51
|
Sinkeviciute D, Aspberg A, He Y, Bay-Jensen AC, Önnerfjord P. Characterization of the interleukin-17 effect on articular cartilage in a translational model: an explorative study. BMC Rheumatol 2020; 4:30. [PMID: 32426694 PMCID: PMC7216541 DOI: 10.1186/s41927-020-00122-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/06/2020] [Indexed: 12/29/2022] Open
Abstract
Background Osteoarthritis (OA) is a progressive, chronic disease characterized by articular cartilage destruction. The pro-inflammatory cytokine IL-17 levels have been reported elevated in serum and synovial fluid of OA patients and correlated with increased cartilage defects and bone remodeling. The aim of this study was to characterize an IL-17-mediated articular cartilage degradation ex-vivo model and to investigate IL-17 effect on cartilage extracellular matrix protein turnover. Methods Full-depth bovine femoral condyle articular cartilage explants were cultured in serum-free medium for three weeks in the absence, or presence of cytokines: IL-17A (100 ng/ml or 25 ng/ml), or 10 ng OSM combined with 20 ng/ml TNFα (O + T). RNA isolation and PCR analysis were performed on tissue lysates to confirm IL-17 receptor expression. GAG and ECM-turnover biomarker release into conditioned media was assessed with dimethyl methylene blue and ELISA assays, respectively. Gelatin zymography was used for matrix metalloproteinase (MMP) 2 and MMP9 activity assessment in conditioned media, and shotgun LC-MS/MS for identification and label-free quantification of proteins and protein fragments in conditioned media. Western blotting was used to validate MS results. Results IL-17RA mRNA was expressed in bovine full-depth articular cartilage and the treatment with IL-17A did not interfere with metabolic activity of the model. IL-17A induced cartilage breakdown; conditioned media GAG levels were 3.6-fold-elevated compared to untreated. IL-17A [100 ng/ml] induced ADAMTS-mediated aggrecan degradation fragment release (14-fold increase compared to untreated) and MMP-mediated type II collagen fragment release (6-fold-change compared to untreated). MS data analysis revealed 16 differentially expressed proteins in IL-17A conditioned media compared to untreated, and CHI3L1 upregulation in conditioned media in response to IL-17 was confirmed by Western blotting. Conclusions We showed that IL-17A has cartilage modulating potential. It induces collagen and aggrecan degradation indicating an upregulation of MMPs. This was confirmed by zymography and mass spectrometry data. We also showed that the expression of other cytokines is induced by IL-17A, which provide further insight to the pathways that are active in response to IL-17A. This exploratory study confirms that IL-17A may play a role in cartilage pathology and that the applied model may be a good tool to further investigate it.
Collapse
Affiliation(s)
- Dovile Sinkeviciute
- 1Nordic Bioscience, Biomarkers & Research, Herlev, Denmark.,2Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders Aspberg
- 2Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Yi He
- 1Nordic Bioscience, Biomarkers & Research, Herlev, Denmark
| | | | - Patrik Önnerfjord
- 2Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
52
|
Riegger J, Huber-Lang M, Brenner RE. Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. Osteoarthritis Cartilage 2020; 28:685-697. [PMID: 31981738 DOI: 10.1016/j.joca.2020.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Innate immune response and particularly terminal complement complex (TCC) deposition are thought to be involved in the pathogenesis of posttraumatic osteoarthritis. However, the possible role of TCC in regulated cell death as well as chondrocyte hypertrophy and senescence has not been unraveled so far and was first addressed using an ex vivo human cartilage trauma-model. DESIGN Cartilage explants were subjected to blunt impact (0.59 J) and exposed to human serum (HS) and cartilage homogenate (HG) with or without different potential therapeutics: RIPK1-inhibitor Necrostatin-1 (Nec), caspase-inhibitor zVAD, antioxidant N-acetyl cysteine (NAC) and TCC-inhibitors aurintricarboxylic acid (ATA) and clusterin (CLU). Cell death and hypertrophy/senescence-associated markers were evaluated on mRNA and protein level. RESULTS Addition of HS resulted in significantly enhanced TCC deposition on chondrocytes and decrease of cell viability after trauma. This effect was potentiated by HG and was associated with expression of RIPK3, MLKL and CASP8. Cytotoxicity of HS could be prevented by heat-inactivation or specific inhibitors, whereby combination of Nec and zVAD as well as ATA exhibited highest cell protection. Moreover, HS+HG exposition enhanced the gene expression of CXCL1, IL-8, RUNX2 and VEGFA as well as secretion of IL-6 after cartilage trauma. CONCLUSIONS Our findings imply crucial involvement of the complement system and primarily TCC in regulated cell death and phenotypic changes of chondrocytes after cartilage trauma. Inhibition of TCC formation or downstream signaling largely modified serum-induced pathophysiologic effects and might therefore represent a therapeutic target to maintain the survival and chondrogenic character of cartilage cells.
