51
|
González Torre JA, Cruz-Gómez ÁJ, Belenguer A, Sanchis-Segura C, Ávila C, Forn C. Hippocampal dysfunction is associated with memory impairment in multiple sclerosis: A volumetric and functional connectivity study. Mult Scler 2017; 23:1854-1863. [PMID: 28086035 DOI: 10.1177/1352458516688349] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Previous studies have suggested a relationship between neuroanatomical and neurofunctional hippocampal alterations and episodic memory impairments in multiple sclerosis (MS) patients. OBJECTIVE We examined hippocampus volume and functional connectivity (FC) changes in MS patients with different episodic memory capabilities. METHODS Hippocampal subfield volume and FC changes were compared in two subgroups of MS patients with and without episodic memory impairment (multiple sclerosis impaired (MSi) and multiple sclerosis preserved (MSp), respectively) and healthy controls (HC). A discriminant function (DF) analysis was used to identify which of these neuroanatomical and neurofunctional parameters were the most relevant components of the mnemonic profiles of HC, MSp, and MSi. RESULTS MSi showed reduced volume in several hippocampal subfields compared to MSp and HC. Ordinal gradation (MSi > MSp > HC) was also observed for FC between the posterior hippocampus and several cortical areas. DF-based analyses revealed that reduced right fimbria volume and enhanced FC at the right posterior hippocampus were the main neural signatures of the episodic memory impairments observed in the MSi group. CONCLUSION Before any sign of episodic memory alterations (MSp), FC increased on several pathways that connect the hippocampus with cortical areas. These changes further increased when the several hippocampal volumes reduced and memory deficits appeared (MSi).
Collapse
Affiliation(s)
- Julio Alberto González Torre
- Departament de Psicología Bàsica, Clínica i Psicobiología, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Álvaro Javier Cruz-Gómez
- Departament de Psicología Bàsica, Clínica i Psicobiología, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Antonio Belenguer
- Servicio de Neurología, Hospital General de Castellón, Castelló de la Plana, Spain
| | - Carla Sanchis-Segura
- Departament de Psicología Bàsica, Clínica i Psicobiología, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - César Ávila
- Departament de Psicología Bàsica, Clínica i Psicobiología, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Cristina Forn
- Departament de Psicología Bàsica, Clínica i Psicobiología, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| |
Collapse
|
52
|
Affiliation(s)
- Menno M Schoonheim
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Planche V, Ruet A, Coupé P, Lamargue-Hamel D, Deloire M, Pereira B, Manjon JV, Munsch F, Moscufo N, Meier DS, Guttmann CR, Dousset V, Brochet B, Tourdias T. Hippocampal microstructural damage correlates with memory impairment in clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 2016; 23:1214-1224. [PMID: 27780913 DOI: 10.1177/1352458516675750] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We investigated whether diffusion tensor imaging (DTI) could reveal early hippocampal damage and clinically relevant correlates of memory impairment in persons with clinically isolated syndrome (CIS) suggestive of multiple sclerosis (MS). METHODS A total of 37 persons with CIS, 32 with MS and 36 controls prospectively included from 2011 to 2014 were tested for cognitive performances and scanned with 3T-magnetic resonance imaging (MRI) to assess volumetric and DTI changes within the hippocampus, whole brain volume and T2-lesion load. RESULTS While there was no hippocampal atrophy in the CIS group, hippocampal fractional anisotropy (FA) was significantly decreased compared to controls. Decrease in hippocampal FA together with increased mean diffusivity (MD) was even more prominent in MS patients. In CIS, hippocampal MD was correlated with episodic verbal memory performance ( r = -0.57, p = 0.0002 and odds ratio (OR) = 0.058, 95% confidence interval (CI) = 0.0057-0.59, p = 0.016 adjusted for age, gender, depression and T2-lesion load), but not with cognitive tasks unrelated to hippocampal functions. Hippocampal MD was the only variable discriminating memory-impaired from memory-preserved persons with CIS (area under the curve (AUC) = 0.77, sensitivity = 90.0%, specificity = 70.3%, positive predictive value (PPV) = 52.9%, negative predictive value (NPV) = 95.0%). CONCLUSION DTI alterations within the hippocampus might reflect early neurodegenerative processes that are correlated with episodic memory performance, discriminating persons with CIS according to their memory status.
