whole hearts. Immunofluorescence experiments revealed that Kv7.4 subunits co-localized with mitochondrial markers in cardiac cells, with ∼ 30-40% of cardiac mitochondria being labelled by Kv7.4 antibodies, a result also confirmed by immunogold electron microscopy experiments. In isolated cardiac (but not liver) mitochondria, retigabine (1-30 µM) and flupirtine (30 µM), two selective Kv7 activators, increased Tl(+) influx, depolarized the membrane potential, and inhibited calcium uptake; all these effects were antagonized by the Kv7 blocker XE991. In intact H9c2 cells, reducing Kv7.4 expression by RNA interference blunted retigabine-induced mitochondrial membrane depolarization; in these cells, retigabine decreased mitochondrial Ca(2+) levels and increased radical oxygen species production, both effects prevented by XE991. Finally, retigabine reduced cellular damage in H9c2 cells exposed to anoxia/re-oxygenation and largely prevented the functional and morphological changes triggered by global ischaemia/reperfusion (I/R) in Langendorff-perfused rat hearts. CONCLUSION Kv7.4 channels are present and functional in cardiac mitochondria; their activation exerts a significant cardioprotective role, making them potential therapeutic targets against I/R-induced cardiac injury.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, Division of Pharmacology, University of Naples 'Federico II', Naples, Italy Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St George's University of London, London, UK
| | - Maria Virginia Soldovieri
- Department of Medicine and Health Science "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Paolo Ambrosino
- Department of Medicine and Health Science "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Iolanda Vinciguerra
- Department of Medicine and Health Science "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Miceli
- Department of Neuroscience, Division of Pharmacology, University of Naples 'Federico II', Naples, Italy
| | - Iain Andrew Greenwood
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St George's University of London, London, UK
| | - Michael John Curtis
- Cardiovascular Division, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | - Maria Josè Sisalli
- Department of Neuroscience, Division of Pharmacology, University of Naples 'Federico II', Naples, Italy
| | - Antonella Scorziello
- Department of Neuroscience, Division of Pharmacology, University of Naples 'Federico II', Naples, Italy
| | | | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
| | | | - Maurizio Taglialatela
- Department of Neuroscience, Division of Pharmacology, University of Naples 'Federico II', Naples, Italy Department of Medicine and Health Science "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
64
|
Jepps TA, Carr G, Lundegaard PR, Olesen SP, Greenwood IA. Fundamental role for the KCNE4 ancillary subunit in Kv7.4 regulation of arterial tone. J Physiol 2015; 593:5325-40. [PMID: 26503181 DOI: 10.1113/jp271286] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/15/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS KCNE4 alters the biophysical properties and cellular localization of voltage-gated potassium channel Kv7.4. KCNE4 is expressed in a variety of arteries and, in mesenteric arteries, co-localizes with Kv7.4, which is important in the control of vascular contractility. Knockdown of KCNE4 leads to reduced Kv7.4 membrane abundance, a depolarized membrane potential and an augmented response to vasoconstrictors. KCNE4 is a key regulator of the function and expression of Kv7.4 in vascular smooth muscle. ABSTRACT The KCNE ancillary subunits (KCNE1-5) significantly alter the expression and function of voltage-gated potassium channels; however, their role in the vasculature has yet to be determined. The present study aimed to investigate the expression and function of the KCNE4 subunit in rat mesenteric arteries and to determine whether it has a functional impact on the regulation of arterial tone by Kv7 channels. In HEK cells expressing Kv7.4, co-expression of KCNE4 increased the membrane expression of Kv7.4 and significantly altered Kv7.4 current properties. Quantitative PCR analysis of different rat arteries found that the KCNE4 isoform predominated and proximity ligation experiments showed that KCNE4 co-localized with Kv7.4 in mesenteric artery myocytes. Morpholino-induced knockdown of KCNE4 depolarized mesenteric artery smooth muscle cells and resulted in their increased sensitivity to methoxamine being attenuated (mean ± SEM EC50 decreased from 5.7 ± 0.63 μm to 1.6 ± 0.23 μm), which coincided with impaired effects of Kv7 modulators. When KCNE4 expression was reduced, less Kv7.4 expression was found in the membrane of the mesenteric artery myocytes. These data show that KCNE4 is consistently expressed in a variety of arteries, and knockdown of the expression product leads to reduced Kv7.4 membrane abundance, a depolarized membrane potential and an augmented response to vasoconstrictors. The present study is the first to demonstrate an integral role of KCNE4 in regulating the function and expression of Kv7.4 in vascular smooth muscle.
