51
|
Mohareb RM, Al-Omran F, Ibrahim RA. The uses of cyclohexan-1,4-dione for the synthesis of thiophene derivatives as new anti-proliferative, prostate anticancer, c-Met and tyrosine kinase inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2087-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
52
|
Li X, Xu-Monette ZY, Yi S, Dabaja BS, Manyam GC, Westin J, Fowler N, Miranda RN, Zhang M, Ferry JA, Medeiros LJ, Harris NL, Young KH. Primary Bone Lymphoma Exhibits a Favorable Prognosis and Distinct Gene Expression Signatures Resembling Diffuse Large B-Cell Lymphoma Derived From Centrocytes in the Germinal Center. Am J Surg Pathol 2017; 41:1309-1321. [PMID: 28817403 DOI: 10.1097/pas.0000000000000923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Primary bone (PB) diffuse large B-cell lymphoma (DLBCL) is rare and has a favorable prognosis, but the underlying biological mechanisms remain unknown. In this study we analyzed the clinicopathologic features of 160 patients with PB-DLBCL in comparison with 499 nonosseous DLBCL. Compared with patients with nonosseous DLBCL and secondary involvement of bone by DLBCL, PB-DLBCL patients less frequently had elderly age, B-symptoms, elevated serum lactate dehydrogenase levels, and high International Prognostic Index at diagnosis, more frequently had germinal center (GC) subtype (approximately 90%) and complete remission, and had significantly better survival. The 5-year progression-free and overall survival rates of PB-DLBCL patients were 80% and 93%, respectively, superior to both GC B-cell-like (GCB) and activated B cell-like subtypes of DLBCL. Further stratifying nonosseous DLBCL cell-of-origin subtypes by clinical factors showed that PB-DLBCL had similar survival rates as the centrocyte-origin (CC) subtype of DLBCL-GCB classified by the B-cell-associated gene signature algorithm. To better understand the favorable outcome of PB-DLBCL patients, gene expression profiling and microRNA profiling were performed in a small subset of PB-DLBCL. The gene expression profiles of PB-DLBCL resembled those of nonosseous DLBCL-GCB-CC, but were distinct from other DLBCL cell-of-origin especially the centroblast-origin (CB) subtype. Compared with DLBCL-GCB-CB, PB-DLBCL and DLBCL-GCB-CC also had much higher levels of miR-125a-3p, miR-34-3p, and miR-155-5p, and significantly lower levels of miR-17-5p and miR-17-3p. These results demonstrated that PB-DLBCL is clinically distinct, and the cell-of-origin of PB-DLBCL stems from centrocytes in the GC, that are biologically attributed for the favorable prognosis of PB-DLBCL.
Collapse
Affiliation(s)
- Xin Li
- *Department of Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, China Departments of †Hematopathology ‡Radiation Oncology §Bioinformatics and Computational Biology ∥Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center #Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX ¶Department of Pathology, Harvard University Medical School, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Expression of PIM kinases in Reed-Sternberg cells fosters immune privilege and tumor cell survival in Hodgkin lymphoma. Blood 2017; 130:1418-1429. [PMID: 28698206 DOI: 10.1182/blood-2017-01-760702] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/02/2017] [Indexed: 12/26/2022] Open
Abstract
Reed-Sternberg (RS) cells of classical Hodgkin lymphoma (cHL) express multiple immunoregulatory proteins that shape the cHL microenvironment and allow tumor cells to evade immune surveillance. Expression of certain immunoregulatory proteins is modulated by prosurvival transcription factors, such as NFκB and STATs. Because these factors also induce expression of the oncogenic PIM1/2/3 serine/threonine kinases, and as PIMs modulate transcriptional activity of NFκB and STATs, we hypothesized that these kinases support RS cell survival and foster their immune privilege. Here, we investigated PIM1/2/3 expression in cHL and assessed their role in developing RS cell immune privilege and survival. PIM1/2/3 were ubiquitously expressed in primary and cultured RS cells, and their expression was driven by JAK-STAT and NFκB activity. Genetic or chemical PIM inhibition with a newly developed pan-PIM inhibitor, SEL24-B489, induced RS cell apoptosis. PIM inhibition decreased cap-dependent protein translation, blocked JAK-STAT signaling, and markedly attenuated NFκB-dependent gene expression. In a cHL xenograft model, SEL24-B489 delayed tumor growth by 95.8% (P = .0002). Furthermore, SEL24-B489 decreased the expression of multiple molecules engaged in developing the immunosuppressive microenvironment, including galectin-1 and PD-L1/2. In coculture experiments, T cells incubated with SEL24-B489-treated RS cells exhibited higher expression of activation markers than T cells coincubated with control RS cells. Taken together, our data indicate that PIM kinases in cHL exhibit pleiotropic effects, orchestrating tumor immune escape and supporting RS cell survival. Inhibition of PIM kinases decreases RS cell viability and disrupts signaling circuits that link these cells with their niches. Thus, PIM kinases are promising therapeutic targets in cHL.
