51
|
Berges J, Graeber SY, Hämmerling S, Yu Y, Krümpelmann A, Stahl M, Hirtz S, Scheuermann H, Mall MA, Sommerburg O. Effects of lumacaftor-ivacaftor therapy on cystic fibrosis transmembrane conductance regulator function in F508del homozygous patients with cystic fibrosis aged 2-11 years. Front Pharmacol 2023; 14:1188051. [PMID: 37324488 PMCID: PMC10266342 DOI: 10.3389/fphar.2023.1188051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Rationale: Lumacaftor/ivacaftor was approved for the treatment of patients with cystic fibrosis who are homozygous for F508del aged 2 years and older following positive results from phase three trials. However, the improvement in CFTR function associated with lumacaftor/ivacaftor has only been studied in patients over 12 years of age, while the rescue potential in younger children is unknown. Methods: In a prospective study, we aimed to evaluate the effect of lumacaftor/ivacaftor on the CFTR biomarkers sweat chloride concentration and intestinal current measurement as well as clinical outcome parameters in F508del homozygous CF patients 2-11 years before and 8-16 weeks after treatment initiation. Results: A total of 13 children with CF homozygous for F508del aged 2-11 years were enrolled and 12 patients were analyzed. Lumacaftor/ivacaftor treatment reduced sweat chloride concentration by 26.8 mmol/L (p = 0.0006) and showed a mean improvement in CFTR activity, as assessed by intestinal current measurement in the rectal epithelium, of 30.5% compared to normal (p = 0.0015), exceeding previous findings of 17.7% of normal in CF patients homozygous for F508del aged 12 years and older. Conclusion: Lumacaftor/ivacaftor partially restores F508del CFTR function in children with CF who are homozygous for F508del, aged 2-11 years, to a level of CFTR activity seen in patients with CFTR variants with residual function. These results are consistent with the partial short-term improvement in clinical parameters.
Collapse
Affiliation(s)
- Julian Berges
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Susanne Hämmerling
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Yin Yu
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Arne Krümpelmann
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Stephanie Hirtz
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Heike Scheuermann
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
52
|
Nichols DP, Morgan SJ, Skalland M, Vo AT, Van Dalfsen JM, Singh SB, Ni W, Hoffman LR, McGeer K, Heltshe SL, Clancy JP, Rowe SM, Jorth P, Singh PK, the PROMISE-Micro Study Group. Pharmacologic improvement of CFTR function rapidly decreases sputum pathogen density, but lung infections generally persist. J Clin Invest 2023; 133:e167957. [PMID: 36976651 PMCID: PMC10178839 DOI: 10.1172/jci167957] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundLung infections are among the most consequential manifestations of cystic fibrosis (CF) and are associated with reduced lung function and shortened survival. Drugs called CF transmembrane conductance regulator (CFTR) modulators improve activity of dysfunctional CFTR channels, which is the physiological defect causing CF. However, it is unclear how improved CFTR activity affects CF lung infections.MethodsWe performed a prospective, multicenter, observational study to measure the effect of the newest and most effective CFTR modulator, elexacaftor/tezacaftor/ivacaftor (ETI), on CF lung infections. We studied sputum from 236 people with CF during their first 6 months of ETI using bacterial cultures, PCR, and sequencing.ResultsMean sputum densities of Staphylococcus aureus, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp., and Burkholderia spp. decreased by 2-3 log10 CFU/mL after 1 month of ETI. However, most participants remained culture positive for the pathogens cultured from their sputum before starting ETI. In those becoming culture negative after ETI, the pathogens present before treatment were often still detectable by PCR months after sputum converted to culture negative. Sequence-based analyses confirmed large reductions in CF pathogen genera, but other bacteria detected in sputum were largely unchanged. ETI treatment increased average sputum bacterial diversity and produced consistent shifts in sputum bacterial composition. However, these changes were caused by ETI-mediated decreases in CF pathogen abundance rather than changes in other bacteria.ConclusionsTreatment with the most effective CFTR modulator currently available produced large and rapid reductions in traditional CF pathogens in sputum, but most participants remain infected with the pathogens present before modulator treatment.Trial RegistrationClinicalTrials.gov NCT04038047.FundingThe Cystic Fibrosis Foundation and the NIH.
