51
|
Archer DB, Misra G, Patten C, Coombes SA. Microstructural properties of premotor pathways predict visuomotor performance in chronic stroke. Hum Brain Mapp 2016; 37:2039-54. [PMID: 26920656 DOI: 10.1002/hbm.23155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/26/2016] [Accepted: 02/14/2016] [Indexed: 12/19/2022] Open
Abstract
Microstructural properties of the corticospinal tract (CST) descending from the motor cortex predict strength and motor skill in the chronic phase after stroke. Much less is known about the relation between brain microstructure and visuomotor processing after stroke. In this study, individual's poststroke and age-matched controls performed a unimanual force task separately with each hand at three levels of visual gain. We collected diffusion MRI data and used probabilistic tractography algorithms to identify the primary and premotor CSTs. Fractional anisotropy (FA) within each tract was used to predict changes in force variability across different levels of visual gain. Our observations revealed that individuals poststroke reduced force variability with an increase in visual gain, performed the force task with greater variability as compared with controls across all gain levels, and had lower FA in the primary motor and premotor CSTs. Our results also demonstrated that the CST descending from the premotor cortex, rather than the primary motor cortex, best predicted force variability. Together, these findings demonstrate that the microstructural properties of the premotor CST predict visual gain-related changes in force variability in individuals poststroke. Hum Brain Mapp 37:2039-2054, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Derek B Archer
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Gaurav Misra
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Carolynn Patten
- Neural Control of Movement Lab, Department of Physical Therapy, University of Florida and Malcolm-Randall VA Medical Center, Gainesville, Florida
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
52
|
Models to Tailor Brain Stimulation Therapies in Stroke. Neural Plast 2016; 2016:4071620. [PMID: 27006833 PMCID: PMC4781989 DOI: 10.1155/2016/4071620] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke.
Collapse
|
53
|
Potter-Baker KA, Bonnett CE, Chabra P, Roelle S, Varnerin N, Cunningham DA, Sankarasubramanian V, Pundik S, Conforto AB, Machado AG, Plow EB. Challenges in Recruitment for the Study of Noninvasive Brain Stimulation in Stroke: Lessons from Deep Brain Stimulation. J Stroke Cerebrovasc Dis 2016; 25:927-37. [PMID: 26851211 DOI: 10.1016/j.jstrokecerebrovasdis.2015.12.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/06/2015] [Accepted: 12/30/2015] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Noninvasive brain stimulation (NIBS) can augment functional recovery following stroke; however, the technique lacks regulatory approval. Low enrollment in NIBS clinical trials is a key roadblock. Here, we pursued evidence to support the prevailing opinion that enrollment in trials of NIBS is even lower than enrollment in trials of invasive, deep brain stimulation (DBS). METHODS We compared 2 clinical trials in stroke conducted within a single urban hospital system, one employing NIBS and the other using DBS, (1) to identify specific criteria that generate low enrollment rates for NIBS and (2) to devise strategies to increase recruitment with guidance from DBS. RESULTS Notably, we found that enrollment in the NIBS case study was 5 times lower (2.8%) than the DBS trial (14.5%) (χ(2) = 20.815, P < .0001). Although the number of candidates who met the inclusion criteria was not different (χ(2) = .04, P < .841), exclusion rates differed significantly between the 2 studies (χ(2) = 21.354, P < .0001). Beyond lack of interest, higher exclusion rates in the NIBS study were largely due to exclusion criteria that were not present in the DBS study, including restrictions for recurrent strokes, seizures, and medications. CONCLUSIONS Based on our findings, we conclude and suggest that by (1) establishing criteria specific to each NIBS modality, (2) adjusting exclusion criteria based on guidance from DBS, and (3) including patients with common contraindications based on a probability of risk, we may increase enrollment and hence significantly impact the feasibility and generalizability of NIBS paradigms, particularly in stroke.
Collapse
Affiliation(s)
- Kelsey A Potter-Baker
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Corin E Bonnett
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Patrick Chabra
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Sarah Roelle
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Nicole Varnerin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Svetlana Pundik
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio; Department of Neurology, Louis Stokes Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Adriana B Conforto
- Neurology Clinical Division, Neurology Department, Hospital das Clinicas, São Paulo University, São Paulo, Brazil; Hospital Israelita Albert Einstein, Department of Neurology, São Paulo, Brazil
| | - Andre G Machado
- Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic Foundation, Cleveland Clinic, Cleveland, Ohio
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
54
|
Lüdemann-Podubecká J, Bösl K, Nowak DA. Inhibition of the contralesional dorsal premotor cortex improves motor function of the affected hand following stroke. Eur J Neurol 2016; 23:823-30. [DOI: 10.1111/ene.12949] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/13/2015] [Indexed: 12/16/2022]
Affiliation(s)
| | - K. Bösl
- HELIOS Klinik Kipfenberg; Kipfenberg Germany
| | - D. A. Nowak
- HELIOS Klinik Kipfenberg; Kipfenberg Germany
- Department of Neurology; University Hospital; Philipps-Universität; Marburg Germany
| |
Collapse
|
55
|
Dobkin BH. Rehabilitation Strategies for Restorative Approaches After Stroke and Neurotrauma. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
56
|
Auriat AM, Neva JL, Peters S, Ferris JK, Boyd LA. A Review of Transcranial Magnetic Stimulation and Multimodal Neuroimaging to Characterize Post-Stroke Neuroplasticity. Front Neurol 2015; 6:226. [PMID: 26579069 PMCID: PMC4625082 DOI: 10.3389/fneur.2015.00226] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/12/2015] [Indexed: 01/09/2023] Open
Abstract
Following stroke, the brain undergoes various stages of recovery where the central nervous system can reorganize neural circuitry (neuroplasticity) both spontaneously and with the aid of behavioral rehabilitation and non-invasive brain stimulation. Multiple neuroimaging techniques can characterize common structural and functional stroke-related deficits, and importantly, help predict recovery of function. Diffusion tensor imaging (DTI) typically reveals increased overall diffusivity throughout the brain following stroke, and is capable of indexing the extent of white matter damage. Magnetic resonance spectroscopy (MRS) provides an index of metabolic changes in surviving neural tissue after stroke, serving as a marker of brain function. The neural correlates of altered brain activity after stroke have been demonstrated by abnormal activation of sensorimotor cortices during task performance, and at rest, using functional magnetic resonance imaging (fMRI). Electroencephalography (EEG) has been used to characterize motor dysfunction in terms of increased cortical amplitude in the sensorimotor regions when performing upper limb movement, indicating abnormally increased cognitive effort and planning in individuals with stroke. Transcranial magnetic stimulation (TMS) work reveals changes in ipsilesional and contralesional cortical excitability in the sensorimotor cortices. The severity of motor deficits indexed using TMS has been linked to the magnitude of activity imbalance between the sensorimotor cortices. In this paper, we will provide a narrative review of data from studies utilizing DTI, MRS, fMRI, EEG, and brain stimulation techniques focusing on TMS and its combination with uni- and multimodal neuroimaging methods to assess recovery after stroke. Approaches that delineate the best measures with which to predict or positively alter outcomes will be highlighted.