Collapse
|
54
|
Vlaanderen J, Leenders M, Chadeau-Hyam M, Portengen L, Kyrtopoulos SA, Bergdahl IA, Johansson AS, Hebels DDGAJ, de Kok TMCM, Vineis P, Vermeulen RCH. Exploring the nature of prediagnostic blood transcriptome markers of chronic lymphocytic leukemia by assessing their overlap with the transcriptome at the clinical stage. BMC Genomics 2017; 18:239. [PMID: 28320322 PMCID: PMC5360061 DOI: 10.1186/s12864-017-3627-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/14/2017] [Indexed: 11/10/2022] Open
Abstract
Background We recently identified 700 genes whose expression levels were predictive of chronic lymphocytic leukemia (CLL) in a genome-wide gene expression analysis of prediagnostic blood from future cases and matched controls. We hypothesized that a large fraction of these markers were likely related to early disease manifestations. Here we aim to gain a better understanding of the natural history of the identified markers by comparing results from our prediagnostic analysis, the only prediagnostic analysis to date, to results obtained from a meta-analysis of a series of publically available transcriptomics profiles obtained in incident CLL cases and controls. Results We observed considerable overlap between the results from our prediagnostic study and the clinical CLL signals (p-value for overlap Bonferroni significant markers 0.01; p-value for overlap nominal significant markers < 2.20e-16). We observed similar patterns with time to diagnosis and similar functional annotations for the markers that were identified in both settings compared to the markers that were only identified in the prediagnostic study. These results suggest that both gene sets operate in similar pathways. Conclusion An overlap exists between expression levels of genes predictive of CLL identified in prediagnostic blood and expression levels of genes associated to CLL at the clinical stage. Our analysis provides insight in a set of genes for which expression levels can be used to follow the time-course of the disease; providing an opportunity to study CLL progression in more detail in future studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3627-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Max Leenders
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Marc Chadeau-Hyam
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands.,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Lützen Portengen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Soterios A Kyrtopoulos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | - Theo M C M de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,Molecular and Genetic Epidemiology, Human Genetics Foundation (HuGeF), Turin, Italy
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands. .,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK. .,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
55
|
Ezell SA, Wang S, Bihani T, Lai Z, Grosskurth SE, Tepsuporn S, Davies BR, Huszar D, Byth KF. Differential regulation of mTOR signaling determines sensitivity to AKT inhibition in diffuse large B cell lymphoma. Oncotarget 2016; 7:9163-74. [PMID: 26824321 PMCID: PMC4891033 DOI: 10.18632/oncotarget.7036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/19/2016] [Indexed: 12/04/2022] Open
Abstract
Agents that target components of the PI3K/AKT/mTOR pathway are under investigation for the treatment of diffuse large B cell lymphoma (DLBCL). Given the highly heterogeneous nature of DLBCL, it is not clear whether all subtypes of DLBCL will be susceptible to PI3K pathway inhibition, or which kinase within this pathway is the most favorable target. Pharmacological profiling of a panel of DLBCL cell lines revealed a subset of DLBCL that was resistant to AKT inhibition. Strikingly, sensitivity to AKT inhibitors correlated with the ability of these inhibitors to block phosphorylation of S6K1 and ribosomal protein S6. Cell lines resistant to AKT inhibition activated S6K1 independent of AKT either through upregulation of PIM2 or through activation by B cell receptor (BCR) signaling components. Finally, combined inhibition of AKT and BTK, PIM2, or S6K1 proved to be an effective strategy to overcome resistance to AKT inhibition in DLBCL.
Collapse
Affiliation(s)
- Scott A Ezell
- AstraZeneca Oncology, Waltham, Massachusetts, MA, USA
| | - Suping Wang
- AstraZeneca Oncology, Waltham, Massachusetts, MA, USA
| | - Teeru Bihani
- AstraZeneca Oncology, Waltham, Massachusetts, MA, USA
| | - Zhongwu Lai
- AstraZeneca Oncology, Waltham, Massachusetts, MA, USA
| | | | | | | | - Dennis Huszar
- AstraZeneca Oncology, Waltham, Massachusetts, MA, USA
| | - Kate F Byth
- AstraZeneca Oncology, Waltham, Massachusetts, MA, USA
| |
Collapse
|
56
|
Kapelko-Slowik K, Owczarek TB, Grzymajlo K, Urbaniak-Kujda D, Jazwiec B, Slowik M, Kuliczkowski K, Ugorski M. Elevated PIM2 gene expression is associated with poor survival of patients with acute myeloid leukemia. Leuk Lymphoma 2016; 57:2140-9. [PMID: 26764044 DOI: 10.3109/10428194.2015.1124991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The PIM2 gene encodes the serine/threonine kinase involved in cell survival and apoptosis. The aim of the study was to evaluate the expression of the PIM2 gene in acute myeloid leukemia (AML) and to examine its role in apoptosis of the blastic cells. We analyzed the PIM2 expression in 148 patients: 91 with AML, 57 with acute lymphoblastic leukemia and 24 healthy controls by Real-Time PCR and Western blot. Inhibition of the PIM2 gene in human leukemic HL60 cell line was performed with RNAi and apoptosis rate was analyzed. Our results indicate that overexpression of PIM2 in AML is associated with low complete remission rate, high-risk cytogenetics, shorter leukemia-free survival, and event-free survival. Cytometric analysis of HL60/PAC-GFP and HL60/PAC-GFP-shPIM2 cells revealed an increase in the number of apoptotic cells after inhibition of PIM2 gene. In summary, the elevated expression of PIM2 in blastic cells is associated with poor prognosis of AML patients and their resistance to induction therapy.