Collapse
Affiliation(s)
| | - Sarah J. Morgan
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Michelle Skalland
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Anh T. Vo
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Jill M. Van Dalfsen
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | - Wendy Ni
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | | | - Kailee McGeer
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Sonya L. Heltshe
- Department of Pediatrics and
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - John P. Clancy
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Steven M. Rowe
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Peter Jorth
- Departments of Pathology and Laboratory Medicine, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pradeep K. Singh
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
53
|
Olivier M, Kavvalou A, Welsner M, Hirtz R, Straßburg S, Sutharsan S, Stehling F, Steindor M. Real-life impact of highly effective CFTR modulator therapy in children with cystic fibrosis. Front Pharmacol 2023; 14:1176815. [PMID: 37229253 PMCID: PMC10203630 DOI: 10.3389/fphar.2023.1176815] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Recently, cystic fibrosis transmembrane regulator modulator therapy with elexacaftor/tezacaftor/ivacaftor has become available for children with cystic fibrosis (CF) carrying at least one F508del mutation. Objective: To assess the intermediate term effects of elexacaftor/tezacaftor/ivacaftor in children with cystic fibrosis in a real-world setting. Methods: We performed a retrospective analysis of records of children with cystic fibrosis, who started elexacaftor/tezacaftor/ivacaftor between 8/2020 and 10/2022. Pulmonary function tests, nutritional status, sweat chloride and laboratory data were assessed before, 3 and 6 months after the start of elexacaftor/tezacaftor/ivacaftor respectively. Results: Elexacaftor/tezacaftor/ivacaftor was started in 22 children 6-11 years and in 24 children 12-17 years. Twenty-seven (59%) patients were homozygous for F508del (F/F) and 23 (50%) patients were transitioned from ivacaftor/lumacaftor (IVA/LUM) or tezacaftor/ivacaftor (TEZ/IVA) to elexacaftor/tezacaftor/ivacaftor. Overall, mean sweat chloride concentration decreased by 59.3 mmol/L (95% confidence interval: -65.0 to -53.7 mmol/L, p < 0.0001) under elexacaftor/tezacaftor/ivacaftor. Sweat chloride concentration also decreased significantly after transition from IVA/LUM or TEZ/IVA to elexacaftor/tezacaftor/ivacaftor (-47.8 mmol/l; 95% confidence interval: -57.6 to -37.8 mmol/l, n = 14, p < 0.0001). Sweat chloride reduction was more marked in children with the F/F than in those with the F/MF genotype (69.4 vs 45.9 mmol/L, p < 0.0001). At 3 months follow-up, body-mass-index-z-score increased by 0.31 (95% CI, 0.2-0.42, p < 0.0001) with no further increase at 6 months. BMI-for-age-z-score was more markedly improved in the older group. Overall pulmonary function (percent predicted FEV1) at 3 months follow-up increased by 11.4% (95% CI: 8.0-14.9, p < 0.0001) with no further significant change after 6 months. No significant differences were noted between the age groups. Children with the F/MF genotype had a greater benefit regarding nutritional status and pulmonary function tests than those with the F/F genotype. Adverse events led to elexacaftor/tezacaftor/ivacaftor dose reduction in three cases and a temporary interruption of therapy in four cases. Conclusion: In a real-world setting, elexacaftor/tezacaftor/ivacaftor therapy had beneficial clinical effects and a good safety profile in eligible children with cystic fibrosis comparable to previously published data from controlled clinical trials. The positive impact on pulmonary function tests and nutritional status seen after 3 months of elexacaftor/tezacaftor/ivacaftor therapy was sustained at 6 months follow-up.
Collapse
Affiliation(s)
- Margarete Olivier
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Kavvalou
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Matthias Welsner
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen—Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Raphael Hirtz
- Pediatric Endocrinology, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Svenja Straßburg
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen—Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen—Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Florian Stehling
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mathis Steindor
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
54
|
Mayer-Hamblett N, Ratjen F, Russell R, Donaldson SH, Riekert KA, Sawicki GS, Odem-Davis K, Young JK, Rosenbluth D, Taylor-Cousar JL, Goss CH, Retsch-Bogart G, Clancy JP, Genatossio A, O'Sullivan BP, Berlinski A, Millard SL, Omlor G, Wyatt CA, Moffett K, Nichols DP, Gifford AH, Kloster M, Weaver K, Chapdu C, Xie J, Skalland M, Romasco M, Heltshe S, Simon N, VanDalfsen J, Mead A, Buckingham R, Seidel K, Midamba N, Couture L, Case BZ, Au W, Rockers E, Cooke D, Olander A, Bondick I, Johnson M, VanHousen L, Nicholson B, Omlor G, Parrish M, Roberts D, Head J, Carey J, Caverly L, Dangerfield J, Linnemann R, Fullmer J, Roman C, Mogayzel P, Reyes D, Harmala A, Lysinger J, Bergeron J, Virella-Lowell I, Brown P, Godusevic L, Casey A, Paquette L, Lahiri T, Sweet J, Donaldson S, Harris J, Parnell S, Szentpetery S, Froh D, Tharrington E, Jain M, Nelson R, Kadon S, McPhail G, McBennett K, Rone T, Dasenbrook E, Weaver D, Johnson T, McCoy K, Jain R, Mcleod M, Klosterman M, Sharma P, Jones A, Mueller G, Janney R, Taylor-Cousar J, Cross M, Hoppe J, Cahill J, Mukadam Z, Finto J, Schultz K, Villalta SD, Smith A, Millard S, et alMayer-Hamblett N, Ratjen F, Russell R, Donaldson SH, Riekert KA, Sawicki GS, Odem-Davis K, Young JK, Rosenbluth D, Taylor-Cousar JL, Goss CH, Retsch-Bogart G, Clancy JP, Genatossio A, O'Sullivan BP, Berlinski A, Millard SL, Omlor G, Wyatt CA, Moffett K, Nichols DP, Gifford AH, Kloster M, Weaver