Collapse
Affiliation(s)
- Vincent Planche
- Universite de Bordeaux, Bordeaux, France/Inserm U1215, Neurocentre Magendie, Bordeaux, France/Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Aurélie Ruet
- Universite de Bordeaux, Bordeaux, France/Inserm U1215, Neurocentre Magendie, Bordeaux, France/Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Pierrick Coupé
- Laboratoire Bordelais de Recherche en Informatique (LaBRI), Talence, France
| | - Delphine Lamargue-Hamel
- Universite de Bordeaux, Bordeaux, France/Inserm U1215, Neurocentre Magendie, Bordeaux, France
| | - Mathilde Deloire
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Bruno Pereira
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - José V Manjon
- Universitat Politècnica de València, Valencia, Spain
| | - Fanny Munsch
- Universite de Bordeaux, Bordeaux, France/Inserm U1215, Neurocentre Magendie, Bordeaux, France
| | - Nicola Moscufo
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dominik S Meier
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles Rg Guttmann
- Universite de Bordeaux, Bordeaux, France/Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vincent Dousset
- Universite de Bordeaux, Bordeaux, France/Inserm U1215, Neurocentre Magendie, Bordeaux, France/Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Bruno Brochet
- Universite de Bordeaux, Bordeaux, France/Inserm U1215, Neurocentre Magendie, Bordeaux, France/Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Thomas Tourdias
- Universite de Bordeaux, Bordeaux, France/Inserm U1215, Neurocentre Magendie, Bordeaux, France/Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| |
Collapse
|
54
|
Rocca MA, De Meo E, Filippi M. Functional MRI in investigating cognitive impairment in multiple sclerosis. Acta Neurol Scand 2016; 134 Suppl 200:39-46. [PMID: 27580905 DOI: 10.1111/ane.12654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 12/01/2022]
Abstract
There is increasing evidence that the severity of the clinical manifestations of multiple sclerosis (MS) does not simply result from the extent of tissue destruction, but it rather represents a complex balance between tissue damage, tissue repair, and cortical reorganization. Functional magnetic resonance imaging (fMRI) provides information about the plasticity of the human brain. Therefore, it has the potential to provide important pieces of information about brain reorganization following MS-related structural damage. When investigating cognitive systems, fMRI changes have been described in virtually all patients with MS and different clinical phenotypes. These functional changes have been related to the extent of brain damage within and outside T2-visible lesions as well as to the involvement of specific central nervous system structures. It has also been suggested that a maladaptive recruitment of specific brain regions might be associated with the appearance of clinical symptoms in MS, such as fatigue and cognitive impairment. fMRI studies from clinically (and cognitively) impaired MS patients may be influenced by different task performances between patients and controls. As a consequence, new strategies have been introduced to assess the role, if any, of brain reorganization in severely impaired patients, including the analysis of resting-state networks. The enhancement of any beneficial effects of this brain adaptive plasticity should be considered as a potential target of therapy for MS.
Collapse
Affiliation(s)
- M. A. Rocca
- Neuroimaging Research Unit; Institute of Experimental Neurology; Division of Neuroscience; Milan Italy
- Department of Neurology; San Raffaele Scientific Institute; Vita-Salute San Raffaele University; Milan Italy
| | - E. De Meo
- Neuroimaging Research Unit; Institute of Experimental Neurology; Division of Neuroscience; Milan Italy
| | - M. Filippi
- Neuroimaging Research Unit; Institute of Experimental Neurology; Division of Neuroscience; Milan Italy
- Department of Neurology; San Raffaele Scientific Institute; Vita-Salute San Raffaele University; Milan Italy
| |
Collapse
|
55
|
Rimkus CDM, Steenwijk MD, Barkhof F. Causes, effects and connectivity changes in MS-related cognitive decline. Dement Neuropsychol 2016; 10:2-11. [PMID: 29213424 PMCID: PMC5674907 DOI: 10.1590/s1980-57642016dn10100002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cognitive decline is a frequent but undervalued aspect of multiple sclerosis (MS). Currently, it remains unclear what the strongest determinants of cognitive dysfunction are, with grey matter damage most directly related to cognitive impairment. Multi-parametric studies seem to indicate that individual factors of MS-pathology are highly interdependent causes of grey matter atrophy and permanent brain damage. They are associated with intermediate functional effects (e.g. in functional MRI) representing a balance between disconnection and (mal) adaptive connectivity changes. Therefore, a more comprehensive MRI approach is warranted, aiming to link structural changes with functional brain organization. To better understand the disconnection syndromes and cognitive decline in MS, this paper reviews the associations between MRI metrics and cognitive performance, by discussing the interactions between multiple facets of MS pathology as determinants of brain damage and how they affect network efficiency.
