51
|
Vujosevic S, Midena E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations. J Diabetes Res 2013; 2013:905058. [PMID: 23841106 PMCID: PMC3694491 DOI: 10.1155/2013/905058] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To evaluate the changes in thickness of individual inner and outer macular and peripapillary retinal layers in diabetes. METHODS 124 subjects (124 eyes) were enrolled: 74 diabetics and 50 controls. Macular edema, proliferative diabetic retinopathy (DR), any intraocular treatment and refractive error >6 diopters were the main exclusion criteria. Full ophthalmic examination, stereoscopic fundus photography, and spectral domain-OCT were performed. After automatic retinal segmentation (layering) in 5 layers, the thickness of each layer was calculated, and values compared among groups. RESULTS Thirty patients had no DR, 44 patients had non proliferative DR. A significant increase of inner plexiform and nuclear layers was found in DR eyes versus controls (P < 0.001). A significant decrease (P < 0.01) of retinal nerve fiber layer (RNFL) and at specific sites of retinal ganglion cell layer (P = 0.02) was documented in the macula. In the peripapillary area there were no differences between diabetics and controls. CONCLUSIONS Decreased RNFL thickness and increased INL/OPL thickness in diabetics without DR or with initial DR suggest early alterations in the inner retina. On the contrary, the outer retina seems not to be affected at early stages of DM. Automatic intraretinal layering by SD-OCT may be a useful tool to diagnose and monitor early intraretinal changes in DR.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Ophthalmology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Edoardo Midena
- Department of Ophthalmology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione G. B. Bietti, Via Livenza 3, 00198 Roma, Italy
- *Edoardo Midena:
| |
Collapse
|
52
|
Fortune B, Burgoyne CF, Cull GA, Reynaud J, Wang L. Structural and functional abnormalities of retinal ganglion cells measured in vivo at the onset of optic nerve head surface change in experimental glaucoma. Invest Ophthalmol Vis Sci 2012; 53:3939-50. [PMID: 22589428 DOI: 10.1167/iovs.12-9979] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To compare peripapillary retinal nerve fiber layer thickness (RNFLT), RNFL retardance, and retinal function at the onset of optic nerve head (ONH) surface topography change in experimental glaucoma (EG). METHODS Thirty-three rhesus macaques had three or more weekly baseline measurements in both eyes of ONH surface topography, peripapillary RNFLT, RNFL retardance, and multifocal electroretinography (mfERG). Laser photocoagulation was then applied to the trabecular meshwork of one eye to induce chronic elevation of IOP and weekly recordings continued alternating between ONH surface topography and RNFLT during one week and RNFL retardance and mfERG the next week. Data were pooled for the group at the onset of ONH surface topography change in each EG eye, which was defined as the first date when either the mean position of the disc (MPD) fell below the 95% confidence limit of each eye's individual baseline range and/or when the topographic change analysis (TCA) map was subjectively judged as having demonstrated change, whichever came first. Analysis of variance with post hoc tests corrected for multiple comparisons were used to assess parameter changes. RESULTS At onset of ONH surface topography change, there was no significant difference for RNFLT versus baseline or fellow control eyes. RNFL retardance and mfERG were significantly reduced in the recordings just prior (median of 9 days) to ONH onset (P < 0.01) and had progressed significantly (P < 0.001) an average of 17 days later (median of 7 days after ONH onset). RNFLT did not exhibit significant thinning until 15 days after onset of ONH surface topography change (P < 0.001). CONCLUSIONS These results support the hypothesis that during the course of glaucomatous neurodegeneration, axonal cytoskeletal and retinal ganglion cell functional abnormalities exist before thinning of peripapillary RNFL axon bundles begins.