K, Chapdu C, Xie J, Skalland M, Romasco M, Heltshe S, Simon N, VanDalfsen J, Mead A, Buckingham R, Seidel K, Midamba N, Couture L, Case BZ, Au W, Rockers E, Cooke D, Olander A, Bondick I, Johnson M, VanHousen L, Nicholson B, Omlor G, Parrish M, Roberts D, Head J, Carey J, Caverly L, Dangerfield J, Linnemann R, Fullmer J, Roman C, Mogayzel P, Reyes D, Harmala A, Lysinger J, Bergeron J, Virella-Lowell I, Brown P, Godusevic L, Casey A, Paquette L, Lahiri T, Sweet J, Donaldson S, Harris J, Parnell S, Szentpetery S, Froh D, Tharrington E, Jain M, Nelson R, Kadon S, McPhail G, McBennett K, Rone T, Dasenbrook E, Weaver D, Johnson T, McCoy K, Jain R, Mcleod M, Klosterman M, Sharma P, Jones A, Mueller G, Janney R, Taylor-Cousar J, Cross M, Hoppe J, Cahill J, Mukadam Z, Finto J, Schultz K, Villalta SD, Smith A, Millard S, Symington T, Graff G, Kitch D, Sanders D, Thompson M, Pena T, Teresi M, Gafford J, Schaeffer D, Mermis J, Scott L, Escobar H, Williams K, Dorman D, O'Sullivan B, Bethay R, Danov Z, Berlinski A, Turbeville K, Johannes J, Rodriguez A, Marra B, Zanni R, Morton R, Simeon T, Braun A, Dondlinger N, Biller J, Hubertz E, Antos N, Roth L, Billings J, Larson C, Balaji P, McNamara J, Clark T, Moffett K, Griffith R, Martinez N, Hussain S, Malveaux H, Egan M, Guzman C, DeCelie-Germana J, Galvin S, Savant A, Falgout N, Walker P, Demarco T, DiMango E, Ycaza M, Ballo J, Tirakitsoontorn P, Layish D, Serr D, Livingston F, Wooldridge S, Milla C, Spano J, Davis R, Elidemir O, Chittivelu S, Scott A, Alam S, Dorgan D, Butoryak M, Weiner D, Renna H, Wyatt C, Klein B, Stone A, Lessard M, Schechter MS, Johnson B, Scofield S, Liou T, Vroom J, Akong K, Gil M, Betancourt L, Singer J, Ly N, Moreno C, Aitken M, Gambol T, Genatossio A, Gibson R, Lambert A, Milton J, Rosenbluth D, Smith S, Green D, Hodge D, Fortner C, Forell M, Karlnoski R, Patel K, Daines C, Ryan E, Amaro-Galvez R, Dohanich E, Lennox A, Messer Z, Hanes H, Powell K, Polineni D. Discontinuation versus continuation of hypertonic saline or dornase alfa in modulator treated people with cystic fibrosis (SIMPLIFY): results from two parallel, multicentre, open-label, randomised, controlled, non-inferiority trials. THE LANCET. RESPIRATORY MEDICINE 2023; 11:329-340. [PMID: 36343646 PMCID: PMC10065895 DOI: 10.1016/s2213-2600(22)00434-9] [Show More Authors] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Reducing treatment burden is a priority for people with cystic fibrosis, whose health has benefited from using new modulators that substantially increase CFTR protein function. The SIMPLIFY study aimed to assess the effects of discontinuing nebulised hypertonic saline or dornase alfa in individuals using the CFTR modulator elexacaftor plus tezacaftor plus ivacaftor (ETI). METHODS The SIMPLIFY study included two parallel, multicentre, open-label, randomised, controlled, non-inferiority trials at 80 participating clinics across the USA in the Cystic Fibrosis Therapeutics Development Network. We included individuals with cystic fibrosis aged 12-17 years with percent predicted FEV1 (ppFEV1) of 70% or more, or those aged 18 years or older with ppFEV1 of 60% or more, if they had been taking ETI and either (or both) mucoactive therapies (≥3% hypertonic saline or dornase alfa) for at least 90 days before screening. Participants on both hypertonic saline and dornase alfa were randomly assigned to one of the two trials, and those on a single therapy were assigned to the applicable trial. All participants were then randomly assigned 1:1 to continue or discontinue therapy for 6 weeks using permuted blocks of varying size, stratified by baseline ppFEV1 (week 0; ≥90% or <90%), single or concurrent use of hypertonic saline and dornase alfa, previous SIMPLIFY study participation (yes or no), and age (≥18 or <18 years). For participants randomly assigned to continue their therapy during a given trial, this therapy was instructed to be taken at least once daily according to each participant's pre-existing, clinically prescribed regimen. Hypertonic saline concentration was required to be at least 3%. The primary objective for each trial was to determine whether discontinuing was non-inferior to continuing, measured by the 6-week change in ppFEV1 in the per-protocol population. We established a non-inferiority margin of -3% for the difference between groups in the 6-week change in ppFEV1. Safety outcomes were analysed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT04378153. FINDINGS From Aug 25, 2020, to May 25, 2022, a total of 672 unique participants were screened for eligibility for one or both trials, resulting in 847 total random assignments across both trials with 594 unique participants. 370 participants were randomly assigned in the hypertonic saline trial and 477 in the dornase alfa trial. Participants across both trials had an average ppFEV1 of 96·9%. Discontinuing treatment was non-inferior to continuing treatment with respect to the absolute 6-week change in ppFEV1 in both the hypertonic saline trial (-0·19% [95% CI -0·85 to 0·48] in the discontinuation group [n=133] vs 0·14% [-0·51 to 0·78] in the continuation group [n=140]; between-group difference -0·32% [-1·25 to 0·60]) and dornase alfa trial (0·18% [-0·38 to 0·74] in the discontinuation group [n=199] vs -0·16% [-0·73 to 0·41] in the continuation group [n=193]; between-group difference 0·35% [-0·45 to 1·14]), with consistent results in the intention-to-treat populations. In the hypertonic saline trial, 64 (35%) of 184 in the discontinuation group versus 44 (24%) of 186 participants in the continuation group and, in the dornase alfa trial, 89 (37%) of 240 in the discontinuation group versus 55 (23%) of 237 in the continuation group had at least one adverse event. INTERPRETATION In individuals with cystic fibrosis on ETI with relatively well preserved pulmonary function, discontinuing daily hypertonic saline or dornase alfa for 6 weeks did not result in clinically meaningful differences in pulmonary function when compared with continuing treatment.