Collapse
Affiliation(s)
- J Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - M Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - R E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany.
| |
Collapse
|
53
|
Pathomechanisms of Posttraumatic Osteoarthritis: Chondrocyte Behavior and Fate in a Precarious Environment. Int J Mol Sci 2020; 21:ijms21051560. [PMID: 32106481 PMCID: PMC7084733 DOI: 10.3390/ijms21051560] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic injuries of the knee joint result in a wide variety of pathomechanisms, which contribute to the development of so-called posttraumatic osteoarthritis (PTOA). These pathogenetic processes include oxidative stress, excessive expression of catabolic enzymes, release of damage-associated molecular patterns (DAMPs), and synovial inflammation. The present review focuses on the underlying pathomechanisms of PTOA and in particular the behavior and fate of the surviving chondrocytes, comprising chondrocyte metabolism, regulated cell death, and phenotypical changes comprising hypertrophy and senescence. Moreover, possible therapeutic strategies, such as chondroanabolic stimulation, anti-oxidative and anti-inflammatory treatment, as well as novel therapeutic targets are discussed.
Collapse
|
54
|
Intraarticular Ligament Degeneration Is Interrelated with Cartilage and Bone Destruction in Osteoarthritis. Cells 2019; 8:cells8090990. [PMID: 31462003 PMCID: PMC6769780 DOI: 10.3390/cells8090990] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) induces inflammation and degeneration of all joint components including cartilage, joint capsule, bone and bone marrow, and ligaments. Particularly intraarticular ligaments, which connect the articulating bones such as the anterior cruciate ligament (ACL) and meniscotibial ligaments, fixing the fibrocartilaginous menisci to the tibial bone, are prone to the inflamed joint milieu in OA. However, the pathogenesis of ligament degeneration on the cellular level, most likely triggered by OA associated inflammation, remains poorly understood. Hence, this review sheds light into the intimate interrelation between ligament degeneration, synovitis, joint cartilage degradation, and dysbalanced subchondral bone remodeling. Various features of ligament degeneration accompanying joint cartilage degradation have been reported including chondroid metaplasia, cyst formation, heterotopic ossification, and mucoid and fatty degenerations. The entheses of ligaments, fixing ligaments to the subchondral bone, possibly influence the localization of subchondral bone lesions. The transforming growth factor (TGF)β/bone morphogenetic (BMP) pathway could present a link between degeneration of the osteochondral unit and ligaments with misrouted stem cell differentiation as one likely reason for ligament degeneration, but less studied pathways such as complement activation could also contribute to inflammation. Facilitation of OA progression by changed biomechanics of degenerated ligaments should be addressed in more detail in the future.
Collapse
|
55
|
Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater 2019; 93:239-257. [PMID: 30862551 DOI: 10.1016/j.actbio.2019.03.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Osteoarthritis is a prevalent and debilitating disease that involves pathological contributions from numerous joint tissues and cells. The joint is a challenging arena for drug delivery, since the joint has poor bioavailability for systemically administered drugs and experiences rapid clearance of therapeutics after intra-articular injection. Moreover, each tissue within the joint presents unique barriers to drug localization. In this review, the various applications of nanotechnology to overcome these drug delivery limitations are investigated. Nanomaterials have reliably shown improvements to retention profiles of drugs within the joint space relative to injected free drugs. Additionally, nanomaterials have been modified through active and passive targeting strategies to facilitate interactions with and localization within specific joint tissues such as cartilage and synovium. Last, the limitations of drawing cross-study comparisons, the implications of synovial fluid, and the potential importance of multi-modal therapeutic strategies are discussed. As emerging, cell-specific disease modifying osteoarthritis drugs continue to be developed, the need for targeted nanomaterial delivery will likely become critical for effective clinical translation of therapeutics for osteoarthritis. STATEMENT OF SIGNIFICANCE: Improving drug delivery to the joint is a pressing clinical need. Over 27 million Americans live with osteoarthritis, and this figure is continuously expanding. Numerous drugs have been investigated but have failed in clinical trials, likely related to poor bioavailability to target cells. This article comprehensively reviews the advances in nano-scale delivery vehicles designed to overcome the delivery barriers in the joint. This is the first review to analyze active and passive targeting strategies systematically for different target sites while also delineating between tissue homing and whole joint retention. By bringing together the lessons learned across numerous nano-scale platforms, researchers may be able to hone future nanomaterial designs, allowing emerging therapeutics to perform with clinically relevant efficacy and disease modifying potential.