Collapse
Affiliation(s)
- Brad Fortune
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Legacy Health, Portland, Oregon, USA.
| | | | | | | | | |
Collapse
|
53
|
Yang H, Qi J, Hardin C, Gardiner SK, Strouthidis NG, Fortune B, Burgoyne CF. Spectral-domain optical coherence tomography enhanced depth imaging of the normal and glaucomatous nonhuman primate optic nerve head. Invest Ophthalmol Vis Sci 2012; 53:394-405. [PMID: 22159003 DOI: 10.1167/iovs.11-8244] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To test whether the enhanced depth imaging (EDI) modality improves anterior and posterior lamina cribrosa surface (ALCS and PLCS) visibility compared with conventional spectral-domain optical coherence tomography (SD-OCT). METHODS Conventional and EDI SD-OCT scans were obtained 30 minutes after IOP was manometrically lowered to 10 mm Hg in both eyes of 14 nonhuman primates (NHPs) with unilateral experimental glaucoma (EG). Thirteen horizontal and seven vertical radial B-scans of each SD-OCT data set were delineated by one operator masked to image type. Delineated ALCS and PLCS points were projected to 1 of 100 equal-sized subregions of the neural canal opening (NCO) reference plane, and the number of delineated subregions (≥2 points) was counted. Poisson regression was used to analyze the effects of image type, treatment, and quadrant. Two additional delineations were performed for three NHPs to compare reproducibility. RESULTS EDI increased the number of subregions delineated for both the ALCS (by 28%; P < 0.0001) and PLCS (by 225%; P < 0.0001). EDI improvement in ALCS visibility was significant in the superior quadrant only and was not different in EG versus control eyes, whereas EDI improvement in PLCS visibility was significant in all four quadrants (P < 0.005) and greater in EG eyes (P < 0.001), nasally and temporally. Intradelineator reproducibility was not different between image types. EDI and standard ONH parameter values were similar except for PLCS depth which was deeper in the EDI data sets (P = 0.0002). CONCLUSIONS ALCS and PLCS visibility within control and EG NHP ONHs increased in EDI compared to conventional SD-OCT data sets. Further study of EDI effects on PLCS parameterization is required.
Collapse
|
54
|
Strouthidis NG, Fortune B, Yang H, Sigal IA, Burgoyne CF. Effect of acute intraocular pressure elevation on the monkey optic nerve head as detected by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2011; 52:9431-7. [PMID: 22058335 DOI: 10.1167/iovs.11-7922] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether acutely elevated IOP alters optic nerve head (ONH) structural parameters characterized in vivo using spectral domain optical coherence tomography (SD-OCT). METHODS Five rhesus macaques were tested under isoflurane anesthesia. SD-OCT images of the ONH of both eyes were acquired 30 minutes after IOP was stabilized to 10 mm Hg and 60 minutes after stabilization to 45 mm Hg. The internal limiting membrane, Bruch's membrane/retinal pigment epithelium, neural canal opening (NCO), and anterior lamina cribrosa surface (ALCS) were delineated using custom software. Differences in SD-OCT structural parameters between the two IOP levels were assessed using generalized estimating equations. In six eyes of three animals, images were acquired after 10 minutes and 30 minutes of IOP stabilization to 10 mm Hg (control experiment). RESULTS Acute IOP elevation resulted in a reduction in prelaminar tissue thickness (mean, -47 μm; SD, 25 μm; P = 0.002), rim volume (-0.05 mm(3), 0.02 mm(3); P = 0.002), rim width (-30 μm, 7 μm; P = 0.002), and in an increase in NCO depth (38 μm, 15 μm; P = 0.002). An increase in ALCS depth was significant relative to peripheral Bruch's membrane (48 μm, 24 μm; P = 0.002) but not relative to the NCO. No significant parameter changes were detected in the control eyes. CONCLUSIONS Surface compliance changes in the normal monkey ONH primarily reflect prelaminar and peripapillary deformation. SD-OCT compliance testing will further our understanding of the effects of IOP on the ONH and help improve and validate numerical models of ONH biomechanics.