Collapse
|
55
|
McCoy KS, Blind J, Johnson T, Olson P, Raterman L, Bai S, Eisner M, Sheikh SI, Druhan S, Young C, Pasley K. Clinical change 2 years from start of elexacaftor-tezacaftor-ivacaftor in severe cystic fibrosis. Pediatr Pulmonol 2023; 58:1178-1184. [PMID: 36650567 DOI: 10.1002/ppul.26318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
RATIONALE Limited published research is available on the impact of elexacaftor/tezacaftor/ivacaftor (ETI) beyond the initial few months postdrug initiation, especially for those who initiated therapy via individual investigational new drug application. The experiences of patients with cystic fibrosis (CF) experiencing severe lung disease were reviewed for significant improvements in clinical symptoms and quality of life. OBJECTIVES To examine clinical outcomes 2 years post-ETI in patients with CF and advanced lung disease. METHODS This single center institutional review board-approved, retrospective chart review assessed clinical markers (percent predicted forced expiratory volume in 1 s, weight, sweat chloride), quality of life and computed tomography scans in patients with advanced lung disease who met criteria for compassionate use/expanded access program due to high risk of death or transplant need within 2 years. RESULTS Eighteen identified patients (ages 15-49 years) initiated drug between July and September 2019. Clinical markers indicated that therapy was well tolerated, not discontinued by any participant, and lab values did not indicate medical concern or discontinuation. Monitoring results indicated the safety of modulator therapy as there were no adverse clinical occurrences and all patients presented universal stabilization. There were no deaths and no transplants by the end of the study. CONCLUSIONS This study focused on patients with CF eligible for modulator therapy and were initiated due to advanced lung disease. Initiation of modulator therapy was deemed safe and resulted in objective positive changes in nutrition, cough, FEV1 , subjective reports of clinical status, level of activity, and a reduction in burden of treatment.
Collapse
Affiliation(s)
- Karen S McCoy
- Pulmonary and Sleep Medicine Division, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jill Blind
- Investigational Pharmacy, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Terri Johnson
- Pulmonary and Sleep Medicine Division, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Patti Olson
- Pulmonary and Sleep Medicine Division, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Laura Raterman
- Pulmonary and Sleep Medicine Division, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Shasha Bai
- Department of Pediatrics at Emory University School of Medicine, Pediatric Biostatistics Core, Atlanta, Georgia, USA
| | - Mariah Eisner
- Biostatistics Resource, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Shahid I Sheikh
- Pulmonary and Sleep Medicine Division, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Stephan Druhan
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Cody Young
- Radiology Department, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kimberly Pasley
- Pulmonary and Sleep Medicine Division, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
56
|
Pallenberg ST, Held I, Dopfer C, Minso R, Nietert MM, Hansen G, Tümmler B, Dittrich AM. Differential effects of ELX/TEZ/IVA on organ-specific CFTR function in two patients with the rare CFTR splice mutations c.273+1G>A and c.165-2A>G. Front Pharmacol 2023; 14:1153656. [PMID: 37050906 PMCID: PMC10083416 DOI: 10.3389/fphar.2023.1153656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Introduction: Evidence for the efficiency of highly-effective triple-CFTR-modulatory therapy with elexacaftor/tezacaftor/ivacaftor (ETI), either demonstrated in clinical trials or by in vitro testing, is lacking for about 10% of people with cystic fibrosis (pwCF) with rare mutations. Comprehensive assessment of CFTR function can provide critical information on the impact of ETI on CFTR function gains for such rare mutations, lending argument of the prescription of ETI. The mutation c.165-2A>G is a rare acceptor splice mutation that has not yet been functionally characterized. We here describe the functional changes induced by ETI in two brothers who are compound heterozygous for the splice mutations c.273+1G>C and c.165-2A>G.Methods: We assessed the effects of ETI on CFTR function by quantitative pilocarpine iontophoresis (QPIT), nasal potential difference measurements (nPD), intestinal current measurements (ICM), β-adrenergic sweat secretion tests (SST) and multiple breath washout (MBW) prior to and 4 months after the initiation of ETI.Results: Functional CFTR analysis prior to ETI showed no CFTR function in the respiratory and intestinal epithelia and in the sweat gland reabsorptive duct in either brother. In contrast, β-adrenergic stimulated, CFTR-mediated sweat secretion was detectable in the CF range. Under ETI, both brothers continued to exhibit high sweat chloride concentration in QPIT, evidence of low residual CFTR function in the respiratory epithelia, but normalized β-adrenergically stimulated production of primary sweat.Discussion: Our results are the first to demonstrate that the c.165-2A>G/c.273+1G>C mutation genotype permits mutant CFTR protein expression. We showed organ-specific differences in the expression of CFTR and consecutive responses to ETI of the c.165-2A>G/c.273+1G>C CFTR mutants that are probably accomplished by non-canonical CFTR mRNA isoforms. This showcase tells us that the individual response of rare CFTR mutations to highly-effective CFTR modulation cannot be predicted from assays in standard cell cultures, but requires the personalized multi-organ assessment by CFTR biomarkers.