Collapse
Affiliation(s)
- Katarzyna Kapelko-Slowik
- a Department of Hematology, Neoplastic Blood Disorders and Bone Marrow Transplantation , Wroclaw Medical University , Wroclaw , Poland
| | - Tomasz B Owczarek
- b Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences , Wroclaw , Poland ;,c Department of Biochemistry, Pharmacology and Toxicology , Wroclaw University of Environmental and Life Sciences , Wroclaw , Poland
| | - Krzysztof Grzymajlo
- c Department of Biochemistry, Pharmacology and Toxicology , Wroclaw University of Environmental and Life Sciences , Wroclaw , Poland
| | - Donata Urbaniak-Kujda
- a Department of Hematology, Neoplastic Blood Disorders and Bone Marrow Transplantation , Wroclaw Medical University , Wroclaw , Poland
| | - Bozena Jazwiec
- a Department of Hematology, Neoplastic Blood Disorders and Bone Marrow Transplantation , Wroclaw Medical University , Wroclaw , Poland
| | - Miroslaw Slowik
- d Department of Ophthalmology , Wroclaw Medical University , Wroclaw , Poland
| | - Kazimierz Kuliczkowski
- a Department of Hematology, Neoplastic Blood Disorders and Bone Marrow Transplantation , Wroclaw Medical University , Wroclaw , Poland
| | - Maciej Ugorski
- b Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences , Wroclaw , Poland ;,c Department of Biochemistry, Pharmacology and Toxicology , Wroclaw University of Environmental and Life Sciences , Wroclaw , Poland
| |
Collapse
|
57
|
Gifford GK, Gill AJ, Stevenson WS. Molecular subtyping of diffuse large B-cell lymphoma: update on biology, diagnosis and emerging platforms for practising pathologists. Pathology 2016; 48:5-16. [DOI: 10.1016/j.pathol.2015.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/02/2015] [Accepted: 10/12/2015] [Indexed: 01/04/2023]
|
58
|
Kreuz S, Holmes KB, Tooze RM, Lefevre PF. Loss of PIM2 enhances the anti-proliferative effect of the pan-PIM kinase inhibitor AZD1208 in non-Hodgkin lymphomas. Mol Cancer 2015; 14:205. [PMID: 26643319 PMCID: PMC4672512 DOI: 10.1186/s12943-015-0477-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/02/2015] [Indexed: 12/25/2022] Open
Abstract
Background A promising therapeutic approach for aggressive B-cell Non-Hodgkin lymphoma (NHL), including diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma (BL) is to target kinases involved in signal transduction and gene regulation. PIM1/2 serine/threonine kinases are highly expressed in activated B-cell-like DLBCL (ABC-DLBCL) with poor prognosis. In addition, both PIM kinases have a reported synergistic effect with c-MYC in mediating tumour development in several cancers, c-MYC gene being translocated to one of the immunoglobulin loci in nearly all BLs. Methods For these reasons, we tested the efficiency of several PIM kinase inhibitors (AZD1208, SMI4a, PIM1/2 inhibitor VI and Quercetagetin) in preventing proliferation of aggressive NHL-derived cell lines and compared their efficiency with PIM1 and/or PIM2 knockdown. Results We observed that most of the anti-proliferative potential of these inhibitors in NHL was due to an off-target effect. Interestingly, we present evidence of a kinase-independent function of PIM2 in regulating cell cycle. Moreover, combining AZD1208 treatment and PIM2 knockdown additively repressed cell proliferation. Conclusion Taken together, this study suggests that at least a part of PIM1/2 oncogenic potential could be independent of their kinase activity, justifying the limited anti-tumorigenic outcome of PIM-kinase inhibitors in NHL. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0477-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Kreuz
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, The Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
| | - K B Holmes
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, The Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
| | - R M Tooze
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, The Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
| | - P F Lefevre
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, The Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
59
|
Tabe Y, Kojima K, Yamamoto S, Sekihara K, Matsushita H, Davis RE, Wang Z, Ma W, Ishizawa J, Kazuno S, Kauffman M, Shacham S, Fujimura T, Ueno T, Miida T, Andreeff M. Ribosomal Biogenesis and Translational Flux Inhibition by the Selective Inhibitor of Nuclear Export (SINE) XPO1 Antagonist KPT-185. PLoS One 2015; 10:e0137210. [PMID: 26340096 PMCID: PMC4560410 DOI: 10.1371/journal.pone.0137210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/13/2015] [Indexed: 01/01/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma characterized by the aberrant expression of several growth-regulating, oncogenic effectors. Exportin 1 (XPO1) mediates the nucleocytoplasmic transport of numerous molecules including oncogenic growth-regulating factors, RNAs, and ribosomal subunits. In MCL cells, the small molecule KPT-185 blocks XPO1 function and exerts anti-proliferative effects. In this study, we investigated the molecular mechanisms of this putative anti-tumor effect on MCL cells using cell growth/viability assays, immunoblotting, gene expression analysis, and absolute quantification proteomics. KPT-185 exhibited a p53-independent anti-lymphoma effect on MCL cells, by suppression of oncogenic mediators (e.g., XPO1, cyclin D1, c-Myc, PIM1, and Bcl-2 family members), repression of ribosomal biogenesis, and downregulation of translation/chaperone proteins (e.g., PIM2, EEF1A1, EEF2, and HSP70) that are part of the translational/transcriptional network regulated by heat shock factor 1. These results elucidate a novel mechanism in which ribosomal biogenesis appears to be a key component through which XPO1 contributes to tumor cell survival. Thus, we propose that the blockade of XPO1 could be a promising, novel strategy for the treatment of MCL and other malignancies overexpressing XPO1.
