51
|
Zhou G, Zhang X, Wang W, Zhang W, Wang H, Xin G. Both Peripheral Blood and Urinary miR-195-5p, miR-192-3p, miR-328-5p and Their Target Genes PPM1A, RAB1A and BRSK1 May Be Potential Biomarkers for Membranous Nephropathy. Med Sci Monit 2019; 25:1903-1916. [PMID: 30865617 PMCID: PMC6427931 DOI: 10.12659/msm.913057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background To identify noninvasive diagnostic biomarkers for membranous nephropathy (MN). Material/Methods The mRNA microarray datasets GSE73953 using peripheral blood mononuclear cells (PBMCs) of 8 membranous nephropathy patients and 2 control patients; and microRNAs (miRNA) microarray dataset GSE64306 using urine sediments of 4 membranous nephropathy patients and 6 control patients were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were respectively identified from PBMCs and urine sediments of membranous nephropathy patients, followed with functional enrichment analysis, protein-protein interaction (PPI) analysis, and miRNA-target gene analysis. Finally, the DEGs and the target genes of DEMs were overlapped to obtain crucial miRNA-mRNA interaction pairs for membranous nephropathy. Results A total of 1246 DEGs were identified from PBMCs samples, among them upregulated CCL5 was found to be involved in the chemokine signaling pathway, and BAX was found to be apoptosis related; while downregulated PPM1A and CDK1 were associated with the MAPK signaling pathway and the p53 signaling pathway, respectively. The hub role of CDK1 (degree=18) and CCL5 (degree=12) were confirmed after protein-protein interaction network analysis in which CKD1 could interact with RAB1A. A total of 28 DEMs were identified in urine sediments. The 276 target genes of DEMs were involved in cell cycle arrest (PPM1A) and intracellular signal transduction (BRSK1). Thirteen genes were shared between the DEGs in PMBCs and the target genes of DEMs in urine sediments, but only hsa-miR-192-3p-RAB1A, hsa-miR-195-5p-PPM1A, and hsa-miR-328-5p-BRSK1 were negatively related in their expression level. Conclusions Both peripheral blood and urinary miR-195-5p, miR-192-3p, miR-328-5p, and their target genes PPM1A, RAB1A, and BRSK1 may be potential biomarkers for membranous nephropathy by participating in inflammation and apoptosis.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Xiaofei Zhang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Wenlong Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Huaying Wang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Guangda Xin
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
52
|
Ledeganck KJ, Gielis EM, Abramowicz D, Stenvinkel P, Shiels PG, Van Craenenbroeck AH. MicroRNAs in AKI and Kidney Transplantation. Clin J Am Soc Nephrol 2019; 14:454-468. [PMID: 30602462 PMCID: PMC6419285 DOI: 10.2215/cjn.08020718] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs are epigenetic regulators of gene expression at the posttranscriptional level. They are involved in intercellular communication and crosstalk between different organs. As key regulators of homeostasis, their dysregulation underlies several morbidities including kidney disease. Moreover, their remarkable stability in plasma and urine makes them attractive biomarkers. Beyond biomarker studies, clinical microRNA research in nephrology in recent decades has focused on the discovery of specific microRNA signatures and the identification of novel targets for therapy and/or disease prevention. However, much of this research has produced equivocal results and there is a need for standardization and confirmation in prospective trials. This review aims to provide an overview of general concepts and available clinical evidence in both the pathophysiology and biomarker fields for the role of microRNA in AKI and kidney transplantation.