Collapse
Affiliation(s)
- Nicholas G Strouthidis
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Health, Portland, Oregon 97208-3950, USA
| | | | | | | | | |
Collapse
|
55
|
Kupersmith MJ, Sibony P, Mandel G, Durbin M, Kardon RH. Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillary retinal pigment epithelium layer in papilledema. Invest Ophthalmol Vis Sci 2011; 52:6558-64. [PMID: 21705690 DOI: 10.1167/iovs.10-6782] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. To examine the biomechanical deformation of load bearing structures of the optic nerve head (ONH) resulting from raised intracranial pressure, using high definition optical coherence tomography (HD-OCT). The authors postulate that elevated intracranial pressure induces forces in the retrolaminar subarachnoid space that can deform ONH structures, particularly the peripapillary Bruch's membrane (BM) and RPE layers. METHODS. The authors compared HD-OCT optic nerve and peripapillary retinal nerve fiber layer (RNFL) findings in eyes with papilledema caused by raised intracranial pressure to findings in eyes with optic disc swelling caused by optic neuritis and nonarteritic anterior ischemic optic neuropathy (NAION), conditions without intracranial hypertension. The authors measured average thickness of the RNFL and the angle of the RPE/BM at the temporal and nasal borders of the neural canal opening. The angle was measured as positive with inward (toward the vitreous) angulation and as negative with outward angulation. RESULTS. Of 30 eyes with papilledema, 20 eyes (67%) had positive RPE/BM rim angles. One of eight optic neuritis (12%) eyes and 1 of 12 NAION (8%) eyes had positive angulation. In five eyes with papilledema, RNFL thickening increased, three of which developed positive RPE/BM angles. On follow-up, 22 papilledema eyes had a reduction of RNFL swelling, and 17 of these eyes had less positive RPE/BM angulation. CONCLUSIONS. In papilledema, the RPE/BM is commonly deflected inward, in contrast to eyes with NAION or optic neuritis. The RPE/BM angulation is presumed to be caused by elevated pressure in the subarachnoid space, does not correlate with the amount of RNFL swelling, and resolves as papilledema subsides.
Collapse
Affiliation(s)
- Mark J Kupersmith
- Institute for Neurology and Neurosurgery at Roosevelt Hospital and the New York Eye and Ear Infirmary, USA.
| | | | | | | | | |
Collapse
|
56
|
Sigal IA. An applet to estimate the IOP-induced stress and strain within the optic nerve head. Invest Ophthalmol Vis Sci 2011; 52:5497-506. [PMID: 21527378 DOI: 10.1167/iovs.10-7141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The ability to predict the biomechanical response of the optic nerve head (ONH) to intraocular pressure (IOP) elevation holds great promise, yet remains elusive. The objective of this work was to introduce an approach to model ONH biomechanics that combines the ease of use and speed of analytical models with the flexibility and power of numerical models. METHODS Models representing a variety of ONHs were produced, and finite element (FE) techniques used to predict the stresses (forces) and strains (relative deformations) induced on each of the models by IOP elevations (up to 10 mm Hg). Multivariate regression was used to parameterize each biomechanical response as an analytical function. These functions were encoded into a Flash-based applet. Applet utility was demonstrated by investigating hypotheses concerning ONH biomechanics posited in the literature. RESULTS All responses were parameterized well by polynomials (R² values between 0.985 and 0.999), demonstrating the effectiveness of our fitting approach. Previously published univariate results were reproduced with the applet in seconds. A few minutes allowed for multivariate analysis, with which it was predicted that often, but not always, larger eyes experience higher levels of stress and strain than smaller ones, even at the same IOP. CONCLUSIONS An applet has been presented with which it is simple to make rapid estimates of IOP-related ONH biomechanics. The applet represents a step toward bringing the power of FE modeling beyond the specialized laboratory and can thus help develop more refined biomechanics-based hypotheses. The applet is available for use at www.ocularbiomechanics.com.