Collapse
Affiliation(s)
- Yoko Tabe
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
- Department of Clinical Laboratory Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kensuke Kojima
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Shinichi Yamamoto
- Department of Clinical Laboratory Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Leading Center for the Development and Research of Cancer Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazumasa Sekihara
- Department of Clinical Laboratory Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Leading Center for the Development and Research of Cancer Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiromichi Matsushita
- Department of Laboratory Medicine, Tokai University of Medicine, Kanagawa, Japan
| | - Richard Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Wencai Ma
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Michael Kauffman
- Karyopharm Therapeutics Inc., Natick, MA, United States of America
| | - Sharon Shacham
- Karyopharm Therapeutics Inc., Natick, MA, United States of America
| | - Tsutomu Fujimura
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
60
|
Targeting the Pim kinases in multiple myeloma. Blood Cancer J 2015; 5:e325. [PMID: 26186558 PMCID: PMC4526774 DOI: 10.1038/bcj.2015.46] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that remains incurable. Novel treatment strategies to improve survival are urgently required. The Pims are a small family of serine/threonine kinases with increased expression across the hematological malignancies. Pim-2 shows highest expression in MM and constitutes a promising therapeutic target. It is upregulated by the bone marrow microenvironment to mediate proliferation and promote MM survival. Pim-2 also has a key role in the bone destruction typically seen in MM. Additional putative roles of the Pim kinases in MM include trafficking of malignant cells, promoting oncogenic signaling in the hypoxic bone marrow microenvironment and mediating resistance to therapy. A number of Pim inhibitors are now under development with lead compounds entering the clinic. The ATP-competitive Pim inhibitor LGH447 has recently been reported to have single agent activity in MM. It is anticipated that Pim inhibition will be of clinical benefit in combination with standard treatments and/or with novel drugs targeting other survival pathways in MM.
Collapse
|
61
|
Zhou Z, Gao J, Popovic R, Wolniak K, Parimi V, Winter JN, Licht JD, Chen YH. Strong expression of EZH2 and accumulation of trimethylated H3K27 in diffuse large B-cell lymphoma independent of cell of origin and EZH2 codon 641 mutation. Leuk Lymphoma 2015; 56:2895-901. [PMID: 25651430 DOI: 10.3109/10428194.2015.1006220] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gain-of-function EZH2 mutation promotes H3K27 trimethylation (H3K27me3) and lymphoid transformation of germinal center (GC) derived B-cell lymphoma, such as GCB diffuse large B-cell lymphoma (DLBCL), but not activated B-cell (ABC) DLBCL. It is unclear whether expression levels of EZH2 and consequential H3K27me3 vary by EZH2 mutation and/or cell-of-origin in DLBCL. Ninety lymphoma samples including 40 DLBCLs were studied by immunohistochemistry. EZH2 Y641 mutations were detected in three of 20 (15%) GCB and none of 20 ABC types. All 40 DLBCLs showed strong EZH2, expression with high-level H3K27me3 in 90% GCBs and 95% ABCs. In 50 other B-cell lymphomas except for follicular lymphoma, strong EZH2 expression correlated with high-grade features. Immunoblot of DLBCL cell lines and microarray gene expression study of EZH2 in B-cell lymphomas were consistent with the immunohistochemistry findings. High-level EZH2 and H3K27me3 were common in DLBCL independent of cell-of-origin and EZH2 mutation. High-level EZH2 in lymphoma of aggressive features suggests additional therapeutic targets.
Collapse
Affiliation(s)
- Zheng Zhou
- a Division of Hematology and Oncology, Department of Medicine , Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Juehua Gao
- b Department of Pathology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Relja Popovic
- a Division of Hematology and Oncology, Department of Medicine , Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Kristy Wolniak
- b Department of Pathology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Vamsi Parimi
- b Department of Pathology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Jane N Winter
- a Division of Hematology and Oncology, Department of Medicine , Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Jonathan D Licht
- a Division of Hematology and Oncology, Department of Medicine , Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Yi-Hua Chen
- b Department of Pathology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
62
|
Mondello P, Cuzzocrea S, Mian M. Pim kinases in hematological malignancies: where are we now and where are we going? J Hematol Oncol 2014; 7:95. [PMID: 25491234 PMCID: PMC4266197 DOI: 10.1186/s13045-014-0095-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
The proviral insertion in murine (PIM) lymphoma proteins are a serine/threonine kinase family composed of three isoformes: Pim-1, Pim-2 and Pim-3. They play a critical role in the control of cell proliferation, survival, homing and migration. Recently, overexpression of Pim kinases has been reported in human tumors, mainly in hematologic malignancies. In vitro and in vivo studies have confirmed their oncogenic potential. Indeed, PIM kinases have shown to be involved in tumorgenesis, to enhance tumor growth and to induce chemo-resistance, which is why they have become an attractive therapeutic target for cancer therapy. Novel molecules inhibiting Pim kinases have been evaluated in preclinical studies, demonstrating to be effective and with a favorable toxicity profile. Given the promising results, some of these compounds are currently under investigation in clinical trials. Herein, we provide an overview of the biological activity of PIM-kinases, their role in hematologic malignancies and future therapeutic opportunities.