Collapse
Affiliation(s)
- Kristien J. Ledeganck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium
| | - Els M. Gielis
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium
| | - Daniel Abramowicz
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium
- Department of Nephrology, Antwerp University Hospital, Edegem, Belgium
| | - Peter Stenvinkel
- Division of Renal Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; and
| | - Paul G. Shiels
- Section of Epigenetics, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Amaryllis H. Van Craenenbroeck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium
- Department of Nephrology, Antwerp University Hospital, Edegem, Belgium
- Division of Renal Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; and
| |
Collapse
|
53
|
Ren G, Zhu J, Li J, Meng X. Noncoding RNAs in acute kidney injury. J Cell Physiol 2018; 234:2266-2276. [PMID: 30146769 DOI: 10.1002/jcp.27203] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/16/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Gui‐Ling Ren
- Department of PharmacyThe 105 Hospital of Chinese People’s Liberation ArmyHefei China
| | - Jie Zhu
- Department of PharmacyThe 105 Hospital of Chinese People’s Liberation ArmyHefei China
| | - Jun Li
- Department of PharmacologySchool of Pharmacy, Anhui Medical UniversityHefei China
- Anhui Institute of Innovative Drugs, Anhui Medical UniversityHefei China
| | - Xiao‐Ming Meng
- Department of PharmacologySchool of Pharmacy, Anhui Medical UniversityHefei China
- Anhui Institute of Innovative Drugs, Anhui Medical UniversityHefei China
| |
Collapse
|
54
|
Abstract
Bladder cancer has been identified as one of the most malignant cancers with high incidence and mortality. The underlying mechanisms by which regulate the tumorigenesis of bladder cancer deserve further investigation. Here, we found that miR-192-5p was downregulated in human bladder cancer cell lines and tissues. Overexpression of miR-192-5p significantly inhibited the growth of bladder cancer cells, while depletion of miR-192-5p exerted opposite effect. Bioinformatics analysis and molecular mechanism study identified that miR-192-5p targeted the transcription factor Yin Yang 1 (YY1) and decreased the expression level of YY1. Highly expressed YY1 attenuated the potential tumor suppressive function of miR-192-5p. The expression of miR-192-5p was negatively correlated with that of YY1 in bladder cancer tissues. These results indicated that miR-192-5p might serve as a promising target in bladder cancer diagnosis and therapy.
Collapse
|
55
|
Ichii O, Horino T. MicroRNAs associated with the development of kidney diseases in humans and animals. J Toxicol Pathol 2018; 31:23-34. [PMID: 29479137 PMCID: PMC5820100 DOI: 10.1293/tox.2017-0051] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 12/20/2022] Open
Abstract
Mature microRNAs (miRNAs) are single-stranded RNAs with approximately 18-25 bases, and their sequences are highly conserved among animals. miRNAs act as posttranscriptional regulators by binding mRNAs, and their main function involves the degradation of their target mRNAs. Recent studies revealed altered expression of miRNAs in the kidneys during the progression of acute kidney injury (AKI) and chronic kidney disease (CKD) in humans and experimental rodent models by using high-throughput screening techniques including microarray and small RNA sequencing. Particularly, miR-21 seems to be strongly associated with renal pathogenesis both in the glomerulus and tubulointerstitium. Furthermore, abundant evidence has been gathered showing the involvement of miRNAs in renal fibrosis. Because of the complex morphofunctional organization of the mammalian kidneys, it is crucial both to determine the exact localization of the kidney cells that express the miRNAs, which has been addressed mainly using in situ hybridization methods, and to identify precisely which mRNAs are bound and degraded by these miRNAs, which has been studied mostly through in vitro analysis. To discover novel biomarker candidates, miRNA levels in urine supernatant, sediment, and exosomal fraction were comprehensively investigated in different types of kidney disease, including drug-induced AKI, ischemia-induced AKI, diabetic nephropathy, lupus nephritis, and IgA nephropathy. Recent studies also demonstrated the therapeutic effect of miRNA and/or anti-miRNA administrations. The intent of this review is to illustrate the state-of-the-art research in the field of miRNAs associated with renal pathogenesis, especially focusing on AKI and CKD in humans and animal models.
