51
|
Guzmán-Silva A, Vázquez de Lara LG, Torres-Jácome J, Vargaz-Guadarrama A, Flores-Flores M, Pezzat Said E, Lagunas-Martínez A, Mendoza-Milla C, Tanzi F, Moccia F, Berra-Romani R. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts. PLoS One 2015; 10:e0134564. [PMID: 26230503 PMCID: PMC4521834 DOI: 10.1371/journal.pone.0134564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/11/2015] [Indexed: 12/12/2022] Open
Abstract
Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF.
Collapse
Affiliation(s)
- Alejandro Guzmán-Silva
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Luis G. Vázquez de Lara
- Experimental Medicine Laboratory, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Julián Torres-Jácome
- Physiology Institute, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Ajelet Vargaz-Guadarrama
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Marycruz Flores-Flores
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Elias Pezzat Said
- Experimental Medicine Laboratory, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Alfredo Lagunas-Martínez
- Instituto Nacional de Salud Pública, Centro de Investigación sobre Enfermedades Infecciosas, Cuernavaca, Morelos, México
| | - Criselda Mendoza-Milla
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City, México
| | - Franco Tanzi
- Laboratory of General Physiology, Department of Biology and Biotechnology ‘‘Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology ‘‘Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| |
Collapse
|