51
|
Coppola G, Di Lorenzo C, Schoenen J, Pierelli F. Habituation and sensitization in primary headaches. J Headache Pain 2013; 14:65. [PMID: 23899115 PMCID: PMC3733593 DOI: 10.1186/1129-2377-14-65] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/21/2013] [Indexed: 11/20/2022] Open
Abstract
The phenomena of habituation and sensitization are considered most useful for studying the neuronal substrates of information processing in the CNS. Both were studied in primary headaches, that are functional disorders of the brain characterized by an abnormal responsivity to any kind of incoming innocuous or painful stimuli and it's cycling pattern over time (interictal, pre-ictal, ictal). The present review summarizes available data on stimulus responsivity in primary headaches obtained with clinical neurophysiology. In migraine, the majority of electrophysiological studies between attacks have shown that, for a number of different sensory modalities, the brain is characterised by a lack of habituation of evoked responses to repeated stimuli. This abnormal processing of the incoming information reaches its maximum a few days before the beginning of an attack, and normalizes during the attack, at a time when sensitization may also manifest itself. An abnormal rhythmic activity between thalamus and cortex, namely thalamocortical dysrhythmia, may be the pathophysiological mechanism subtending abnormal information processing in migraine. In tension-type headache (TTH), only few signs of deficient habituation were observed only in subgroups of patients. By contrast, using grand-average responses indirect evidence for sensitization has been found in chronic TTH with increased nociceptive specific reflexes and evoked potentials. Generalized increased sensitivity to pain (lower thresholds and increased pain rating) and a dysfunction in supraspinal descending pain control systems may contribute to the development and/or maintenance of central sensitization in chronic TTH. Cluster headache patients are characterized during the bout and on the headache side by a pronounced lack of habituation of the brainstem blink reflex and a general sensitization of pain processing. A better insight into the nature of these ictal/interictal electrophysiological dysfunctions in primary headaches paves the way for novel therapeutic targets and may allow a better understanding of the mode of action of available therapies.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation IRCCS, Via Livenza 3, 00198, Rome, Italy
| | | | - Jean Schoenen
- Headache Research Unit, University Department of Neurology & GIGA-Neurosciences, Liège University, Liège, Belgium
| | | |
Collapse
|
52
|
Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C, Sarchielli P. Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 2013; 14:62. [PMID: 23879550 PMCID: PMC3728002 DOI: 10.1186/1129-2377-14-62] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022] Open
Abstract
Spreading depression (SD) is a slowly propagating wave of neuronal and glial depolarization lasting a few minutes, that can develop within the cerebral cortex or other brain areas after electrical, mechanical or chemical depolarizing stimulations. Cortical SD (CSD) is considered the neurophysiological correlate of migraine aura. It is characterized by massive increases in both extracellular K⁺ and glutamate, as well as rises in intracellular Na⁺ and Ca²⁺. These ionic shifts produce slow direct current (DC) potential shifts that can be recorded extracellularly. Moreover, CSD is associated with changes in cortical parenchymal blood flow. CSD has been shown to be a common therapeutic target for currently prescribed migraine prophylactic drugs. Yet, no effects have been observed for the antiepileptic drugs carbamazepine and oxcarbazepine, consistent with their lack of efficacy on migraine. Some molecules of interest for migraine have been tested for their effect on CSD. Specifically, blocking CSD may play an enabling role for novel benzopyran derivative tonabersat in preventing migraine with aura. Additionally, calcitonin gene-related peptide (CGRP) antagonists have been recently reported to inhibit CSD, suggesting the contribution of CGRP receptor activation to the initiation and maintenance of CSD not only at the classic vascular sites, but also at a central neuronal level. Understanding what may be lying behind this contribution, would add further insights into the mechanisms of actions for "gepants", which may be pivotal for the effectiveness of these drugs as anti-migraine agents. CSD models are useful tools for testing current and novel prophylactic drugs, providing knowledge on mechanisms of action relevant for migraine.