Collapse
Affiliation(s)
- Sophia T. Pallenberg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
- *Correspondence: Sophia T. Pallenberg,
| | - Inka Held
- Kinderärzte Friesenweg—CF-Zentrum Altona (Ambulanz), Hamburg, Germany
| | - Christian Dopfer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Rebecca Minso
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Manuel M. Nietert
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| |
Collapse
|
57
|
Tümmler B. Post-approval studies with the CFTR modulators Elexacaftor-Tezacaftor-Ivacaftor. Front Pharmacol 2023; 14:1158207. [PMID: 37025483 PMCID: PMC10072268 DOI: 10.3389/fphar.2023.1158207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Triple combination therapy with the CFTR modulators elexacaftor (ELX), tezacaftor (TEZ) and ivacaftor (IVA) has been qualified as a game changer in cystic fibrosis (CF). We provide an overview of the body of literature on ELX/TEZ/IVA published between November 2019 and February 2023 after approval by the regulators. Recombinant ELX/TEZ/IVA-bound Phe508del CFTR exhibits a wild type conformation in vitro, but in patient's tissue a CFTR glyoisoform is synthesized that is distinct from the wild type and Phe508del isoforms. ELX/TEZ/IVA therapy improved the quality of life of people with CF in the real-life setting irrespective of their anthropometry and lung function at baseline. ELX/TEZ/IVA improved sinonasal and abdominal disease, lung function and morphology, airway microbiology and the basic defect of impaired epithelial chloride and bicarbonate transport. Pregnancy rates were increasing in women with CF. Side effects of mental status changes deserve particular attention in the future.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
58
|
Efficacy and Safety of Elexacaftor-Tezacaftor-Ivacaftor in the Treatment of Cystic Fibrosis: A Systematic Review. CHILDREN 2023; 10:children10030554. [PMID: 36980112 PMCID: PMC10047761 DOI: 10.3390/children10030554] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Elexacaftor/Tezacaftor/Ivacaftor (ELX/TEZ/IVA) is a new CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) modulator treatment, used over the last few years, which has shown an improvement in different clinical outcomes in patients with cystic fibrosis (CF). The objective of this study was a systematic research of the literature on the efficacy and safety of this CFTR modulator on patients with CF. A search of Pubmed was conducted for randomized clinical trials and observational studies published from 2012 to September 2022. The included full manuscripts comprised nine clinical trials and 16 observational studies, whose participants were aged ≥12 years or were children 6–11 years old with at least one Phe508del mutation and/or advanced lung disease (ALD). These studies reported that ELX/TEZ/IVA has a significant positive effect on the lung function of patients with CF, by ameliorating parameters such as FEV1, LCI, pulmonary exacerbations or sweat chloride concentration, increasing BMI and improving quality of their life. Its role in cystic fibrosis-related diabetes (CFRD) is not yet clear. It was found that this new CFTR modulator has an overall favorable safety profile, with mild to moderate adverse events. Further studies are needed for a deeper understanding of the impact of CFTR modulators on other CF manifestations, or the possibility of treating with ELX/TEZ/IVA CF patients with rare CFTR mutations.
Collapse
|
59
|
Appelt D, Steinkamp G, Sieber S, Ellemunter H. Early and sustained improvements of lung clearance index from two to sixteen weeks of elexacaftor/tezacaftor/ivacaftor therapy in patients with cystic fibrosis-a real world study. Front Pharmacol 2023; 14:1125853. [PMID: 36969845 PMCID: PMC10030732 DOI: 10.3389/fphar.2023.1125853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Since the introduction of CFTR modulator therapies, longitudinal real-life data of lung clearance index (LCI) during treatment is scarce. In this single-centre, post-approval setting, we report data of 51 patients with different stages of lung disease, age 2-52 years with repeated measurements of forced expiratory volume as a percentage of the predicted value (ppFEV₁) and LCI after 2, 4, and 16 weeks of CFTR modulator treatment and at baseline. In 25 patients during elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) treatment, significant improvements of LCI (median -1.4) and ppFEV₁ (median +8.3%) were observed after only 2 weeks, and were maintained after 4 and 16 weeks of treatment (LCI: -2.0, -2.2; ppFEV₁: +7.2%, +11.8%). We observed a significant correlation between LCI improvement at week 16 and lower baseline LCI. In 26 younger and healthier patients receiving lumacaftor/ivacaftor (LUM/IVA) treatment, no significant changes of LCI and ppFEV₁ occured. With ELX/TEZ/IVA, our data shows rapid, significant improvements of LCI and ppFEV₁ already after 2 weeks. Early LCI measurements can help to assess the patient's response to this high-cost therapy.