Collapse
Affiliation(s)
- Ian A Sigal
- Ocular Biomechanics Laboratory, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
57
|
Patel NB, Luo X, Wheat JL, Harwerth RS. Retinal nerve fiber layer assessment: area versus thickness measurements from elliptical scans centered on the optic nerve. Invest Ophthalmol Vis Sci 2011; 52:2477-89. [PMID: 21220552 DOI: 10.1167/iovs.10-6105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
PURPOSE An evaluation of the retinal nerve fiber layer (RNFL) provides important information on the health of the optic nerve. Standard measurements of the RNFL consider only thickness, but an accurate assessment should also consider axial length, size of the optic nerve head (ONH), blood vessel contribution, and distance of the scan from the ONH margin. In addition, although most primate ONHs are elliptical, the circular scan centered on the ONH is the mainstay in both clinical and research analyses. The purpose of this study was to evaluate thickness and area measures of RNFL cross sections when axial length and ONH shape are included. METHODS Circular, raster, and radial scans of left eye optic nerves were acquired from 40 normal rhesus monkeys (Macaca mulatta) using spectral domain optical coherence tomography. The disc margin was identified by manually selecting the RPE/Bruch's membrane opening and ONH border tissue. With a pixel-to-micrometer conversion computed from a three-surface schematic eye, RNFL scans were interpolated at 300 to 600 μm (50-μm increments) from the edge of the ONH. The thickness and area of the RNFL at each distance were obtained by custom programs. Blood vessels in the RNFL were selected and removed from the overall RNFL measures. RESULTS The average RNFL thickness decreased systematically from 149 ± 12.0 μm for scans 300 μm from the disc margin to 113 ± 7.2 μm at an eccentricity of 600 μm (P < 0.05). In contrast, the cross-sectional areas of the RNFL did not vary with scan location from the disc margin (0.85 ± 0.07 mm(2) at 300 μm compared with 0.86 ± 0.06 mm(2) at 600 μm). Blood vessels accounted for 9.3% of total RNFL thickness or area, but varied with retinal location. On average, 17.6% of the superior and 14.2% of the inferior RNFL was vascular, whereas blood vessels accounted for only 2.3% of areas of the temporal and nasal RNFL regions. CONCLUSIONS In nonhuman primates, with appropriate transverse scaling and ONH shape analysis, the cross-sectional area of the RNFL is independent of scan distance, up to 600 μm from the rim margin, indicating that the axonal composition changes little over this range. The results suggest that, with incorporation of transverse scaling, the RNFL cross-sectional area, rather than RNFL thickness, provides an accurate assessment of the retinal ganglion cell axonal content within the eye.
Collapse
Affiliation(s)
- Nimesh B Patel
- College of Optometry, University of Houston, Houston, Texas, USA.
| | | | | | | |
Collapse
|
58
|
Gabriele ML, Wollstein G, Ishikawa H, Kagemann L, Xu J, Folio LS, Schuman JS. Optical coherence tomography: history, current status, and laboratory work. Invest Ophthalmol Vis Sci 2011; 52:2425-36. [PMID: 21493951 DOI: 10.1167/iovs.10-6312] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Optical coherence tomography (OCT) imaging has become widespread in ophthalmology over the past 15 years, because of its ability to visualize ocular structures at high resolution. This article reviews the history of OCT imaging of the eye, its current status, and the laboratory work that is driving the future of the technology.
Collapse
Affiliation(s)
- Michelle L Gabriele
- Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Strouthidis NG, Fortune B, Yang H, Sigal IA, Burgoyne CF. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest Ophthalmol Vis Sci 2011; 52:1206-19. [PMID: 21217108 DOI: 10.1167/iovs.10-5599] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate whether longitudinal changes deep within the optic nerve head (ONH) are detectable by spectral domain optical coherence tomography (SDOCT) in experimental glaucoma (EG) and whether these changes are detectable at the onset of Heidelberg Retina Tomography (HRT; Heidelberg Engineering, Heidelberg, Germany)-defined surface topography depression. METHODS Longitudinal SDOCT imaging (Spectralis; Heidelberg Engineering) was performed in both eyes of nine rhesus macaques every 1 to 3 weeks. One eye of each underwent trabecular laser-induced IOP elevation. Four masked operators delineated internal limiting membrane (ILM), retinal nerve fiber layer (RNFL), Bruch's membrane/retinal pigment epithelium (BM/RPE), neural canal opening (NCO), and anterior lamina cribrosa surface (ALCS) by using custom software. Longitudinal changes were assessed and compared between the EG and control (nonlasered) eyes at the onset of HRT-detected surface depression (follow-up 1; [FU1]) and at the most recent image (follow-up 2; [FU2]). RESULTS Mean IOP in EG eyes was 7.1 to 24.6 mm Hg at FU1 and 13.5 to 31.9 mm Hg at FU2. In control eyes, the mean IOP was 7.2 to 12.6 mm Hg (FU1) and 8.9 to 16.0 mm Hg (FU2). At FU1, neuroretinal rim decreased and ALCS depth increased significantly (paired t-test, P < 0.01); no change in RNFL thickness was detected. At FU2, however, significant prelaminar tissue thinning, posterior displacement of NCO, and RNFL thinning were observed. CONCLUSIONS Longitudinal SDOCT imaging can detect deep ONH changes in EG eyes, the earliest of which are present at the onset of HRT-detected ONH surface height depression. These parameters represent realistic targets for SDOCT detection of glaucomatous progression in human subjects.