Collapse
|
56
|
Xu F, Song Y, Guo A. Anti-Apoptotic Effects of Docosahexaenoic Acid in IL-1β-Induced Human Chondrosarcoma Cell Death through Involvement of the MAPK Signaling Pathway. Cytogenet Genome Res 2019; 158:17-24. [PMID: 31261155 DOI: 10.1159/000500290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease characterized by progressive articular cartilage destruction and joint marginal osteophyte formation with different degrees of synovitis. Docosahexaenoic acid (DHA) is an unsaturated fatty acid with anti-inflammatory, antioxidant, and antiapoptotic functions. In this study, the human chondrosarcoma cell line SW1353 was cultured in vitro, and an OA cell model was constructed with inflammatory factor IL-1β stimulation. After cells were treated with DHA, cell apoptosis was measured. Western blot assay was used to detect protein expression of apoptosis-related factors (Bax, Bcl-2, and cleaved caspase-3) and mitogen-activated protein kinase (MAPK) signaling pathway family members, including extracellular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK), and p38 MAPK. Our results show that IL-1β promotes the apoptosis of SW1353 cells, increases the expression of Bax and cleaved caspase-3, and activates the MAPK signaling pathway. In contrast, DHA inhibits the expression of IL-1β, inhibits IL-1β-induced cell apoptosis, and has a certain inhibitory effect on the activation of the MAPK signaling pathway. When the MAPK signaling pathway is inhibited by its inhibitors, the effects of DHA on SW1353 cells are weakened. Thus, DHA enhances the apoptosis of SW1353 cells through the MAPK signaling pathway.
Collapse
|
57
|
Yan H, Duan X, Pan H, Akk A, Sandell LJ, Wickline SA, Rai MF, Pham CTN. Development of a peptide-siRNA nanocomplex targeting NF- κB for efficient cartilage delivery. Sci Rep 2019; 9:442. [PMID: 30679644 PMCID: PMC6345850 DOI: 10.1038/s41598-018-37018-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Delivery of therapeutic small interfering RNAs (siRNAs) in an effective dose to articular cartilage is very challenging as the cartilage dense extracellular matrix renders the chondrocytes inaccessible, even to intra-articular injections. Herein, we used a self-assembling peptidic nanoparticle (NP) platform featuring a cell penetrating peptide complexed to NF-κB p65 siRNA. We show that it efficiently and deeply penetrated human cartilage to deliver its siRNA cargo up to a depth of at least 700 μm. To simulate osteoarthritis in vitro, human articular cartilage explants were placed in culture and treated with IL-1β, a cytokine with known cartilage catabolic and pro-inflammatory effects. Exposure of peptide-siRNA NP to cartilage explants markedly suppressed p65 activation, an effect that persisted up to 3 weeks after an initial 48 h exposure to NP and in the presence of continuous IL-1β stimulation. Suppression of IL-1β-induced p65 activity attenuated chondrocyte apoptosis and maintained cartilage homeostasis. These findings confirm our previous in vivo studies in a murine model of post-traumatic osteoarthritis and suggest that the ability of peptide-siRNA NP to specifically modulate NF-κB pathway, a central regulator of the inflammatory responses in chondrocytes, may potentially mitigate the progression of cartilage degeneration.
Collapse
Affiliation(s)
- Huimin Yan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Duan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Hua Pan
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, FL, USA
| | - Antonina Akk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, FL, USA
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christine T N Pham
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
58
|
Effect of hypoxia/reoxygenation on the biological effect of IGF system and the inflammatory mediators in cultured synoviocytes. Biochem Biophys Res Commun 2018; 508:17-24. [PMID: 30466784 DOI: 10.1016/j.bbrc.2018.11.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
Hypoxia/reoxygenation (H/R) plays an important role in the pathogenesis of osteoarthritis. Fibroblast-like synoviocytes (FLS), which are highly sensitive to H/R, are thought to be associated with cartilage degradation during osteoarthritis development. In this study, we investigated the biological effects of insulin-like growth factor (IGF) system and the expression of inflammatory mediators in FLS. We also pretreated FLS with tumor necrosis factor-α (TNF-α) before H/R in order to observe the response of FLS with the background of inflammatory cytokines. H/R increased the levels of TNF-α-induced C-C chemokine ligand 5 (CCL5), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in cell-free culture supernatants; H/R also increased the expression of TNF-α-induced insulin-like growth factor binding protein 3 (IGFBP-3), downregulated the expression of insulin-like growth factor 1 (IGF-1), promoted the loss of mitochondrial membrane potential (MMP), the openness of mitochondrial permeability transition pore (MPTP), the release of intracellular reactive oxygen species (ROS), and mitochondrial matrix swelling, outer membrane rupture and decrease in cristae. Furthermore, H/R induced the expression of catabolic factors and activated the NF-κB signaling pathway in FLS. We therefore concluded that H/R may play a role in inducing inflammation and increase the TNF-α-induced inflammatory effect in FLS, contributing to osteoarthritis pathogenesis.