Collapse
Affiliation(s)
- Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku,
Sapporo, Hokkaido 060-0818, Japan
| | - Taro Horino
- Laboratory of Anatomy, Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku,
Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
56
|
Zou YF, Zhang W. Role of microRNA in the detection, progression, and intervention of acute kidney injury. Exp Biol Med (Maywood) 2017; 243:129-136. [PMID: 29264947 DOI: 10.1177/1535370217749472] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury, characterized by sharply decreased renal function, is a common and important complication in hospitalized patients. The pathological mechanism of acute kidney injury is mainly related to immune activation and inflammation. Given the high morbidity and mortality rates of hospitalized patients with acute kidney injury, the identification of biomarkers useful for assessing risk, making an early diagnosis, evaluating the prognosis, and classifying the injury severity is urgently needed. Furthermore, investigation into the development of acute kidney injury and potential therapeutic targets is required. While microRNA was first discovered in Caenorhabditis elegans, Gary Ruvkun's laboratory identified the first microRNA target gene. Together, these two important findings confirmed the existence of a novel post-transcriptional gene regulatory mechanism. Considering that serum creatinine tests often fail in the early detection of AKI, testing for microRNAs as early diagnostic biomarkers has shown great potential. Numerous studies have identified microRNAs that can serve as biomarkers for the detection of acute kidney injury. In addition, as microRNAs can control the expression of multiple proteins through hundreds or thousands of targets influencing multiple signaling pathways, the number of studies on the functions of microRNAs in AKI progression is increasing. Here, we mainly focus on research into microRNAs as biomarkers and explorations of their functions in acute kidney injury. Impact statement Firstly, we have discussed the potential advantages and limitations of miRNA as biomarkers. Secondly, we have summarized the role of miRNA in the progress of AKI. Finally, we have made a vision of miRNA's potential and advantages as therapeutic target intervention AKI.
Collapse
Affiliation(s)
- Yan-Fang Zou
- Department of Nephrology, 66281 School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University , Shanghai 200025, PR China
| | - Wen Zhang
- Department of Nephrology, 66281 School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University , Shanghai 200025, PR China
| |
Collapse
|
57
|
Genome-wide Profiling of Urinary Extracellular Vesicle microRNAs Associated With Diabetic Nephropathy in Type 1 Diabetes. Kidney Int Rep 2017; 3:555-572. [PMID: 29854963 PMCID: PMC5976846 DOI: 10.1016/j.ekir.2017.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction Diabetic nephropathy (DN) is a form of progressive kidney disease that often leads to end-stage renal disease (ESRD). It is initiated by microvascular complications due to diabetes. Although microalbuminuria (MA) is the earliest clinical indication of DN among patients with type 1 diabetes (T1D), it lacks the sensitivity and specificity to detect the early onset of DN. Recently, microRNAs (miRNAs) have emerged as critical regulators in diabetes as well as various forms of kidney disease, including renal fibrosis, acute kidney injury, and progressive kidney disease. Additionally, circulating extracellular miRNAs, especially miRNAs packaged in extracellular vesicles (EVs), have garnered significant attention as potential noninvasive biomarkers for various diseases and health conditions. Methods As part of the University of Pittsburgh Epidemiology of Diabetes Complications (EDC) study, urine was collected from individuals with T1D with various grades of DN or MA (normal, overt, intermittent, and persistent) over a decade at prespecified intervals. We isolated EVs from urine and analyzed the small-RNA using NextGen sequencing. Results We identified a set of miRNAs that are enriched in urinary EVs compared with EV-depleted samples, and identified a number of miRNAs showing concentration changes associated with DN occurrence, MA status, and other variables, such as hemoglobin A1c levels. Conclusion Many of the miRNAs associated with DN occurrence or MA status directly target pathways associated with renal fibrosis (including transforming growth factor-β and phosphatase and tensin homolog), which is one of the major contributors to the pathology of DN. These miRNAs are potential biomarkers for DN and MA.