Collapse
Affiliation(s)
- Nicholas G Strouthidis
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Health System, Portland, OR 97208-3950, USA
| | | | | | | | | |
Collapse
|
60
|
Yang H, Thompson H, Roberts MD, Sigal IA, Downs JC, Burgoyne CF. Deformation of the early glaucomatous monkey optic nerve head connective tissue after acute IOP elevation in 3-D histomorphometric reconstructions. Invest Ophthalmol Vis Sci 2011; 52:345-63. [PMID: 20702834 DOI: 10.1167/iovs.09-5122] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To retest the hypothesis that monkey ONH connective tissues become hypercompliant in early experimental glaucoma (EEG), by using 3-D histomorphometric reconstructions, and to expand the characterization of EEG connective tissue deformation to nine EEG eyes. METHODS Trephinated ONH and peripapillary sclera from both eyes of nine monkeys that were perfusion fixed, with one normal eye at IOP 10 mm Hg and the other EEG eye at 10 (n=3), 30 (n=3), or 45 (n=3) mm Hg were serial sectioned, 3-D reconstructed, 3-D delineated, and quantified with 3-D reconstruction techniques developed in prior studies by the authors. Overall, and for each monkey, intereye differences (EEG eye minus normal eye) for each parameter were calculated and compared by ANOVA. Hypercompliance in the EEG 30 and 45 eyes was assessed by ANOVA, and deformations in all nine EEG eyes were separately compared by region without regard for fixation IOP. RESULTS Hypercompliant deformation was not significant in the overall ANOVA, but was suggested in a subset of EEG 30/45 eyes. EEG eye deformations included posterior laminar deformation, neural canal expansion, lamina cribrosa thickening, and posterior (outward) bowing of the peripapillary sclera. Maximum posterior laminar deformation and scleral canal expansion co-localized to either the inferior nasal or superior temporal quadrants in the eyes with the least deformation and involved both quadrants in the eyes achieving the greatest deformation. CONCLUSIONS The data suggest that, in monkey EEG, ONH connective tissue hypercompliance may occur only in a subset of eyes and that early ONH connective tissue deformation is maximized in the superior temporal and/or inferior nasal quadrants.
Collapse
Affiliation(s)
- Hongli Yang
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Health System, Portland, OR 97208-3950, USA
| | | | | | | | | | | |
Collapse
|
61
|
Sehi M, Grewal DS, Zhu H, Feuer WJ, Greenfield DS. Quantification of change in axonal birefringence following surgical reduction in intraocular pressure. Ophthalmic Surg Lasers Imaging Retina 2010; 42:45-52. [PMID: 21117579 DOI: 10.3928/15428877-20101124-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/09/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE the purpose of this study was to examine the hypothesis that retinal nerve fiber layer (RNFL) birefringence increases following surgical reduction of intraocular pressure (IOP). PATIENTS AND METHODS twenty-six glaucomatous eyes requiring trabeculectomy or drainage implant were enrolled. Optical coherence tomography (OCT), scanning laser polarimetry (SLP), and IOP measurements were performed preoperatively and 3 months postoperatively. The OCT and SLP images were aligned using a new algorithm that aligns the vessels in an OCT image to those in the corresponding SLP reflectance image. The SLP retardance values at the location of the OCT scan circle were then extracted using the OCT scan circle position inferred by the algorithm. Sixty-four corresponding RNFL segments were extracted from SLP and OCT to calculate RNFL birefringence. A significant birefringence change was defined as 1.96 times the weighted test-retest standard deviation in four contiguous segments. RESULTS preoperative IOP (19.3 ± 6.1 mm Hg) was significantly (P < .001) lower than postoperative IOP (10.4 ± 3.7 mm Hg). Average birefringence magnitude did not change (P = .19) postoperatively. Localized birefringence magnitude increased significantly in 6 (23%) eyes and decreased significantly in 7 (27%) eyes. CONCLUSION in this cohort, variable changes in localized birefringence were observed following surgical reduction of IOP.