Collapse
Affiliation(s)
- Thomas A Jepps
- Ion Channels Group, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Georgina Carr
- Vascular Biology Research Centre, Institute for Cardiovascular and Cell Sciences, St George's University of London, London, UK
| | - Pia R Lundegaard
- Ion Channels Group, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Søren-Peter Olesen
- Ion Channels Group, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Iain A Greenwood
- Ion Channels Group, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Vascular Biology Research Centre, Institute for Cardiovascular and Cell Sciences, St George's University of London, London, UK
| |
Collapse
|
65
|
Lee S, Yang Y, Tanner MA, Li M, Hill MA. Heterogeneity in Kv7 channel function in the cerebral and coronary circulation. Microcirculation 2015; 22:109-121. [PMID: 25476662 DOI: 10.1111/micc.12183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/02/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study aimed to examine the hypotheses that (i) Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity and (ii) regional differences exist in the activity of these channels. METHODS AND RESULTS PCR confirmed that basilar, Circle of Willis and LAD arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50 μM) was significantly greater in the basilar artery compared to the LAD artery. Similarly, the Kv7 channel inhibitor, linopirdine (10 μM) caused a stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than in the coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. CONCLUSIONS This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction.
Collapse
Affiliation(s)
- Sewon Lee
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211
| | - Miles A Tanner
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211
| | - Min Li
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211.,Department of Medical Pharmacology & Physiology, University of Missouri-Columbia, MO 65211
| |
Collapse
|
66
|
Salomonsson M, Brasen JC, Braunstein TH, Hagelqvist P, Holstein-Rathlou NH, Sorensen CM. K(V)7.4 channels participate in the control of rodent renal vascular resting tone. Acta Physiol (Oxf) 2015; 214:402-14. [PMID: 25965962 DOI: 10.1111/apha.12525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/19/2015] [Accepted: 05/06/2015] [Indexed: 01/07/2023]
Abstract
AIM We tested the hypothesis that K(V)7 channels contribute to basal renal vascular tone and that they participate in agonist-induced renal vasoconstriction or vasodilation. METHODS KV 7 channel subtypes in renal arterioles were characterized by immunofluorescence. Renal blood flow (RBF) was measured using an ultrasonic flow probe. The isometric tension of rat interlobar arteries was examined in a wire myograph. Mice afferent arteriolar diameter was assessed utilizing the perfused juxtamedullary nephron technique. RESULTS Immunofluorescence revealed that K(V)7.4 channels were expressed in rat afferent arterioles. The K(V)7 blocker XE991 dose-dependently increased the isometric tension of rat interlobar arteries and caused a small (approx. 4.5%) RBF reduction in vivo. Nifedipine abolished these effects. Likewise, XE991 reduced mouse afferent arteriolar diameter by approx. 5%. The K(V)7.2-5 stimulator flupirtine dose-dependently relaxed isolated rat interlobar arteries and increased (approx. 5%) RBF in vivo. The RBF responses to NE or Ang II administration were not affected by pre-treatment with XE991 or flupirtine. XE991 pre-treatment caused a minor augmentation of the acetylcholine-induced increase in RBF, while flupirtine pre-treatment did not affect this response. CONCLUSION It is concluded that K(V)7 channels, via nifedipine sensitive channels, have a role in the regulation of basal renal vascular tone. There is no indication that K(V)7 channels have an effect on agonist-induced renal vasoconstriction while there is a small effect on acetylcholine-induced vasodilation.