Collapse
|
59
|
Lin J, Wu G, Zhao Z, Huang Y, Chen J, Fu C, Ye J, Liu X. Bioinformatics analysis to identify key genes and pathways influencing synovial inflammation in osteoarthritis. Mol Med Rep 2018; 18:5594-5602. [PMID: 30365099 PMCID: PMC6236257 DOI: 10.3892/mmr.2018.9575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/14/2018] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a chronic arthropathy that occurs in the middle-aged and elderly population. The present study aimed to identify gene signature differences between synovial cells from OA synovial membrane with and without inflammation, and to explain the potential mechanisms involved. The differentially expressed genes (DEGs) between 12 synovial membrane with inflammation and 12 synovial membrane without inflammation from the dataset GSE46750 were identified using the Gene Expression Omnibus 2R. The DEGs were subjected to enrichment analysis, protein-protein interaction (PPI) analysis and module analysis. The analysis results were compared with text-mining results. A total of 174 DEGs were identified. Gene Ontology enrichment results demonstrated that functional molecules encoded by the DEGs primarily had extracellular location, molecular functions predominantly involving ‘chemokine activity’ and ‘cytokine activity’, and were associated with biological processes, including ‘inflammatory response’ and ‘immune response’. The Kyoto Encyclopedia of Genes and Genomes results demonstrated that DEGS may function through pathways associated with ‘rheumatoid arthritis’, ‘chemokine signaling pathway’, ‘complement and coagulation cascades’, ‘TNF signaling pathway’, ‘intestinal immune networks for IgA production’, ‘cytokine-cytokine receptor interaction’, ‘allograft rejection’, ‘Toll-like receptor signaling pathway’ and ‘antigen processing and presentation’. The top 10 hub genes [interleukin (IL)6, IL8, matrix metallopeptidase (MMP)9, colony stimulating factor 1 receptor, FOS proto-oncogene, AP1 transcription factor subunit, insulin-like growth factor 1, TYRO protein tyrosine kinase binding protein, MMP3, cluster of differentiation (CD)14 and CD163] and four gene modules were identified from the PPI network using Cytoscape. In addition, text-mining was used to identify the commonly used drugs and their targets for the treatment of OA. It was initially verified whether the results of the present study were useful for the study of OA treatment targets and pathways. The present study provided insight for the molecular mechanisms of OA synovitis. The hub genes and associated pathways derived from analysis may be targets for OA treatment. IL8 and MMP9, which were validated by text-mining, may be used as molecular targets for the OA treatment, while other hub genes require further validation.
Collapse
Affiliation(s)
- Jie Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guangwen Wu
- Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, P.R. China
| | - Zhongsheng Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yanfeng Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Chen
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jinxia Ye
- Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
60
|
Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biol 2018; 71-72:51-69. [PMID: 29803938 PMCID: PMC6146013 DOI: 10.1016/j.matbio.2018.05.005] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
Abstract
Hyaline cartilages, fibrocartilages and elastic cartilages play multiple roles in the human body including bearing loads in articular joints and intervertebral discs, providing joint lubrication, forming the external ears and nose, supporting the trachea, and forming the long bones during development and growth. The structure and organization of cartilage's extracellular matrix (ECM) are the primary determinants of normal function. Most diseases involving cartilage lead to dramatic changes in the ECM which can govern disease progression (e.g., in osteoarthritis), cause the main symptoms of the disease (e.g., dwarfism caused by genetically inherited mutations) or occur as collateral damage in pathological processes occurring in other nearby tissues (e.g., osteochondritis dissecans and inflammatory arthropathies). Challenges associated with cartilage diseases include poor understanding of the etiology and pathogenesis, delayed diagnoses due to the aneural nature of the tissue and drug delivery challenges due to the avascular nature of adult cartilages. This narrative review provides an overview of the clinical and pathological features as well as current treatment options available for various cartilage diseases. Late breaking advances are also described in the quest for development and delivery of effective disease modifying drugs for cartilage diseases including osteoarthritis, the most common form of arthritis that affects hundreds of millions of people worldwide.
Collapse
Affiliation(s)
- Yamini Krishnan
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|