Collapse
Affiliation(s)
- Mitra Sehi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 7101 Fairway Drive, Palm Beach, Gardens, FL 33418, USA.
| | | | | | | | | |
Collapse
|
62
|
Roberts MD, Sigal IA, Liang Y, Burgoyne CF, Downs JC. Changes in the biomechanical response of the optic nerve head in early experimental glaucoma. Invest Ophthalmol Vis Sci 2010; 51:5675-84. [PMID: 20538991 DOI: 10.1167/iovs.10-5411] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the biomechanical response of the optic nerve head (ONH) connective tissues to IOP elevation in three pairs of monkey eyes in which one eye had early experimental glaucoma (EG). METHODS A serial imaging technique was used to reconstruct the ONH and peripapillary sclera of three pairs of unilateral EG eyes fixed at 10 mm Hg. Eye-specific finite element models of the posterior pole were constructed with inhomogeneous material properties defined for the lamina cribrosa (LC) based on local connective tissue volume fraction (CTVF) and predominant LC beam orientation. These models were used to simulate an IOP increase from 10 to 45 mm Hg. A laminar material constant was varied to produce a range of LC displacements and scleral canal expansions, and the associated LC stress and strain were characterized. RESULTS The models suggest that the LC of normal and EG eyes can deform posteriorly or anteriorly when the LC material stiffness is low or high, respectively. Scleral canal expansion was generally, but not always, reduced in EG eyes. Strains in the EG eye were similar to or lower than those in the contralateral eye for the same average LC displacement and increased when the LC was more plaint. Laminar stresses were consistently lower in the EG eye, regardless of LC stiffness. CONCLUSIONS Connective tissue remodeling in EG alters the biomechanical response of the LC to IOP elevation in an eye-specific manner. The models indicated that the LC tissues in EG eyes were more plaint than those in the contralateral normal eyes in two of three monkeys.
Collapse
Affiliation(s)
- Michael D Roberts
- Ocular Biomechanics Laboratories, Devers Eye Institute, Legacy Health System, Portland, Oregon 97232, USA
| | | | | | | | | |
Collapse
|
63
|
Roberts MD, Liang Y, Sigal IA, Grimm J, Reynaud J, Bellezza A, Burgoyne CF, Downs JC. Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes. Invest Ophthalmol Vis Sci 2009; 51:295-307. [PMID: 19696175 DOI: 10.1167/iovs.09-4016] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the biomechanical response to IOP elevation of normal monkey eyes using eye-specific, three-dimensional (3-D) finite element (FE) models of the ONH that incorporate lamina cribrosa (LC) microarchitectural information. METHODS A serial sectioning and episcopic imaging technique was used to reconstruct the ONH and peripapillary sclera of four pairs of eyes fixed at 10 mm Hg. FE models were generated with local LC material properties representing the connective tissue volume fraction (CTVF) and predominant LC beam orientation and used to simulate an increase in IOP from 10 to 45 mm Hg. An LC material stiffness constant was varied to assess its influence on biomechanical response. RESULTS Strains and stresses within contralateral eyes were remarkably similar in both magnitude and distribution. Strain correlated inversely, and nonlinearly, with CTVF (median, r (2) = 0.73), with tensile strains largest in the temporal region. Stress correlated linearly with CTVF (median r(2) = 0.63), with the central and superior regions bearing the highest stresses. Net average LC displacement was either posterior or anterior, depending on whether the laminar material properties were compliant or stiff. CONCLUSIONS The results show that contralateral eyes exhibit similar mechanical behavior and suggest that local mechanical stress and strain within the LC are correlate highly with local laminar CTVF. These simulations emphasize the importance of developing both high-resolution imaging of the LC microarchitecture and next-generation, deep-scanning OCT techniques to clarify the relationships between IOP-related LC displacement and CTVF-related stress and strain in the LC. Such imaging may predict sites of IOP-related damage in glaucoma.
Collapse
|