Collapse
Affiliation(s)
- M. Salomonsson
- Division of Renal and Vascular Physiology; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - J. C. Brasen
- Division of Renal and Vascular Physiology; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Biomedical Engineering; Department of Electrical Engineering; Technical University of Denmark; Lyngby Denmark
| | - T. H. Braunstein
- Danish National Research Foundation Center for Cardiac Arrhythmia; University of Copenhagen; Copenhagen Denmark
| | - P. Hagelqvist
- Division of Renal and Vascular Physiology; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - N.-H. Holstein-Rathlou
- Division of Renal and Vascular Physiology; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Danish National Research Foundation Center for Cardiac Arrhythmia; University of Copenhagen; Copenhagen Denmark
| | - C. M. Sorensen
- Division of Renal and Vascular Physiology; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
67
|
G-protein βγ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity. Proc Natl Acad Sci U S A 2015; 112:6497-502. [PMID: 25941381 DOI: 10.1073/pnas.1418605112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kv7.4 channels are a crucial determinant of arterial diameter both at rest and in response to endogenous vasodilators. However, nothing is known about the factors that ensure effective activity of these channels. We report that G-protein βγ subunits increase the amplitude and activation rate of whole-cell voltage-dependent K(+) currents sensitive to the Kv7 blocker linopirdine in HEK cells heterologously expressing Kv7.4, and in rat renal artery myocytes. In excised patch recordings, Gβγ subunits (2-250 ng /mL) enhanced the open probability of Kv7.4 channels without changing unitary conductance. Kv7 channel activity was also augmented by stimulation of G-protein-coupled receptors. Gallein, an inhibitor of Gβγ subunits, prevented these stimulatory effects. Moreover, gallein and two other structurally different Gβγ subunit inhibitors (GRK2i and a β-subunit antibody) abolished Kv7 channel currents in the absence of either Gβγ subunit enrichment or G-protein-coupled receptor stimulation. Proximity ligation assay revealed that Kv7.4 and Gβγ subunits colocalized in HEK cells and renal artery smooth muscle cells. Gallein disrupted this colocalization, contracted whole renal arteries to a similar degree as the Kv7 inhibitor linopirdine, and impaired isoproterenol-induced relaxations. Furthermore, mSIRK, which disassociates Gβγ subunits from α subunits without stimulating nucleotide exchange, relaxed precontracted arteries in a linopirdine-sensitive manner. These results reveal that Gβγ subunits are fundamental for Kv7.4 activation and crucial for vascular Kv7 channel activity, which has major consequences for the regulation of arterial tone.
Collapse
|
68
|
Morales-Cano D, Moreno L, Barreira B, Pandolfi R, Chamorro V, Jimenez R, Villamor E, Duarte J, Perez-Vizcaino F, Cogolludo A. Kv7 channels critically determine coronary artery reactivity: left-right differences and down-regulation by hyperglycaemia. Cardiovasc Res 2015; 106:98-108. [PMID: 25616413 DOI: 10.1093/cvr/cvv020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS Voltage-gated potassium channels encoded by KCNQ genes (Kv7 channels) are emerging as important regulators of vascular tone. In this study, we analysed the contribution of Kv7 channels to the vasodilation induced by hypoxia and the cyclic AMP pathway in the coronary circulation. We also assessed their regional distribution and possible impairment by diabetes. METHODS AND RESULTS We examined the effects of Kv7 channel modulators on K+ currents and vascular reactivity in rat left and right coronary arteries (LCAs and RCAs, respectively). Currents from LCA were more sensitive to Kv7 channel inhibitors (XE991, linopirdine) and activators (flupirtine, retigabine) than those from RCA. Accordingly, LCAs were more sensitive than RCAs to the relaxation induced by Kv7 channel enhancers. Likewise, relaxation induced by the adenylyl cyclase activator forskolin and hypoxia, which were mediated through Kv7 channel activation, were greater in LCA than in RCA. KCNQ1 and KCNQ5 expression was markedly higher in LCA than in RCA. After incubation with high glucose (HG, 30 mmol/L), myocytes from LCA, but not from RCA, were more depolarized and showed reduced Kv7 currents. In HG-incubated LCA, the effects of Kv7 channel modulators and forskolin were diminished, and the expression of KCNQ1 and KCNQ5 was reduced. Finally, vascular responses induced by Kv7 channel modulators were impaired in LCA, but not in RCA, from type 1 diabetic rats. CONCLUSION Our results reveal that the high expression and function of Kv7 channels in the LCA and their down-regulation by diabetes critically determine the sensitivity to key regulators of coronary tone.