Collapse
Affiliation(s)
- Carolina de Medeiros Rimkus
- Department of Radiology, Laboratory of Medical Investigation (LIM-44), Faculty of Medicine of the University of São Paulo, São Paulo SP, Brazil and Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Radiology, Laboratory of Medical Investigation (LIM-44), Faculty of Medicine of the University of São Paulo, São Paulo SP, Brazil and Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Martijn D Steenwijk
- Department of Radiology, Laboratory of Medical Investigation (LIM-44), Faculty of Medicine of the University of São Paulo, São Paulo SP, Brazil and Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands and Department of Physics and Medical technology, Neuroscience campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology, Laboratory of Medical Investigation (LIM-44), Faculty of Medicine of the University of São Paulo, São Paulo SP, Brazil and Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
56
|
|
57
|
Rocca MA, Pravatà E, Valsasina P, Radaelli M, Colombo B, Vacchi L, Gobbi C, Comi G, Falini A, Filippi M. Hippocampal-DMN disconnectivity in MS is related to WM lesions and depression. Hum Brain Mapp 2015; 36:5051-63. [PMID: 26366641 DOI: 10.1002/hbm.22992] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 11/10/2022] Open
Abstract
The hippocampus is part of the default-mode network (DMN) and is functionally hit early in multiple sclerosis (MS). Hippocampal and DMN dysfunctions have been associated with depression, both in patients with MS and in major depressive disorders. We hypothesized that white matter lesions may contribute, through a disconnection mechanism, to hippocampal dysfunction. To test this, we assessed the relationship between hippocampal resting-state (RS) functional connectivity (FC) abnormalities with brain T2 lesion volumes and the presence and severity of depression. Structural and RS fMRI images were acquired from 69 patients with cognitively intact MS and 42 matched healthy controls (HC). Depression was quantified using the Montgomery-Asberg Depression Rating Scale. Seed-voxel hippocampal RS FC was assessed. SPM8 was used for between-group comparisons and correlation analysis between RS FC abnormalities with clinical and structural MRI variables. Compared to HC, patients with MS showed a significant atrophy of the whole brain and left hippocampus (P < 0.001), and a distributed pattern of decreased RS FC between the hippocampi and several cortical-subcortical regions, which were mostly located within the DMN. Reduced hippocampal RS FC with regions of the DMN was strongly correlated with higher T2 lesion volume, longer disease duration, and the severity of depression and disability. In patients with cognitively preserved MS, brain focal WM lesions are related to the functional integration of the hippocampus to other brain regions of the DMN, suggesting a disconnection syndrome. Such a disruption of hippocampal RS FC is likely to contribute to the occurrence of depression and to clinical disability.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Emanuele Pravatà
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neuroradiology, Neurocenter of Southern Switzerland, Civic Hospital, Lugano, Switzerland
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Radaelli
- Department of Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Bruno Colombo
- Department of Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Vacchi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Gobbi
- Department of Neurology, Neurocenter of Southern Switzerland, Civic Hospital, Lugano, Switzerland
| | - Giancarlo Comi
- Department of Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
58
|
Schott BH, Voss M, Wagner B, Wüstenberg T, Düzel E, Behr J. Fronto-limbic novelty processing in acute psychosis: disrupted relationship with memory performance and potential implications for delusions. Front Behav Neurosci 2015; 9:144. [PMID: 26082697 PMCID: PMC4450169 DOI: 10.3389/fnbeh.2015.00144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/16/2015] [Indexed: 12/16/2022] Open
Abstract
Recent concepts have highlighted the role of the hippocampus and adjacent medial temporal lobe (MTL) in positive symptoms like delusions in schizophrenia. In healthy individuals, the MTL is critically involved in the detection and encoding of novel information. Here, we aimed to investigate whether dysfunctional novelty processing by the MTL might constitute a potential neural mechanism contributing to the pathophysiology of delusions, using functional magnetic resonance imaging (fMRI) in 16 unmedicated patients with paranoid schizophrenia and 20 age-matched healthy controls. All patients experienced positive symptoms at time of participation. Participants performed a visual target detection task with complex scene stimuli in which novel and familiar rare stimuli were presented randomly intermixed with a standard and a target picture. Presentation of novel relative to familiar images was associated with hippocampal activation in both patients and healthy controls, but only healthy controls showed a positive relationship between novelty-related hippocampal activation and recognition memory performance after 24 h. Patients, but not controls, showed a robust neural response in the orbitofrontal cortex (OFC) during presentation of novel stimuli. Functional connectivity analysis in the patients further revealed a novelty-related increase of functional connectivity of both the hippocampus and the OFC with the rostral anterior cingulate cortex (rACC) and the ventral striatum (VS). Notably, delusions correlated positively with the difference of the functional connectivity of the hippocampus vs. the OFC with the rACC. Taken together, our results suggest that alterations of fronto-limbic novelty processing may contribute to the pathophysiology of delusions in patients with acute psychosis.
Collapse
Affiliation(s)
- Björn H Schott
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité Universitätsmedizin Berlin Berlin, Germany ; Leibniz Institute for Neurobiology Magdeburg, Germany ; Department of Neurology and Institute for Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany
| | - Martin Voss
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité Universitätsmedizin Berlin Berlin, Germany
| | - Benjamin Wagner
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité Universitätsmedizin Berlin Berlin, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité Universitätsmedizin Berlin Berlin, Germany
| | - Emrah Düzel
- Department of Neurology and Institute for Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany ; Helmholtz Center for Neurodegenerative Diseases Magdeburg, Germany
| | - Joachim Behr
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité Universitätsmedizin Berlin Berlin, Germany ; Department of Psychiatry and Psychotherapy, Medical School Brandenburg Neuruppin, Germany
| |
Collapse
|
59
|
Schoonheim MM, Meijer KA, Geurts JJG. Network collapse and cognitive impairment in multiple sclerosis. Front Neurol 2015; 6:82. [PMID: 25926813 PMCID: PMC4396388 DOI: 10.3389/fneur.2015.00082] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Affiliation(s)
- Menno M Schoonheim
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center , Amsterdam , Netherlands
| | - Kim A Meijer
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center , Amsterdam , Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center , Amsterdam , Netherlands
| |
Collapse
|