Collapse
Affiliation(s)
- Dorothea Appelt
- Cystic Fibrosis Centre Innsbruck, Department of Paediatrics III, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Sarah Sieber
- STAT-UP Statistical Consulting & Data Science GmbH, Munich, Germany
| | - Helmut Ellemunter
- Cystic Fibrosis Centre Innsbruck, Department of Paediatrics III, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
60
|
Bacalhau M, Camargo M, Magalhães-Ghiotto GAV, Drumond S, Castelletti CHM, Lopes-Pacheco M. Elexacaftor-Tezacaftor-Ivacaftor: A Life-Changing Triple Combination of CFTR Modulator Drugs for Cystic Fibrosis. Pharmaceuticals (Basel) 2023; 16:410. [PMID: 36986509 PMCID: PMC10053019 DOI: 10.3390/ph16030410] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Cystic fibrosis (CF) is a potentially fatal monogenic disease that causes a progressive multisystemic pathology. Over the last decade, the introduction of CF transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has profoundly modified the lives of many people with CF (PwCF) by targeting the fundamental cause of the disease. These drugs consist of the potentiator ivacaftor (VX-770) and the correctors lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). In particular, the triple combination of CFTR modulators composed of elexacaftor, tezacaftor, and ivacaftor (ETI) represents a life-changing therapy for the majority of PwCF worldwide. A growing number of clinical studies have demonstrated the safety and efficacy of ETI therapy in both short- and long-term (up to two years of follow-up to date) and its ability to significantly reduce pulmonary and gastrointestinal manifestations, sweat chloride concentration, exocrine pancreatic dysfunction, and infertility/subfertility, among other disease signs and symptoms. Nevertheless, ETI therapy-related adverse effects have also been reported, and close monitoring by a multidisciplinary healthcare team remains vital. This review aims to address and discuss the major therapeutic benefits and adverse effects reported by the clinical use of ETI therapy for PwCF.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Grace A. V. Magalhães-Ghiotto
- Department of Biotechnology, Genetics, and Cell Biology, Biological Sciences Center, State University of Maringa, Maringa 87020-900, PR, Brazil
| | - Sybelle Drumond
- Center for Research in Bioethics and Social Health, School of Magistracy of the State of Rio de Janeiro, Rio de Janeiro 20010-090, RJ, Brazil
| | - Carlos Henrique M. Castelletti
- Molecular Prospecting and Bioinformatics Group, Keizo Asami Institute, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
61
|
Dillenhoefer S, Grogono D, Morales-Tirado A. A year in review (2022): Modulators and COVID19, the story goes on…. J Cyst Fibros 2023; 22:188-192. [PMID: 36906393 PMCID: PMC9986130 DOI: 10.1016/j.jcf.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Affiliation(s)
- Stefanie Dillenhoefer
- Department of Pediatric Pulmonology, Cystic Fibrosis Center, University Children's Hospital of Ruhr University Bochum at St. Josef-Hospital, 44791 Bochum, Germany
| | - Dorothy Grogono
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, CB2 0AY, UK.
| | - Ana Morales-Tirado
- Cystic Fibrosis Unit, Pediatric Pulmonology Department, Ramon y Cajal Hospital, Madrid, Spain. Universidad de Alcalá
| |
Collapse
|
62
|
Gur M, Bar-Yoseph R, Hanna M, Abboud D, Keidar Z, Palchan T, Toukan Y, Masarweh K, Alisha I, Zuckerman-Levin N, Bentur L. Effect of Trikafta on bone density, body composition and exercise capacity in CF: A pilot study. Pediatr Pulmonol 2023; 58:577-584. [PMID: 36372909 PMCID: PMC10100338 DOI: 10.1002/ppul.26243] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND While the positive effect of Trikafta on cystic fibrosis (CF) pulmonary disease is well established, there is limited data about its effect on bone mineral density (BMD), body composition and exercise capacity. METHODS A pilot single center study. BMD and body composition were measured three months after the initiation of Trikafta (study group) and compared to values obtained 2 years earlier. CF patients not treated with Trikafta, for whom BMD was measured 2 years apart, served as controls. Spirometry, lung clearance index (LCI), sweat test, six-min walk test (6MWT) and cardio-pulmonary exercise test (CPET) were performed before and three months after the initiation of Trikafta. RESULTS Nine study patients, aged 18.6 ± 4.7 years, and nine controls. For the study group, BMI and hip and spine BMD increased significantly (19.4 ± 2.6 to 20.3 ± 2.19 BMI, p = 0.05; 0.73 ± 0.098 to 0.81 ± 0.12 gr/cm2 hip, p = 0.017; 0.76 ± 0.14 to 0.82 ± 0.14 gr/cm2 spine, p = 0.025). For the control group, there was no difference in hip or spine BMD. Lean body mass, %fat z-score and fat mass/height2 z-score increased significantly (34770.23 ± 10521.21 to 37430.16 ± 10330.09gr, p = 0.017; -0.8 ± 0.75 to 0.46 ± 0.58, p = 0.012; and -0.98 ± 0.66 to -0.04 ± 0.51, p = 0.025, respectively). 6MWT improved from 541.1 ± 48.9 to 592.9 ± 54.5 m (p = 0.046). As expected, FEV1%pred increased (p = 0.008) and sweat chloride decreased significantly (p = 0.017). In CPET, VE/VCO2 improved, indicating better ventilatory efficiency. CONCLUSIONS To the best of our knowledge, this is the first study evaluating the metabolic effects of Trikafta. The results are encouraging and offer hope beyond the well-established effect on pulmonary disease. Larger long-term studies are warranted to unpin the underlying physiological mechanisms.