Collapse
Affiliation(s)
- Daniel Morales-Cano
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rachele Pandolfi
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Virginia Chamorro
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rosario Jimenez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada 18071, Spain
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada 18071, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, Madrid 28040, Spain Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
69
|
Stott JB, Barrese V, Jepps TA, Leighton EV, Greenwood IA. Contribution of Kv7 channels to natriuretic peptide mediated vasodilation in normal and hypertensive rats. Hypertension 2014; 65:676-82. [PMID: 25547342 DOI: 10.1161/hypertensionaha.114.04373] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Kv7 family of voltage-gated potassium channels are expressed within the vasculature where they are key regulators of vascular tone and mediate cAMP-linked endogenous vasodilator responses, a pathway that is compromised in hypertension. However, the role of Kv7 channels in non-cAMP-linked vasodilator pathways has not been investigated. Natriuretic peptides are potent vasodilators, which operate primarily through the activation of a cGMP-dependent signaling pathway. This study investigated the putative role of Kv7 channels in natriuretic peptide-dependent relaxations in the vasculature of normal and hypertensive animals. Relaxant responses of rat aorta to both atrial and C-type natriuretic peptides and the nitric oxide donor sodium nitroprusside were impaired by the Kv7 blocker linopirdine (10 μmol/L) but not by the Kv7.1-specific blocker HMR1556 (10 μmol/L) and other K(+) channel blockers. In contrast, only the atrial natriuretic peptide response was sensitive to linopirdine in the renal artery. These Kv7-mediated responses were attenuated in arteries from hypertensive rats. Quantitative polymerase chain reaction showed that A- and B-type natriuretic peptide receptors were expressed at high levels in the aorta and renal artery from normal and spontaneously hypertensive rats. This study provides the first evidence that natriuretic peptide responses are impaired in hypertension and that recruitment of Kv7 channels is a key component of natriuretic peptide-dependent vasodilations.
Collapse
Affiliation(s)
- Jennifer B Stott
- From the Vascular Biology Research Centre, Institute for Cardiovascular and Cell Sciences, St George's University of London, London, United Kingdom (J.B.S., V.B., E.V.L., I.A.G.); and Ion Channels Group, Institute of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (T.A.J.)
| | - Vincenzo Barrese
- From the Vascular Biology Research Centre, Institute for Cardiovascular and Cell Sciences, St George's University of London, London, United Kingdom (J.B.S., V.B., E.V.L., I.A.G.); and Ion Channels Group, Institute of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (T.A.J.)
| | - Thomas A Jepps
- From the Vascular Biology Research Centre, Institute for Cardiovascular and Cell Sciences, St George's University of London, London, United Kingdom (J.B.S., V.B., E.V.L., I.A.G.); and Ion Channels Group, Institute of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (T.A.J.)
| | - Emma V Leighton
- From the Vascular Biology Research Centre, Institute for Cardiovascular and Cell Sciences, St George's University of London, London, United Kingdom (J.B.S., V.B., E.V.L., I.A.G.); and Ion Channels Group, Institute of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (T.A.J.)
| | - Iain A Greenwood
- From the Vascular Biology Research Centre, Institute for Cardiovascular and Cell Sciences, St George's University of London, London, United Kingdom (J.B.S., V.B., E.V.L., I.A.G.); and Ion Channels Group, Institute of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (T.A.J.).
| |
Collapse
|
70
|
Jepps TA, Bentzen BH, Stott JB, Povstyan OV, Sivaloganathan K, Dalby-Brown W, Greenwood IA. Vasorelaxant effects of novel Kv 7.4 channel enhancers ML213 and NS15370. Br J Pharmacol 2014; 171:4413-24. [PMID: 24909207 DOI: 10.1111/bph.12805] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/25/2014] [Accepted: 05/14/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The KCNQ-encoded voltage-gated potassium channel family (Kv 7.1-Kv 7.5) are established regulators of smooth muscle contractility, where Kv 7.4 and Kv 7.5 predominate. Various Kv 7.2-7.5 channel enhancers have been developed that have been shown to cause a vasorelaxation in both rodent and human blood vessels. Recently, two novel Kv 7 channel enhancers have been identified, ML213 and NS15370, that show increased potency, particularly on Kv 7.4 channels. The aim of this study was to characterize the effects of these novel enhancers in different rat blood vessels and compare them with Kv 7 enhancers (S-1, BMS204352, retigabine) described previously. We also sought to determine the binding sites of the new Kv 7 enhancers. KEY RESULTS Both ML213 and NS15370 relaxed segments of rat thoracic aorta, renal artery and mesenteric artery in a concentration-dependent manner. In the mesenteric artery ML213 and NS15370 displayed EC50 s that were far lower than other Kv 7 enhancers tested. Current-clamp experiments revealed that both novel enhancers, at low concentrations, caused significant hyperpolarization in mesenteric artery smooth muscle cells. In addition, we determined that the stimulatory effect of these enhancers relied on a tryptophan residue located in the S5 domain, which is the same binding site for the other Kv 7 enhancers tested in this study. CONCLUSIONS AND IMPLICATIONS This study has identified and characterized ML213 and NS15370 as potent vasorelaxants in different blood vessels, thereby highlighting these new compounds as potential therapeutics for various smooth muscle disorders.