Collapse
Affiliation(s)
- Patrizia Mondello
- Department of Human Pathology, University of Messina, Via Consolare Valeria, 98125, Messina, Italy. .,Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Michael Mian
- Department of Hematology, Hospital S. Maurizio, Bolzano/Bozen, Italy. .,Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
63
|
Karlsson E, Pérez-Tenorio G, Amin R, Bostner J, Skoog L, Fornander T, Sgroi DC, Nordenskjöld B, Hallbeck AL, Stål O. The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast Cancer Res 2014; 15:R96. [PMID: 24131622 PMCID: PMC3978839 DOI: 10.1186/bcr3557] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 09/25/2013] [Indexed: 12/14/2022] Open
Abstract
Introduction mTOR and its downstream effectors the 4E-binding protein 1 (4EBP1) and the p70 ribosomal S6 kinases (S6K1 and S6K2) are frequently upregulated in breast cancer, and assumed to be driving forces in tumourigenesis, in close connection with oestrogen receptor (ER) networks. Here, we investigated these factors as clinical markers in five different cohorts of breast cancer patients. Methods The prognostic significance of 4EBP1, S6K1 and S6K2 mRNA expression was assessed with real-time PCR in 93 tumours from the treatment randomised Stockholm trials, encompassing postmenopausal patients enrolled between 1976 and 1990. Three publicly available breast cancer cohorts were used to confirm the results. Furthermore, the predictive values of 4EBP1 and p4EBP1_S65 protein expression for both prognosis and endocrine treatment benefit were assessed by immunohistochemical analysis of 912 node-negative breast cancers from the Stockholm trials. Results S6K2 and 4EBP1 mRNA expression levels showed significant correlation and were associated with a poor outcome in all cohorts investigated. 4EBP1 protein was confirmed as an independent prognostic factor, especially in progesterone receptor (PgR)-expressing cancers. 4EBP1 protein expression was also associated with a poor response to endocrine treatment in the ER/PgR positive group. Cross-talk to genomic as well as non-genomic ER/PgR signalling may be involved and the results further support a combination of ER and mTOR signalling targeted therapies. Conclusion This study suggests S6K2 and 4EBP1 as important factors for breast tumourigenesis, interplaying with hormone receptor signalling. We propose S6K2 and 4EBP1 as new potential clinical markers for prognosis and endocrine therapy response in breast cancer.
Collapse
|
64
|
Foulks JM, Carpenter KJ, Luo B, Xu Y, Senina A, Nix R, Chan A, Clifford A, Wilkes M, Vollmer D, Brenning B, Merx S, Lai S, McCullar MV, Ho KK, Albertson DJ, Call LT, Bearss JJ, Tripp S, Liu T, Stephens BJ, Mollard A, Warner SL, Bearss DJ, Kanner SB. A small-molecule inhibitor of PIM kinases as a potential treatment for urothelial carcinomas. Neoplasia 2014; 16:403-12. [PMID: 24953177 PMCID: PMC4198696 DOI: 10.1016/j.neo.2014.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Abstract
The proto-oncogene proviral integration site for moloney murine leukemia virus (PIM) kinases (PIM-1, PIM-2, and PIM-3) are serine/threonine kinases that are involved in a number of signaling pathways important to cancer cells. PIM kinases act in downstream effector functions as inhibitors of apoptosis and as positive regulators of G1-S phase progression through the cell cycle. PIM kinases are upregulated in multiple cancer indications, including lymphoma, leukemia, multiple myeloma, and prostate, gastric, and head and neck cancers. Overexpression of one or more PIM family members in patient tumors frequently correlates with poor prognosis. The aim of this investigation was to evaluate PIM expression in low- and high-grade urothelial carcinoma and to assess the role PIM function in disease progression and their potential to serve as molecular targets for therapy. One hundred thirty-seven cases of urothelial carcinoma were included in this study of surgical biopsy and resection specimens. High levels of expression of all three PIM family members were observed in both noninvasive and invasive urothelial carcinomas. The second-generation PIM inhibitor, TP-3654, displays submicromolar activity in pharmacodynamic biomarker modulation, cell proliferation studies, and colony formation assays using the UM-UC-3 bladder cancer cell line. TP-3654 displays favorable human ether-à-go-go-related gene and cytochrome P450 inhibition profiles compared with the first-generation PIM inhibitor, SGI-1776, and exhibits oral bioavailability. In vivo xenograft studies using a bladder cancer cell line show that PIM kinase inhibition can reduce tumor growth, suggesting that PIM kinase inhibitors may be active in human urothelial carcinomas.
Collapse
Affiliation(s)
| | | | - Bai Luo
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | - Yong Xu
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | - Anna Senina
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | - Rebecca Nix
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | - Ashley Chan
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | | | | | | | | | | | - Shuping Lai
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | | | - Koc-Kan Ho
- Astex Pharmaceuticals, Inc, Salt Lake City, UT
| | - Daniel J Albertson
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | | | - Jared J Bearss
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | - Ting Liu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | | | | | | | | | | |
Collapse
|
65
|
Zappasodi R, Cavanè A, Iorio MV, Tortoreto M, Guarnotta C, Ruggiero G, Piovan C, Magni M, Zaffaroni N, Tagliabue E, Croce CM, Zunino F, Gianni AM, Di Nicola M. Pleiotropic antitumor effects of the pan-HDAC inhibitor ITF2357 against c-Myc-overexpressing human B-cell non-Hodgkin lymphomas. Int J Cancer 2014; 135:2034-45. [DOI: 10.1002/ijc.28852] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/04/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Roberta Zappasodi
- Medical Oncology Department; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Alessandra Cavanè
- Medical Oncology Department; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Marilena V. Iorio
- Start Up Unit Molecular Targeting Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Carla Guarnotta
- Tumor Immunology Unit Department of Health Science Human Pathology Section; School of Medicine, University of Palermo; Palermo Italy
| | - Giusi Ruggiero
- Medical Oncology Department; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Claudia Piovan
- Start Up Unit Molecular Targeting Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Michele Magni
- Medical Oncology Department; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Elda Tagliabue
- Molecular Targeting Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Carlo M. Croce
- Department of Molecular Virology Immunology and Medical Genetics; Ohio State University; Columbus OH
| | - Franco Zunino
- Molecular Pharmacology Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Alessandro M. Gianni
- Medical Oncology Department; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
- Medical Oncology; University of Milan; Milan Italy
| | - Massimo Di Nicola
- Medical Oncology Department; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| |
Collapse
|
66
|
Yu Z, Zhao X, Ge Y, Zhang T, Huang L, Zhou X, Xie L, Liu J, Huang G. A regulatory feedback loop between HIF-1α and PIM2 in HepG2 cells. PLoS One 2014; 9:e88301. [PMID: 24505470 PMCID: PMC3914973 DOI: 10.1371/journal.pone.0088301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/06/2014] [Indexed: 12/11/2022] Open
Abstract
To survive under hypoxic conditions, cancer cells remodel glucose metabolism to support tumor progression. HIF transcription factor is essential for cellular response to hypoxia. The underlying mechanism how HIF is constitutively activated in cancer cells remains elusive. In the present study, we characterized a regulatory feedback loop between HIF-1α and PIM2 in HepG2 cells. Serine/threonine kinase proto-oncogene PIM2 level was induced upon hypoxia in a HIF-1α-mediated manner in cancer cells. HIF-1α induced PIM2 expression via binding to the hypoxia-responsive elements (HREs) of the PIM2 promoter. In turn, PIM2 interacted with HIF-1α, especially a transactivation domain of HIF-1α. PIM2 as a co-factor but not an upstream kinase of HIF-1α, enhanced HIF-1α effect in response to hypoxia. The positive feedback loop between PIM2 and HIF-1α was correlated with glucose metabolism as well as cell survival in HepG2 cells. Such a regulatory mode may be important for the adaptive responses of cancer cells in antagonizing hypoxia during cancer progression.