Collapse
Affiliation(s)
- Michal Gur
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Bar-Yoseph
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Moneera Hanna
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Dana Abboud
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Zohar Keidar
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Nuclear Medicine Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tala Palchan
- Nuclear Medicine Institute, Rambam Health Care Campus, Haifa, Israel
| | - Yazeed Toukan
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Kamal Masarweh
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Irit Alisha
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Nehama Zuckerman-Levin
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Pediatric Diabetes Unit, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Lea Bentur
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
63
|
Ringshausen FC, Sauer-Heilborn A, Büttner T, Dittrich AM, Schwerk N, Ius F, Nährlich L, Welte T, Greer M. Lung transplantation for end-stage cystic fibrosis before and after the availability of elexacaftor-tezacaftor-ivacaftor, Germany, 2012-2021. Eur Respir J 2023; 61:13993003.01402-2022. [PMID: 36517178 DOI: 10.1183/13993003.01402-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Felix C Ringshausen
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Annette Sauer-Heilborn
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Tina Büttner
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Anna-Maria Dittrich
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Nicolaus Schwerk
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Fabio Ius
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School (MHH), Hannover, Germany
| | - Lutz Nährlich
- Department of Pediatrics, Justus-Liebig-University Giessen, and Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Giessen, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Mark Greer
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
64
|
Piehler L, Thalemann R, Lehmann C, Thee S, Röhmel J, Syunyaeva Z, Stahl M, Mall MA, Graeber SY. Effects of elexacaftor/tezacaftor/ivacaftor therapy on mental health of patients with cystic fibrosis. Front Pharmacol 2023; 14:1179208. [PMID: 37153809 PMCID: PMC10160464 DOI: 10.3389/fphar.2023.1179208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: The CFTR modulator drug elexacaftor/tezacaftor/ivacaftor (ETI) was shown to improve CFTR function and clinical symptoms in patients with cystic fibrosis (CF) with at least one F508del allele. Recently, some case reports suggested potential side effects of ETI on mental health with an increase in depressive symptoms and even suicide attempts in patients with CF. However, the general effects of this triple combination therapy on the mental health status of patients with CF remain largely unknown. Methods: We, therefore, performed a prospective, observational study in a real-life setting and investigated the relationship between initiation of ETI therapy and changes in mental health in adult patients with CF. We assessed Cystic Fibrosis Questionnaire-Revised (CFQ-R), Patient Health Questionnaire-9 (PHQ-9), Beck's Depression Inventory - Fast Screen (BDI-FS) and Generalized Anxiety Disorder 7-item Scale (GAD-7) at baseline and 8-16 weeks after initiation of ETI. Results: In total, 70 adult patients with CF with at least one F508del allele and a median age of 27.9 years were recruited. After initiation of ETI, the CFQ-R respiratory domain score improved by 27.9 (IQR 5.6 to 47.2; p < 0.001). The PHQ-9 score of depressive symptoms decreased by 1.0 (IQR -3.0 to 0.3; p < 0.05) with an increase of 16.9% in the group with a minimal score after initiation of ETI and a decrease in the groups of mild (-11.3%) or moderate (-5.7%) scores compared to baseline. The BDI-FS score of depressive symptoms decreased from 1.0 (IQR 0.0-2.0) at baseline to 0.0 (IQR 0.0 to 2.0; p < 0.05) after initiation of ETI. The group with a minimal BDI-FS score increased by 8.0% after initiation of ETI, whereas the groups with mild (-4.9%), moderate (-1.6%) or severe (-1.6%) scores decreased compared to baseline. The GAD-7 score of anxiety symptoms did not change after initiation of ETI compared to baseline (0.0; IQR -2.0. to 0.0; p = 0.112). Conclusion: Initiation of ETI improves symptoms of depression in adult patients with CF with at least one F508del allele. However, symptoms of anxiety do not change after short-term therapy with ETI.