Collapse
|
58
|
Zou YF, Liao WT, Fu ZJ, Zhao Q, Chen YX, Zhang W. MicroRNA-30c-5p ameliorates hypoxia-reoxygenation-induced tubular epithelial cell injury via HIF1α stabilization by targeting SOCS3. Oncotarget 2017; 8:92801-92814. [PMID: 29190957 PMCID: PMC5696223 DOI: 10.18632/oncotarget.21582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/03/2017] [Indexed: 12/20/2022] Open
Abstract
The cellular hypoxia-reoxygenation (H/R) model is an ideal method to study ischemia-reperfusion injury, which is associated with high mortality. The role of microRNA-30c-5p (miR-30c-5p) in the H/R epithelial cell model remains unknown. In the current study, we observed a significant reduction in apoptosis when miR-30c-5p was up-regulated. We also found decreased levels of C-caspase-3 (C-CASP3) and Bcl-2-associated X (BAX) proteins and increased levels of B-cell lymphoma-2 (BCL2). Epidermal growth factor receptor (EGFR) showed similar results. Down-regulating miR-30c-5p increased the levels of apoptosis and C-CASP3 and BAX expression; additionally, cell proliferation was inhibited. Hypoxia-inducible factor 1α (HIF1α) protein expression levels were up-regulated in response to up-regulation of miR-30c-5p expression. The anti-apoptotic and proliferative effects of miR-30c-5p decreased significantly after the HIF1α protein levels were knocked down. Using a luciferase reporter assay, we confirmed that miR-30c-5p targets suppressor of cytokine signaling-3 (SOCS3). HIF1α levels increased when SOCS3 was blocked. Our data show that SOCS3 expression enhances apoptosis in the H/R model. In conclusion, up-regulating miR-30c-5p protects cells from H/R -induced apoptosis and induces cell proliferation; furthermore, HIF1α markedly contributes to this protective effect. MiR-30c-5p stabilizes HIF1α expression by targeting SOCS3 to achieve anti-apoptotic and proliferative effects.
Collapse
Affiliation(s)
- Yan-Fang Zou
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Wei-Tang Liao
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Zong-Jie Fu
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Qian Zhao
- Cellular Differentiation and Apoptosis Laboratory, Key Laboratory of National Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Yong-Xi Chen
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Wen Zhang
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| |
Collapse
|
59
|
Du B, Dai XM, Li S, Qi GL, Cao GX, Zhong Y, Yin PD, Yang XS. MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5. Cell Death Dis 2017; 8:e2987. [PMID: 28796263 PMCID: PMC5596565 DOI: 10.1038/cddis.2017.377] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/18/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022]
Abstract
As a common anticancer drug, cisplatin has been widely used for treating tumors in the clinic. However, its side effects, especially its nephrotoxicity, noticeably restrict the application of cisplatin. Therefore, it is imperative to investigate the mechanism of renal injury and explore the corresponding remedies. In this study, we showed the phenotypes of the renal tubules and epithelial cell death as well as elevated cleaved-caspase3- and TUNEL-positive cells in rats intraperitoneally injected with cisplatin. Similar cisplatin-induced cell apoptosis was found in HK-2 and NRK-52E cells exposed to cisplatin as well. In both models of cisplatin-induced apoptosis in vivo and in vitro, quantitative PCR data displayed reductions in miR-30a-e expression levels, indicating that miR-30 might be involved in regulating cisplatin-induced cell apoptosis. This was further confirmed when the effects of cisplatin-induced cell apoptosis were found to be closely correlated with alterations in miR-30c expression, which were manipulated by transfection of either the miR-30c mimic or miR-30c inhibitor in HK-2 and NRK-52E cells. Using bioinformatics tools, including TargetScan and a gene expression database (Gene Expression Omnibus), Adrb1, Bnip3L, Hspa5 and MAP3K12 were predicted to be putative target genes of miR-30c in cisplatin-induced apoptosis. Subsequently, Bnip3L and Hspa5 were confirmed to be the target genes after determining the expression of these putative genes following manipulation of miR-30c expression levels in HK-2 cells. Taken together, our current experiments reveal that miR-30c is certainly involved in regulating the renal tubular cell apoptosis induced by cisplatin, which might supply a new strategy to minimize cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Bin Du
- Department of Pathology, Medical School, Jinan University, Guangzhou 510632, China
| | - Xiao-Meng Dai
- Department of Pathology, Medical School, Jinan University, Guangzhou 510632, China
| | - Shuang Li
- Department of Pathology, Medical School, Jinan University, Guangzhou 510632, China
| | - Guo-Long Qi
- Division of Medical Informatics, Medical School, Jinan University, Guangzhou 510632, China
| | - Guang-Xu Cao
- Department of Pathology, Medical School, Jinan University, Guangzhou 510632, China
| | - Ying Zhong
- Department of Pathology, Medical School, Jinan University, Guangzhou 510632, China
| | - Pei-di Yin
- Department of Pathology, Medical School, Jinan University, Guangzhou 510632, China
| | - Xue-Song Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical School, Jinan University, Guangzhou 510632, China
| |
Collapse
|