51
|
Zhao MT, Shao NY, Hu S, Ma N, Srinivasan R, Jahanbani F, Lee J, Zhang SL, Snyder MP, Wu JC. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells. Circ Res 2017; 121:1237-1250. [PMID: 29030344 DOI: 10.1161/circresaha.117.311367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/27/2017] [Accepted: 10/12/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. OBJECTIVE We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. METHODS AND RESULTS We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31+CD144+), cardiac progenitor cells (Sca-1+), fibroblasts (DDR2+), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. CONCLUSIONS Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- From the Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (M.-T.Z., N.-Y.S., N.M., J.L., S.L.Z., J.C.W.); Department of Cardiovascular Surgery of the Frist Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China (S.H.); Department of Chemical and Systems Biology, Stanford University School of Medicine, CA (R.S.); and Department of Genetics, Stanford University School of Medicine, CA (F.J., M.P.S.)
| | - Ning-Yi Shao
- From the Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (M.-T.Z., N.-Y.S., N.M., J.L., S.L.Z., J.C.W.); Department of Cardiovascular Surgery of the Frist Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China (S.H.); Department of Chemical and Systems Biology, Stanford University School of Medicine, CA (R.S.); and Department of Genetics, Stanford University School of Medicine, CA (F.J., M.P.S.)
| | - Shijun Hu
- From the Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (M.-T.Z., N.-Y.S., N.M., J.L., S.L.Z., J.C.W.); Department of Cardiovascular Surgery of the Frist Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China (S.H.); Department of Chemical and Systems Biology, Stanford University School of Medicine, CA (R.S.); and Department of Genetics, Stanford University School of Medicine, CA (F.J., M.P.S.).
| | - Ning Ma
- From the Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (M.-T.Z., N.-Y.S., N.M., J.L., S.L.Z., J.C.W.); Department of Cardiovascular Surgery of the Frist Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China (S.H.); Department of Chemical and Systems Biology, Stanford University School of Medicine, CA (R.S.); and Department of Genetics, Stanford University School of Medicine, CA (F.J., M.P.S.)
| | - Rajini Srinivasan
- From the Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (M.-T.Z., N.-Y.S., N.M., J.L., S.L.Z., J.C.W.); Department of Cardiovascular Surgery of the Frist Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China (S.H.); Department of Chemical and Systems Biology, Stanford University School of Medicine, CA (R.S.); and Department of Genetics, Stanford University School of Medicine, CA (F.J., M.P.S.)
| | - Fereshteh Jahanbani
- From the Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (M.-T.Z., N.-Y.S., N.M., J.L., S.L.Z., J.C.W.); Department of Cardiovascular Surgery of the Frist Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China (S.H.); Department of Chemical and Systems Biology, Stanford University School of Medicine, CA (R.S.); and Department of Genetics, Stanford University School of Medicine, CA (F.J., M.P.S.)
| | - Jaecheol Lee
- From the Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (M.-T.Z., N.-Y.S., N.M., J.L., S.L.Z., J.C.W.); Department of Cardiovascular Surgery of the Frist Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China (S.H.); Department of Chemical and Systems Biology, Stanford University School of Medicine, CA (R.S.); and Department of Genetics, Stanford University School of Medicine, CA (F.J., M.P.S.)
| | - Sophia L Zhang
- From the Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (M.-T.Z., N.-Y.S., N.M., J.L., S.L.Z., J.C.W.); Department of Cardiovascular Surgery of the Frist Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China (S.H.); Department of Chemical and Systems Biology, Stanford University School of Medicine, CA (R.S.); and Department of Genetics, Stanford University School of Medicine, CA (F.J., M.P.S.)
| | - Michael P Snyder
- From the Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (M.-T.Z., N.-Y.S., N.M., J.L., S.L.Z., J.C.W.); Department of Cardiovascular Surgery of the Frist Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China (S.H.); Department of Chemical and Systems Biology, Stanford University School of Medicine, CA (R.S.); and Department of Genetics, Stanford University School of Medicine, CA (F.J., M.P.S.).
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (M.-T.Z., N.-Y.S., N.M., J.L., S.L.Z., J.C.W.); Department of Cardiovascular Surgery of the Frist Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China (S.H.); Department of Chemical and Systems Biology, Stanford University School of Medicine, CA (R.S.); and Department of Genetics, Stanford University School of Medicine, CA (F.J., M.P.S.).
| |
Collapse
|
54
|
Zimmerlin L, Park TS, Zambidis ET. Capturing Human Naïve Pluripotency in the Embryo and in the Dish. Stem Cells Dev 2017; 26:1141-1161. [PMID: 28537488 DOI: 10.1089/scd.2017.0055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naïve preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naïve and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naïve mESCs. These include important features of the naïve ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naïve-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Tea Soon Park
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Elias T Zambidis
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| |
Collapse
|
55
|
Nam Y, Rim YA, Ju JH. Chondrogenic Pellet Formation from Cord Blood-derived Induced Pluripotent Stem Cells. J Vis Exp 2017. [PMID: 28654049 DOI: 10.3791/55988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human articular cartilage lacks the ability to repair itself. Cartilage degeneration is thus treated not by curative but by conservative treatments. Currently, efforts are being made to regenerate damaged cartilage with ex vivo expanded chondrocytes or bone marrow-derived mesenchymal stem cells (BMSCs). However, the restricted viability and instability of these cells limit their application in cartilage reconstruction. Human induced pluripotent stem cells (hiPSCs) have received scientific attention as a new alternative for regenerative applications. With unlimited self-renewal ability and multipotency, hiPSCs have been highlighted as a new replacement cell source for cartilage repair. However, obtaining a high quantity of high-quality chondrogenic pellets is a major challenge to their clinical application. In this study, we used embryoid body (EB)-derived outgrowth cells for chondrogenic differentiation. Successful chondrogenesis was confirmed by PCR and staining with alcian blue, toluidine blue, and antibodies against collagen types I and II (COL1A1 and COL2A1, respectively). We provide a detailed method for the differentiation of cord blood mononuclear cell-derived iPSCs (CBMC-hiPSCs) into chondrogenic pellets.
Collapse
Affiliation(s)
- Yoojun Nam
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Division of Rheumatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Yeri Alice Rim
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Division of Rheumatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea;
| |
Collapse
|