Schrumpf JA, Amatngalim GD, Veldkamp JB, Verhoosel RM, Ninaber DK, Ordonez SR, van der Does AM, Haagsman HP, Hiemstra PS. Proinflammatory Cytokines Impair Vitamin D-Induced Host Defense in Cultured Airway Epithelial Cells.
Am J Respir Cell Mol Biol 2017;
56:749-761. [PMID:
28231019 DOI:
10.1165/rcmb.2016-0289oc]
[Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action. We hypothesized that long-term exposure of primary bronchial epithelial cells to proinflammatory cytokines alters their vitamin D metabolism, antibacterial activity, and expression of hCAP18/LL-37. To investigate this, primary bronchial epithelial cells were differentiated at the air-liquid interface for 14 days in the presence of the proinflammatory cytokines, TNF-α and IL-1β (TNF-α/IL-1β), and subsequently exposed to vitamin D (inactive 25(OH)D3 and active 1,25(OH)2D3). Expression of hCAP18/LL-37, vitamin D receptor, and enzymes involved in vitamin D metabolism (CYP24A1 and CYP27B1) was determined using quantitative PCR, Western blot, and immunofluorescence staining. Furthermore, vitamin D-mediated antibacterial activity was assessed using nontypeable Haemophilus influenzae. We found that TNF-α/IL-1β treatment reduced vitamin D-induced expression of hCAP18/LL-37 and killing of nontypeable H. influenzae. In addition, CYP24A1 (a vitamin D-degrading enzyme) was increased by TNF-α/IL-1β, whereas CYP27B1 (that converts 25(OH)D3 to its active form) and vitamin D receptor expression remained unaffected. Furthermore, we have demonstrated that the TNF-α/IL-1β-mediated induction of CYP24A1 was, at least in part, mediated by the transcription factor specific protein 1, and the epidermal growth factor receptor-mitogen-activated protein kinase pathway. These findings indicate that TNF-α/IL-1β decreases vitamin D-mediated antibacterial activity and hCAP18/LL-37 expression via induction of CYP24A1 and suggest that chronic inflammation impairs protective responses induced by vitamin D.
Collapse