Collapse
Affiliation(s)
- T A Jepps
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
71
|
|
72
|
Blom SM, Rottländer M, Kehler J, Bundgaard C, Schmitt N, Jensen HS. From pan-reactive KV7 channel opener to subtype selective opener/inhibitor by addition of a methyl group. PLoS One 2014; 9:e100209. [PMID: 24956197 PMCID: PMC4067310 DOI: 10.1371/journal.pone.0100209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/22/2014] [Indexed: 01/24/2023] Open
Abstract
The voltage-gated potassium channels of the KV7 family (KV7.1–5) play important roles in controlling neuronal excitability and are therefore attractive targets for treatment of CNS disorders linked to hyperexcitability. One of the main challenges in developing KV7 channel active drugs has been to identify compounds capable of discriminating between the neuronally expressed subtypes (KV7.2–5), aiding the identification of the subunit composition of KV7 currents in various tissues, and possessing better therapeutic potential for particular indications. By taking advantage of the structure-activity relationship of acrylamide KV7 channel openers and the effects of these compounds on mutant KV7 channels, we have designed and synthesized a novel KV7 channel modulator with a unique profile. The compound, named SMB-1, is an inhibitor of KV7.2 and an activator of KV7.4. SMB-1 inhibits KV7.2 by reducing the current amplitude and increasing the time constant for the slow component of the activation kinetics. The activation of KV7.4 is seen as an increase in the current amplitude and a slowing of the deactivation kinetics. Experiments studying mutant channels with a compromised binding site for the KV7.2–5 opener retigabine indicate that SMB-1 binds within the same pocket as retigabine for both inhibition of KV7.2 and activation of KV7.4. SMB-1 may serve as a valuable tool for KV7 channel research and may be used as a template for further design of better subtype selective KV7 channel modulators. A compound with this profile could hold novel therapeutic potential such as the treatment of both positive and cognitive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Sigrid Marie Blom
- Division of Neuroscience Drug Discovery, H. Lundbeck A/S, Copenhagen, Denmark
- Department of Biomedical Sciences and Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mario Rottländer
- Division of Discovery Chemistry and DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| | - Jan Kehler
- Division of Discovery Chemistry and DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| | | | - Nicole Schmitt
- Department of Biomedical Sciences and Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Sindal Jensen
- Division of Neuroscience Drug Discovery, H. Lundbeck A/S, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
73
|
Oliveras A, Roura-Ferrer M, Solé L, de la Cruz A, Prieto A, Etxebarria A, Manils J, Morales-Cano D, Condom E, Soler C, Cogolludo A, Valenzuela C, Villarroel A, Comes N, Felipe A. Functional assembly of Kv7.1/Kv7.5 channels with emerging properties on vascular muscle physiology. Arterioscler Thromb Vasc Biol 2014; 34:1522-30. [PMID: 24855057 DOI: 10.1161/atvbaha.114.303801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. APPROACH AND RESULTS Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. CONCLUSIONS Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Anna Oliveras
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Meritxell Roura-Ferrer
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Laura Solé
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Alicia de la Cruz
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Angela Prieto
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Ainhoa Etxebarria
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Joan Manils
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Daniel Morales-Cano
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Enric Condom
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Concepció Soler
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Angel Cogolludo
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Carmen Valenzuela
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Alvaro Villarroel
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Núria Comes
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Antonio Felipe
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.).