Collapse
Affiliation(s)
- Zhenhai Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Ge
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Teng Zhang
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangqian Huang
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xie
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (JL); (GH)
| | - Gang Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Department of Nuclear Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
- * E-mail: (JL); (GH)
| |
Collapse
|
67
|
Zang C, Eucker J, Liu H, Müller A, Possinger K, Scholz CW. Concurrent inhibition of PI3-Kinase and mTOR induces cell death in diffuse large B cell lymphomas, a mechanism involving down regulation of Mcl-1. Cancer Lett 2013. [DOI: 10.1016/j.canlet.2012.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
68
|
Yang Q, Chen LS, Neelapu SS, Gandhi V. Combination of Pim kinase inhibitor SGI-1776 and bendamustine in B-cell lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2013; 13 Suppl 2:S355-62. [PMID: 24290221 PMCID: PMC3951504 DOI: 10.1016/j.clml.2013.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/06/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND SGI-1776 is a small-molecule Pim kinase inhibitor that primarily targets c-MYC-driven transcription and cap-dependent translation in mantle cell lymphoma (MCL) cells. Bendamustine is an alkylating chemotherapeutic agent approved for use in B-cell lymphoma that is known to induce DNA damage and initiate response to repair. MATERIALS AND METHODS Our studies were conducted in MCL cell lines JeKo-1 and Mino, as well as primary B-cell lymphoma samples of MCL and splenic marginal zone lymphoma (SMZL), where we treated cells with SGI-1776 and bendamustine. We measured levels of cellular apoptosis, macromolecule synthesis inhibition, and DNA damage induced by drug treatments. RESULTS Both SGI-1776 and bendamustine effectively induced apoptosis as single agents, and when used in combination, an additive effect in cell killing was observed in MCL cell lines JeKo-1 and Mino, as well as in MCL and SMZL primary cells. As expected, SGI-1776 was effective in inducing a decrease of global RNA and protein synthesis, and bendamustine significantly inhibited DNA synthesis and generated a DNA damage response. When used in combination, the effects were intensified in DNA, RNA, and protein synthesis inhibition compared with single-agent treatments. CONCLUSION These data provide a foundation and suggest the feasibility of using Pim kinase inhibitors in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma.
Collapse
Affiliation(s)
- Qingshan Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center
- The Graduate School of Biomedical Sciences at Houston, Houston, TX
| | - Lisa S Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center
| | | | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
69
|
Lu J, Zavorotinskaya T, Dai Y, Niu XH, Castillo J, Sim J, Yu J, Wang Y, Langowski JL, Holash J, Shannon K, Garcia PD. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation. Blood 2013; 122:1610-20. [PMID: 23818547 PMCID: PMC3953014 DOI: 10.1182/blood-2013-01-481457] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/17/2013] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy. Despite recent treatment advances, it remains incurable. Here, we report that Pim2 kinase expression is highly elevated in MM cells and demonstrate that it is required for MM cell proliferation. Functional interference of Pim2 activity either by short hairpin RNAs or by a potent and selective small-molecule inhibitor leads to significant inhibition of MM cell proliferation. Pim inhibition results in a significant decrease of mammalian target of rapamycin C1 (mTOR-C1) activity, which is critical for cell proliferation. We identify TSC2, a negative regulator of mTOR-C1, as a novel Pim2 substrate and show that Pim2 directly phosphorylates TSC2 on Ser-1798 and relieves the suppression of TSC2 on mTOR-C1. These findings support Pim2 as a promising therapeutic target for MM and define a novel Pim2-TSC2-mTOR-C1 pathway that drives MM proliferation.
Collapse
Affiliation(s)
- Jing Lu
- Novartis Institutes for Biomedical Research, Emeryville, CA 94508, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Narlik-Grassow M, Blanco-Aparicio C, Carnero A. The PIM family of serine/threonine kinases in cancer. Med Res Rev 2013; 34:136-59. [PMID: 23576269 DOI: 10.1002/med.21284] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proviral insertion site in Moloney murine leukemia virus, or PIM proteins, are a family of serine/threonine kinases composed of three different isoforms (PIM1, PIM2, and PIM3) that are highly evolutionarily conserved. These proteins are regulated primarily by transcription and stability through pathways that are controlled by Janus kinase/Signal transducer and activator of transcription, JAK/STAT, transcription factors. The PIM family proteins have been found to be overexpressed in hematological malignancies and solid tumors, and their roles in these tumors were confirmed in mouse tumor models. Furthermore, the PIM family proteins have been implicated in the regulation of apoptosis, metabolism, cell cycle, and homing and migration, which has led to the postulation of these proteins as interesting targets for anticancer drug discovery. In the present work, we review the importance of PIM kinases in tumor growth and as drug targets.