Collapse
Affiliation(s)
- Cinzia Costa
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Alessandro Tozzi
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Innocenzo Rainero
- Neurology II, Department of Neuroscience, University of Torino, Ospedale Molinette, Via Cherasco 15, 10126, Turin, Italy
| | | | - Paolo Calabresi
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Cenk Ayata
- Neurovascular Research Lab., Department of Radiology, Stroke Service and Neuroscience Intensive Unit Department of Neurology Massachusetts Hospital, Harvard Medical School, 02115, Boston, MA, USA
| | - Paola Sarchielli
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
| |
Collapse
|
53
|
Abstract
The migraine attack is characterized by alterations in sensory perception, such as photophobia or allodynia, which have in common an uncomfortable amplification of the percept. It is not known how these changes arise. We evaluated the ability of cortical spreading depression (CSD), the proposed mechanism of the migraine aura, to shape the cortical activity that underlies sensory perception. We measured forepaw- and hindpaw-evoked sensory responses in rat, before and after CSD, using multielectrode array recordings and two-dimensional optical spectroscopy. CSD significantly altered cortical sensory processing on a timescale compatible with the duration of the migraine attack. Both electrophysiological and hemodynamic maps had a reduced surface area (were sharpened) after CSD. Electrophysiological responses were potentiated at the receptive field center but suppressed in surround regions. Finally, the normal adaptation of sensory-evoked responses was attenuated at the receptive field center. In summary, we show that CSD induces changes in the evoked cortical response that are consistent with known mechanisms of cortical plasticity. These mechanisms provide a novel neurobiological substrate to explain the sensory alterations of the migraine attack.
Collapse
|
54
|
Holland PR, Akerman S, Andreou AP, Karsan N, Wemmie JA, Goadsby PJ. Acid-sensing ion channel 1: A novel therapeutic target for migraine with aura. Ann Neurol 2012; 72:559-63. [DOI: 10.1002/ana.23653] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
56
|
Akerman S, Goadsby PJ. Response to Dr Elliot Shevel’s comment on the Editorial ‘The trigeminovascular system does not require a peripheral sensory input to be activated—migraine is a central disorder’. Cephalalgia 2012. [DOI: 10.1177/0333102412456244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Simon Akerman
- Headache Group–Department of Neurology, University of California, USA
| | - Peter J Goadsby
- Headache Group–Department of Neurology, University of California, USA
| |
Collapse
|
57
|
Abstract
Migraine is a prevalent and disabling brain disorder that costs billions of dollars annually in direct healthcare costs, and school and work absenteeism and presenteeism. The objective of acute treatment is a cost-effective, rapid restoration of functional ability, with minimal recurrence and adverse effects. The acute treatment of migraine includes specific drugs, which currently all have vasoconstrictive effects (dihydroergotamine and triptans), and nonspecific drugs that include paracetamol (acetaminophen), combination analgesics, non-steroidal anti-inflammatory drugs (NSAIDs), dopamine antagonists, narcotics and corticosteroids. NSAIDs have both peripheral and central effects on reversing migraine, and so may represent the best alternative for patients who cannot use triptans and ergots due to vascular contraindications. Narcotics and habituating medications should be avoided in the acute treatment of migraine, as the risk for transformation to chronic daily headache is excessively high at a relatively infrequent rate of exposure.
Collapse
Affiliation(s)
- Arnaldo N Da Silva
- Center for Headache and Pain, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
59
|
D'Andrea G, D'Arrigo A, Dalle Carbonare M, Leon A. Pathogenesis of migraine: role of neuromodulators. Headache 2012; 52:1155-63. [PMID: 22671857 DOI: 10.1111/j.1526-4610.2012.02168.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenesis of migraine is still, today, a hotly debated issue. Recent biochemical studies report the occurrence in migraine of metabolic abnormalities in the synthesis of neurotransmitters and neuromodulators. These include a metabolic shift directing tyrosine metabolism toward the decarboxylation pathway, therein resulting in an unphysiological production of noradrenaline and dopamine along with increased synthesis of traces amines such as tyramine, octopamine, and synephrine. This biochemical alteration is possibly favored by impaired mitochondrial function and high levels of glutamate in the central nervous system (CNS) of migraine patients. The unbalanced levels of the neurotransmitters (dopamine and noradrenaline) and neuromodulators (eg, tyramine, octopamine, and synephrine) in the synaptic dopaminergic and noradrenergic clefts of the pain matrix pathways may activate, downstream, the trigeminal system that releases calcitonin gene-related peptide. This induces the formation of an inflammatory soup, the sensitization of first trigeminal neuron, and the migraine attack. In view of this, we propose that migraine attacks derive from a top-down dysfunctional process that initiates in the frontal lobe in a hyperexcitable and hypoenergetic brain, thereafter progressing downstream resulting in abnormally activated nuclei of the pain matrix.
Collapse
Affiliation(s)
- Giovanni D'Andrea
- Research and Innovation S.p.A., Research Division, Via Svizzera 16, Padua, Italy
| | | | | | | |
Collapse
|
60
|
Burstein R, Strassman A, Moskowitz M. Can cortical spreading depression activate central trigeminovascular neurons without peripheral input? Pitfalls of a new concept. Cephalalgia 2012; 32:509-11. [PMID: 22345633 DOI: 10.1177/0333102411436262] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rami Burstein
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|