Collapse
Affiliation(s)
- Linus Piehler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralf Thalemann
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christine Lehmann
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Charité—Universitätsmedizin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Charité—Universitätsmedizin, Berlin, Germany
| | - Zulfiya Syunyaeva
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Charité—Universitätsmedizin, Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Charité—Universitätsmedizin, Berlin, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Charité—Universitätsmedizin, Berlin, Germany
- *Correspondence: Simon Y. Graeber,
| |
Collapse
|
65
|
Westhölter D, Raspe J, Uebner H, Pipping J, Schmitz M, Straßburg S, Sutharsan S, Welsner M, Taube C, Reuter S. Regulatory T cell enhancement in adults with cystic fibrosis receiving Elexacaftor/Tezacaftor/Ivacaftor therapy. Front Immunol 2023; 14:1107437. [PMID: 36875141 PMCID: PMC9978140 DOI: 10.3389/fimmu.2023.1107437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Cystic fibrosis (CF), especially CF lung disease, is characterized by chronic infection, immune dysfunction including impairment of regulatory T cells (Tregs) and an exaggerated inflammatory response. CF transmembrane conductance regulator (CFTR) modulators have shown to improve clinical outcomes in people with CF (PwCF) with a wide range of CFTR mutations. However, it remains unclear whether CFTR modulator therapy also affects CF-associated inflammation. We aimed to examine the effect of elexacaftor/tezacaftor/ivacaftor therapy on lymphocyte subsets and systemic cytokines in PwCF. Methods Peripheral blood mononuclear cells and plasma were collected before and at three and six months after the initiation of elexacaftor/tezacaftor/ivacaftor therapy; lymphocyte subsets and systemic cytokines were determined using flow cytometry. Results Elexacaftor/tezacaftor/ivacaftor treatment was initiated in 77 PwCF and improved percent predicted FEV1 by 12.5 points (p<0.001) at 3 months. During elexacaftor/tezacaftor/ivacaftor therapy, percentages of Tregs were enhanced (+18.7%, p<0.001), with an increased proportion of Tregs expressing CD39 as a marker of stability (+14.4%, p<0.001). Treg enhancement was more pronounced in PwCF clearing Pseudomonas aeruginosa infection. Only minor, non-significant shifts were observed among Th1-, Th2- and Th17-expressing effector T helper cells. These results were stable at 3- and 6-month follow-up. Cytokine measurements showed a significant decrease in interleukin-6 levels during treatment with elexacaftor/tezacaftor/ivacaftor (-50.2%, p<0.001). Conclusion Treatment with elexacaftor/tezacaftor/ivacaftor was associated with an increased percentage of Tregs, especially in PwCF clearing Pseudomonas aeruginosa infection. Targeting Treg homeostasis is a therapeutic option for PwCF with persistent Treg impairment.
Collapse
Affiliation(s)
- Dirk Westhölter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Jonas Raspe
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Hendrik Uebner
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Johannes Pipping
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Mona Schmitz
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Svenja Straßburg
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sivagurunathan Sutharsan
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Matthias Welsner
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| |
Collapse
|
66
|
Goralski JL, Chung SH, Ceppe AS, Powell MZ, Sakthivel M, Handly BD, Lee YZ, Donaldson SH. Dynamic Perfluorinated Gas MRI Shows Improved Lung Ventilation in People with Cystic Fibrosis after Elexacaftor/Tezacaftor/Ivacaftor: An Observational Study. J Clin Med 2022; 11:6160. [PMID: 36294480 PMCID: PMC9604637 DOI: 10.3390/jcm11206160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 01/27/2023] Open
Abstract
The availability of highly effective CFTR modulators is revolutionizing the treatment of cystic fibrosis (CF) and drastically improving outcomes. MRI-based imaging modalities are now emerging as highly sensitive endpoints, particularly in the setting of mild lung disease. Adult CF patients were recruited from a single center prior to starting treatment with E/T/I. The following studies were obtained before and after one month on treatment: spirometry, multiple breath nitrogen washout (MBW), 1H UTE MRI (structural images) and 19F MRI (ventilation images). Changes between visits were calculated, as were correlations between FEV1, lung clearance index (LCI), MRI structural scores, and MRI-based ventilation descriptors. Eight subjects had complete datasets for evaluation. Consistent with prior clinical trials, FEV1 and LCI improved after 28 days of E/T/I use. 1H UTE MRI detected improvements in bronchiectasis/airway wall thickening score and mucus plugging score after 28 days of therapy. 19F MRI demonstrated improvements in fractional lung volume with slow gas washout time (FLV↑tau2) and ventilation defect percentage (VDP). Improvements in FLV↑tau2 and VDP correlated with improvement in FEV1 (r = 0.81 and 0.86, respectively, p < 0.05). This observational study establishes the ability of 19F MRI and 1H UTE MRI to detect improvements in lung structure and function after E/T/I treatment. This study supports further development of 19F MRI and 1H UTE MRI as outcome measures for cystic fibrosis research and drug development.
Collapse
Affiliation(s)
- Jennifer L. Goralski
- Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute/UNC Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sang Hun Chung
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill—North Carolina State University, Chapel Hill, NC 27599, USA
| | - Agathe S. Ceppe
- Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute/UNC Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margret Z. Powell
- Marsico Lung Institute/UNC Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Muthu Sakthivel
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian D. Handly
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yueh Z. Lee
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott H. Donaldson
- Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute/UNC Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
67
|
Ben-Meir E, Grasemann H. How Should the Effects of CFTR Modulator Therapy on Cystic Fibrosis Lung Disease Be Monitored? Am J Respir Crit Care Med 2022; 206:240-242. [PMID: 35579627 PMCID: PMC9890251 DOI: 10.1164/rccm.202204-0730ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Elad Ben-Meir
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children Toronto, Ontario, Canada
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children Toronto, Ontario, Canada
| |
Collapse
|