52
|
Wünnemann F, Kokta V, Leclerc S, Thibeault M, McCuaig C, Hatami A, Stheneur C, Grenier JC, Awadalla P, Mitchell GA, Andelfinger G, Preuss C. Aortic Dilatation Associated With a De Novo Mutation in the SOX18 Gene: Expanding the Clinical Spectrum of Hypotrichosis-Lymphedema-Telangiectasia Syndrome. Can J Cardiol 2016; 32:135.e1-7. [DOI: 10.1016/j.cjca.2015.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/23/2015] [Accepted: 04/04/2015] [Indexed: 01/01/2023] Open
|
53
|
Fish JE, Wythe JD. The molecular regulation of arteriovenous specification and maintenance. Dev Dyn 2015; 244:391-409. [PMID: 25641373 DOI: 10.1002/dvdy.24252] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 12/21/2022] Open
Abstract
The formation of a hierarchical vascular network, composed of arteries, veins, and capillaries, is essential for embryogenesis and is required for the production of new functional vasculature in the adult. Elucidating the molecular mechanisms that orchestrate the differentiation of vascular endothelial cells into arterial and venous cell fates is requisite for regenerative medicine, as the directed formation of perfused vessels is desirable in a myriad of pathological settings, such as in diabetes and following myocardial infarction. Additionally, this knowledge will enhance our understanding and treatment of vascular anomalies, such as arteriovenous malformations (AVMs). From studies in vertebrate model organisms, such as mouse, zebrafish, and chick, a number of key signaling pathways have been elucidated that are required for the establishment and maintenance of arterial and venous fates. These include the Hedgehog, Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor-β (TGF-β), Wnt, and Notch signaling pathways. In addition, a variety of transcription factor families acting downstream of, or in concert with, these signaling networks play vital roles in arteriovenous (AV) specification. These include Notch and Notch-regulated transcription factors (e.g., HEY and HES), SOX factors, Forkhead factors, β-Catenin, ETS factors, and COUP-TFII. It is becoming apparent that AV specification is a highly coordinated process that involves the intersection and carefully orchestrated activity of multiple signaling cascades and transcriptional networks. This review will summarize the molecular mechanisms that are involved in the acquisition and maintenance of AV fate, and will highlight some of the limitations in our current knowledge of the molecular machinery that directs AV morphogenesis.
Collapse
Affiliation(s)
- Jason E Fish
- Toronto General Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
| | | |
Collapse
|
54
|
Koltowska K, Paterson S, Bower NI, Baillie GJ, Lagendijk AK, Astin JW, Chen H, Francois M, Crosier PS, Taft RJ, Simons C, Smith KA, Hogan BM. mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes Dev 2015; 29:1618-30. [PMID: 26253536 PMCID: PMC4536310 DOI: 10.1101/gad.263210.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Koltowska et al. used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. Vegfc signaling increases mafba expression to control downstream transcription, and this relationship is SoxF transcription factor-dependent. The lymphatic vasculature plays roles in tissue fluid balance, immune cell trafficking, fatty acid absorption, cancer metastasis, and cardiovascular disease. Lymphatic vessels form by lymphangiogenesis, the sprouting of new lymphatics from pre-existing vessels, in both development and disease contexts. The apical signaling pathway in lymphangiogenesis is the VEGFC/VEGFR3 pathway, yet how signaling controls cellular transcriptional output remains unknown. We used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. We found that mafba is required for the migration of lymphatic precursors after their initial sprouting from the posterior cardinal vein. mafba expression is enriched in sprouts emerging from veins, and we show that mafba functions cell-autonomously during lymphatic vessel development. Mechanistically, Vegfc signaling increases mafba expression to control downstream transcription, and this regulatory relationship is dependent on the activity of SoxF transcription factors, which are essential for mafba expression in venous endothelium. Here we identify an indispensable Vegfc–SoxF–Mafba pathway in lymphatic development.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Gregory J Baillie
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Anne K Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Huijun Chen
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mathias Francois
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Ryan J Taft
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
55
|
Abstract
Although it is widely accepted that most cancers exhibit some degree of intratumour heterogeneity, we are far from understanding the dynamics that operate among subpopulations within tumours. There is growing evidence that cancer cells behave as communities, and increasing attention is now being directed towards the cooperative behaviour of subclones that can influence disease progression. As expected, these interactions can add a greater layer of complexity to therapeutic interventions in heterogeneous tumours, often leading to a poor prognosis. In this Review, we highlight studies that demonstrate such interactions in cancer and postulate ways to overcome them with better-designed therapeutic strategies.
Collapse
Affiliation(s)
- Doris P Tabassum
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. [2] BBS Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kornelia Polyak
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. [2] BBS Program, Harvard Medical School, Boston, Massachusetts 02115, USA. [3] Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. [4] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
56
|
Sargent C, Bauer J, Khalil M, Filmore P, Bernas M, Witte M, Pearson MP, Erickson RP. A five generation family with a novel mutation in FOXC2 and lymphedema worsening to hydrops in the youngest generation. Am J Med Genet A 2014; 164A:2802-7. [PMID: 25252123 DOI: 10.1002/ajmg.a.36736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/27/2014] [Indexed: 12/29/2022]
Abstract
We describe a five generation family with dominantly inherited lymphedema, but no distichiasis, in which 3/3 affected offspring in the fifth generation have died of fetal hydrops and related birth defects. Mutational analysis disclosed a novel mutation in FOXC2 (R121C) in affected members. We searched for possible genetic influences on the greater severity of lymphedema (hydrops) in the fifth generation. Karyotypes disclosed an extra band in Xp in one affected fetus, but this was also found in the mother. Copy number variation (CNV) studies on four members of the pedigree (mother of the three severely affected fetuses/infants; one severely affected; a full, and a half, unaffected sibs) did not detect the source of the Xp band or a possible influence on the severe phenotype. However, use of SNP arrays did allow identification of the portion of the maternal proximal Xp shared by a hydrops-affected daughter and son which was not shared by an unaffected daughter from the same sibship.
Collapse
Affiliation(s)
- Carole Sargent
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Sox17-mediated maintenance of fetal intra-aortic hematopoietic cell clusters. Mol Cell Biol 2014; 34:1976-90. [PMID: 24662049 DOI: 10.1128/mcb.01485-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During mouse development, definitive hematopoiesis is first detected around embryonic day 10.5 (E10.5) in the aorta-gonad-mesonephros (AGM) region, which exhibits intra-aortic cell clusters. These clusters are known to contain hematopoietic stem cells (HSCs). On the other hand, it is not clear how the cells in such clusters maintain their HSC phenotype and how they are triggered to differentiate. Here we found that an endodermal transcription factor marker, Sox17, and other F-group (SoxF) proteins, Sox7 and Sox18, were expressed in E10.5 intra-aortic cell clusters. Forced expression of any of these SoxF proteins, particularly Sox17, in E10.5 AGM CD45(low) c-Kit(high) cells, which are the major component of intra-aortic clusters, led to consistent formation of cell clusters in vitro during several passages of cocultures with stromal cells. Cluster-forming cells with constitutive Sox17 expression retained long-term bone marrow reconstitution activity in vivo. Notably, shutdown of exogenously introduced Sox17 gene expression resulted in immediate hematopoietic differentiation. These results indicate that SoxF proteins, especially Sox17, contribute to the maintenance of cell clusters containing HSCs in the midgestation AGM region. Furthermore, SoxF proteins play a pivotal role in controlling the HSC fate decision between indefinite self-renewal and differentiation during fetal hematopoiesis.
Collapse
|