Collapse
Affiliation(s)
- Maja Narlik-Grassow
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | | | | |
Collapse
|
71
|
Abstract
Aggressive B-cell lymphomas are diverse group of neoplasms that arise at different stages of B-cell development and by various mechanisms of neoplastic transformation. The aggressive B-cell lymphomas include many types, subtypes and variants of diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), mantle cell lymphoma and its blastoid variant, and B lymphoblastic lymphoma. Differences in histology, cytogenetic and molecular abnormalities, as well as the relationship with the tumor microenvironment, help define characteristic signatures for these neoplasms, and in turn dictate potential therapeutic targets. Rather than survey the entire spectrum of aggressive B-cell lymphomas, this report aims to identify and characterize important clinically aggressive subtypes of DLBCL, and explore the relationship of DLBCL to BL and the gray zone between them (B-cell lymphoma unclassifiable with features intermediate between DLBCL and BL).
Collapse
|
72
|
Frantz AM, Sarver AL, Ito D, Phang TL, Karimpour-Fard A, Scott MC, Valli VEO, Lindblad-Toh K, Burgess KE, Husbands BD, Henson MS, Borgatti A, Kisseberth WC, Hunter LE, Breen M, O'Brien TD, Modiano JF. Molecular profiling reveals prognostically significant subtypes of canine lymphoma. Vet Pathol 2012; 50:693-703. [PMID: 23125145 DOI: 10.1177/0300985812465325] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We performed genomewide gene expression analysis of 35 samples representing 6 common histologic subtypes of canine lymphoma and bioinformatics analyses to define their molecular characteristics. Three major groups were defined on the basis of gene expression profiles: (1) low-grade T-cell lymphoma, composed entirely by T-zone lymphoma; (2) high-grade T-cell lymphoma, consisting of lymphoblastic T-cell lymphoma and peripheral T-cell lymphoma not otherwise specified; and (3) B-cell lymphoma, consisting of marginal B-cell lymphoma, diffuse large B-cell lymphoma, and Burkitt lymphoma. Interspecies comparative analyses of gene expression profiles also showed that marginal B-cell lymphoma and diffuse large B-cell lymphoma in dogs and humans might represent a continuum of disease with similar drivers. The classification of these diverse tumors into 3 subgroups was prognostically significant, as the groups were directly correlated with event-free survival. Finally, we developed a benchtop diagnostic test based on expression of 4 genes that can robustly classify canine lymphomas into one of these 3 subgroups, enabling a direct clinical application for our results.
Collapse
Affiliation(s)
- A M Frantz
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Blanco-Aparicio C, Carnero A. Pim kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochem Pharmacol 2012; 85:629-643. [PMID: 23041228 DOI: 10.1016/j.bcp.2012.09.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
PIM proteins belong to a family of ser/thr kinases composed of 3 members, PIM1, PIM2 and PIM3, with greatly overlapping functions. PIM kinases are mainly responsible for cell cycle regulation, antiapoptotic activity and the homing and migration of receptor tyrosine kinases mediated via the JAK/STAT pathway. PIM kinases have been found to be upregulated in many hematological malignancies and solid tumors. Although these kinases have been described as weak oncogenes, they are heavily targeted for anticancer drug discovery. The present review summarizes the discoveries made to date regarding PIM kinases as driving oncogenes in the process of tumorigenesis and their validation as drug targets.
Collapse
Affiliation(s)
- Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla, Sevilla, Spain; Consejo Superior de Investigaciones Cientificas, Spain.
| |
Collapse
|
74
|
Transcription and translation are primary targets of Pim kinase inhibitor SGI-1776 in mantle cell lymphoma. Blood 2012; 120:3491-500. [PMID: 22955922 DOI: 10.1182/blood-2012-02-412643] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proviral integration site for Moloney murine leukemia virus (Pim) kinases are serine/threonine/tyrosine kinases and oncoproteins that promote tumor progression. Three isoforms of Pim kinases have been identified and are known to phosphorylate numerous substrates, with regulatory functions in transcription, translation, cell cycle, and survival pathways. These kinases are involved in production, proliferation, and survival of normal B cells and are overexpressed in B-cell malignancies such as mantle cell lymphoma (MCL). SGI-1776 is a small molecule and Pim kinase inhibitor with selectivity for Pim-1. We hypothesize that Pim kinase function can be inhibited by SGI-1776 in MCL and that inhibition of phosphorylation of downstream substrates will disrupt transcriptional, translational, and cell cycle processes and promote cell death. SGI-1776 treatment in 4 MCL cell lines resulted in apoptosis induction. Phosphorylation of transcription (c-Myc) and translation targets (4E-BP1), tested in Jeko-1 and Mino, was declined. Consistent with these data, Mcl-1 and cyclin D1 protein levels were decreased. Importantly, similar to cell line data, MCL primary cells but not normal cells showed similar inhibition of substrate phosphorylation and cytotoxicity from SGI-1776 treatment. Genetic knockdown of Pim-1/Pim-2 affected similar proteins in MCL cell lines. Collectively these data demonstrate Pim kinases as therapeutic targets in MCL.