| |
Collapse
|
74
|
Stott JB, Jepps TA, Greenwood IA. KV7 potassium channels: a new therapeutic target in smooth muscle disorders. Drug Discov Today 2014; 19:413-24. [DOI: 10.1016/j.drudis.2013.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/21/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022]
|
75
|
Chadha PS, Jepps TA, Carr G, Stott JB, Zhu HL, Cole WC, Greenwood IA. Contribution of kv7.4/kv7.5 heteromers to intrinsic and calcitonin gene-related peptide-induced cerebral reactivity. Arterioscler Thromb Vasc Biol 2014; 34:887-93. [PMID: 24558103 DOI: 10.1161/atvbaha.114.303405] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Middle cerebral artery (MCA) diameter is regulated by inherent myogenic activity and the effect of potent vasodilators such as calcitonin gene-related peptide (CGRP). Previous studies showed that MCAs express KCNQ1, 4, and 5 potassium channel genes, and the expression products (Kv7 channels) participate in the myogenic control of MCA diameter. The present study investigated the contribution of Kv7.4 and Kv7.5 isoforms to myogenic and CGRP regulation of MCA diameter and determined whether they were affected in hypertensive animals. APPROACH AND RESULTS Isometric tension recordings performed on MCA from normotensive rats produced CGRP vasodilations that were inhibited by the pan-Kv7 channel blocker linopirdine (P<0.01) and after transfection of arteries with siRNA against KCNQ4 (P<0.01) but not KCNQ5. However, isobaric myography revealed that myogenic constriction in response to increases in intravascular pressure (20-80 mm Hg) was affected by both KCNQ4 and KCNQ5 siRNA. Proximity ligation assay signals were equally abundant for Kv7.4/Kv7.4 or Kv7.4/Kv7.5 antibody combinations but minimal for Kv7.5/Kv7.5 antibodies or Kv7.4/7.1 combinations. In contrast to systemic arteries, Kv7 function and Kv7.4 abundance in MCA were not altered in hypertensive rats. CONCLUSIONS This study reveals, for the first time to our knowledge, that in cerebral arteries, Kv7.4 and Kv7.5 proteins exist predominantly as a functional heterotetramer, which regulates intrinsic myogenicity and vasodilation attributed to CGRP. Surprisingly, unlike systemic arteries, Kv7 activity in MCAs is not affected by the development of hypertension, and CGRP-mediated vasodilation is well maintained. As such, cerebrovascular Kv7 channels could be amenable for therapeutic targeting in conditions such as cerebral vasospasm.
Collapse
Affiliation(s)
- Preet S Chadha
- From the Division of Biomedical Sciences, Pharmacology and Cell Physiology Research Group, St George's University of London, London, United Kingdom (P.S.C., T.A.J., G.C., J.B.S., I.A.G.); and The Smooth Muscle Research Group, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada (H.-L.Z., W.C.C.)
| | | | | | | | | | | | | |
Collapse
|
76
|
Brueggemann LI, Mackie AR, Cribbs LL, Freda J, Tripathi A, Majetschak M, Byron KL. Differential protein kinase C-dependent modulation of Kv7.4 and Kv7.5 subunits of vascular Kv7 channels. J Biol Chem 2013; 289:2099-111. [PMID: 24297175 DOI: 10.1074/jbc.m113.527820] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Kv7 family (Kv7.1-7.5) of voltage-activated potassium channels contributes to the maintenance of resting membrane potential in excitable cells. Previously, we provided pharmacological and electrophysiological evidence that Kv7.4 and Kv7.5 form predominantly heteromeric channels and that Kv7 activity is regulated by protein kinase C (PKC) in response to vasoconstrictors in vascular smooth muscle cells. Direct evidence for Kv7.4/7.5 heteromer formation, however, is lacking. Furthermore, it remains to be determined whether both subunits are regulated by PKC. Utilizing proximity ligation assays to visualize single molecule interactions, we now show that Kv7.4/Kv.7.5 heteromers are endogenously expressed in vascular smooth muscle cells. Introduction of dominant-negative Kv7.4 and Kv7.5 subunits in mesenteric artery myocytes reduced endogenous Kv7 currents by 84 and 76%, respectively. Expression of an inducible protein kinase Cα (PKCα) translocation system revealed that PKCα activation is sufficient to suppress endogenous Kv7 currents in A7r5 rat aortic and mesenteric artery smooth muscle cells. Arginine vasopressin (100 and 500 pm) and the PKC activator phorbol 12-myristate 13-acetate (1 nm) each inhibited human (h) Kv7.5 and hKv7.4/7.5, but not hKv7.4 channels expressed in A7r5 cells. A decrease in hKv7.5 and hKv7.4/7.5 current densities was associated with an increase in PKC-dependent phosphorylation of the channel proteins. These findings provide further evidence for a differential regulation of Kv7.4 and Kv7.5 channel subunits by PKC-dependent phosphorylation and new mechanistic insights into the role of heteromeric subunit assembly for regulation of vascular Kv7 channels.
Collapse
|
77
|
Affiliation(s)
- Maik Gollasch
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|