Collapse
Affiliation(s)
- Angela M Auriat
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Jason L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Sue Peters
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Jennifer K Ferris
- Graduate Program in Neuroscience, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada ; Graduate Program in Neuroscience, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
57
|
Tailoring Brain Stimulation to the Nature of Rehabilitative Therapies in Stroke: A Conceptual Framework Based on their Unique Mechanisms of Recovery. Phys Med Rehabil Clin N Am 2015; 26:759-74. [PMID: 26522911 DOI: 10.1016/j.pmr.2015.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite showing early promise, several recent clinical trials of noninvasive brain stimulation (NIBS) failed to augment rehabilitative outcomes of the paretic upper limb. This article addresses why pairing NIBS with unilateral approaches is weakly generalizable to patients in all ranges of impairments. The article also addresses whether alternate therapies are better suited for the more impaired patients, where they may be more feasible and offer neurophysiologic advantages not offered with unilateral therapies. The article concludes by providing insight on how to create NIBS paradigms that are tailored to distinctly augment the effects of therapies across patients with varying degrees of impairment.
Collapse
|
58
|
Morecraft RJ, Ge J, Stilwell-Morecraft KS, McNeal DW, Hynes SM, Pizzimenti MA, Rotella DL, Darling WG. Frontal and frontoparietal injury differentially affect the ipsilateral corticospinal projection from the nonlesioned hemisphere in monkey (Macaca mulatta). J Comp Neurol 2015. [PMID: 26224429 DOI: 10.1002/cne.23861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Upper extremity hemiplegia is a common consequence of unilateral cortical stroke. Understanding the role of the unaffected cerebral hemisphere in the motor recovery process has been encouraged, in part, by the presence of ipsilateral corticospinal projections (iCSP). We examined the neuroplastic response of the iCSP from the contralesional primary motor cortex (cM1) hand/arm area to spinal levels C5-T1 after spontaneous long-term recovery from isolated frontal lobe injury and isolated frontoparietal injury. High-resolution tract tracing, stereological, and behavioral methodologies were applied. Recovery from frontal motor injury resulted in enhanced numbers of terminal labeled boutons in the iCSP from cM1 compared with controls. Increases occurred in lamina VIII and the adjacent ventral sectors of lamina VII, which are involved in axial/proximal limb sensorimotor processing. Larger frontal lobe lesions were associated with greater numbers of terminal boutons than smaller frontal lobe lesions. In contrast, frontoparietal injury blocked this response; total bouton number was similar to controls, demonstrating that disruption of somatosensory input to one hemisphere has a suppressive effect on the iCSP from the nonlesioned hemisphere. However, compared with controls, elevated bouton numbers occurred in lamina VIII, at the expense of lamina VII bouton labeling. Lamina IX boutons were also elevated in two frontoparietal lesion cases with extensive cortical injury. Because laminae VIII and IX collectively harbor axial, proximal, and distal motoneurons, therapeutic intervention targeting the ipsilateral corticospinal linkage from cM1 may promote proximal, and possibly distal, upper-limb motor recovery following frontal and frontoparietal injury.
Collapse
Affiliation(s)
- R J Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, 57069
| | - J Ge
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, 57069
| | - K S Stilwell-Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, 57069
| | - D W McNeal
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, 57069
| | - S M Hynes
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa, 52242
| | - M A Pizzimenti
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa, 52242.,Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242
| | - D L Rotella
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa, 52242
| | - W G Darling
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa, 52242
| |
Collapse
|
59
|
Wessel MJ, Zimerman M, Hummel FC. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke. Front Hum Neurosci 2015; 9:265. [PMID: 26029083 PMCID: PMC4432668 DOI: 10.3389/fnhum.2015.00265] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/23/2015] [Indexed: 01/20/2023] Open
Abstract
Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation (NIBS) techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current, transcranial magnetic, and paired associative (PAS) stimulation are NIBS techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Máximo Zimerman
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany ; Institute of Cognitive Neurology (INECO) , Buenos Aires , Argentina
| | - Friedhelm C Hummel
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany ; Favaloro University , Buenos Aires , Argentina
| |
Collapse
|