Collapse
|
75
|
Current world literature. Curr Opin Oncol 2012; 24:587-95. [PMID: 22886074 DOI: 10.1097/cco.0b013e32835793f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
76
|
Jiang Y, Soong TD, Wang L, Melnick AM, Elemento O. Genome-wide detection of genes targeted by non-Ig somatic hypermutation in lymphoma. PLoS One 2012; 7:e40332. [PMID: 22808135 PMCID: PMC3395700 DOI: 10.1371/journal.pone.0040332] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/07/2012] [Indexed: 12/29/2022] Open
Abstract
The processes of somatic hypermutation (SHM) and class switch recombination introduced by activation-induced cytosine deaminase (AICDA) at the Immunoglobulin (Ig) loci are key steps for creating a pool of diversified antibodies in germinal center B cells (GCBs). Unfortunately, AICDA can also accidentally introduce mutations at bystander loci, particularly within the 5′ regulatory regions of proto-oncogenes relevant to diffuse large B cell lymphomas (DLBCL). Since current methods for genomewide sequencing such as Exon Capture and RNAseq only target mutations in coding regions, to date non-Ig promoter SHMs have been studied only in a handful genes. We designed a novel approach integrating bioinformatics tools with next generation sequencing technology to identify regulatory loci targeted by SHM genome-wide. We observed increased numbers of SHM associated sequence variant hotspots in lymphoma cells as compared to primary normal germinal center B cells. Many of these SHM hotspots map to genes that have not been reported before as mutated, including BACH2, BTG2, CXCR4, CIITA, EBF1, PIM2, and TCL1A, etc., all of which have potential roles in B cell survival, differentiation, and malignant transformation. In addition, using BCL6 and BACH2 as examples, we demonstrated that SHM sites identified in these 5′ regulatory regions greatly altered their transcription activities in a reporter assay. Our approach provides a first cost-efficient, genome-wide method to identify regulatory mutations and non-Ig SHM hotspots.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Line, Tumor
- Chromatin Immunoprecipitation
- Gene Expression Regulation, Neoplastic
- Genes, Neoplasm/genetics
- Genes, Regulator/genetics
- Genome, Human/genetics
- Histones/metabolism
- Humans
- Lymphoma/genetics
- Lymphoma/immunology
- Lymphoma/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Methylation
- Polymorphism, Single Nucleotide/genetics
- Promoter Regions, Genetic/genetics
- Sequence Analysis, DNA
- Somatic Hypermutation, Immunoglobulin/genetics
Collapse
Affiliation(s)
- Yanwen Jiang
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - T. David Soong
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
| | - Ling Wang
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ari M. Melnick
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (AM); (OE)
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (AM); (OE)
| |
Collapse
|
77
|
PIM kinases are progression markers and emerging therapeutic targets in diffuse large B-cell lymphoma. Br J Cancer 2012; 107:491-500. [PMID: 22722314 PMCID: PMC3405213 DOI: 10.1038/bjc.2012.272] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: PIM serine/threonine kinases are often highly expressed in haematological malignancies. We have shown that PIM inhibitors reduced the survival and migration of leukaemic cells. Here, we investigated PIM kinases in diffuse large B-cell lymphoma (DLBCL) biopsy samples and DLBCL cell lines. Methods: Immunohistochemical staining for PIM kinases and CXCR4 was performed on tissue microarrays from a cohort of 101 DLBCL cases, and the effects of PIM inhibitors on the survival and migration of DLBCL cell lines were determined. Results: PIM1 expression significantly correlated with the activation of signal transducer and activator of transcription (STAT) 3 and 5, P-glycoprotein expression, CXCR4-S339 phosphorylation, and cell proliferation. Whereas most cases exhibited cytoplasmic or cytoplasmic and nuclear PIM1 and PIM2 expression, 12 cases (10 of the non-germinal centre DLBCL type) expressed PIM1 predominately in the nucleus. Interestingly, nuclear expression of PIM1 significantly correlated with disease stage. Exposure of DLBCL cell lines to PIM inhibitors modestly impaired cellular proliferation and CXCR4-mediated migration. Conclusion: This work demonstrates that PIM expression in DLBCL is associated with activation of the JAK/STAT signalling pathway and with the proliferative activity. The correlation of nuclear PIM1 expression with disease stage and the modest response to small-molecule inhibitors suggests that PIM kinases are progression markers rather than primary therapeutic targets in DLBCL.
Collapse
|
78
|
Schatz JH, Wendel HG. Targeted cancer therapy: what if the driver is just a messenger? Cell Cycle 2011; 10:3830-3. [PMID: 22064518 DOI: 10.4161/cc.10.22.18288] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
"Shoot the driver" is the paradigm of targeted cancer therapy. However, resistance to targeted inhibitors of signaling pathways is a major problem. In part the redundancy of signaling networks can bypass targeted inhibitors and thereby reduce their biological effect. In this case the driver turns out to be one of several potential messengers and is easily replaced. Cocktails of multiple targeted inhibitors are an obvious solution. This is limited, however, by the lack of potent inhibitors and may also produce increased toxicity. Therefore we explored the direct blockade of a key biological activity downstream from multiple converging oncogenic signals. Specifically, several oncogenic signaling pathways including AKT, MAPK and PIM kinase signals converge on the activation of cap-dependent translation. In cancer cells, aberrant activation of cap-dependent translation favors the increased expression of short-lived oncoproteins like c-MYC, MCL1, CYCLIN D1 and the PIM kinases. Intriguingly, cancer cells are especially sensitive to even temporary reductions in these proteins. We will discuss our findings concerning translational inhibitor therapy in cancer.
Collapse
Affiliation(s)
- Jonathan H Schatz
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | |
Collapse
|