53
|
Loke J, Assi SA, Imperato MR, Ptasinska A, Cauchy P, Grabovska Y, Soria NM, Raghavan M, Delwel HR, Cockerill PN, Heidenreich O, Bonifer C. RUNX1-ETO and RUNX1-EVI1 Differentially Reprogram the Chromatin Landscape in t(8;21) and t(3;21) AML. Cell Rep 2017; 19:1654-1668. [PMID: 28538183 PMCID: PMC5457485 DOI: 10.1016/j.celrep.2017.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by mutations in transcriptional regulator genes, but how different mutant regulators shape the chromatin landscape is unclear. Here, we compared the transcriptional networks of two types of AML with chromosomal translocations of the RUNX1 locus that fuse the RUNX1 DNA-binding domain to different regulators, the t(8;21) expressing RUNX1-ETO and the t(3;21) expressing RUNX1-EVI1. Despite containing the same DNA-binding domain, the two fusion proteins display distinct binding patterns, show differences in gene expression and chromatin landscape, and are dependent on different transcription factors. RUNX1-EVI1 directs a stem cell-like transcriptional network reliant on GATA2, whereas that of RUNX1-ETO-expressing cells is more mature and depends on RUNX1. However, both types of AML are dependent on the continuous expression of the fusion proteins. Our data provide a molecular explanation for the differences in clinical prognosis for these types of AML.
Collapse
Affiliation(s)
- Justin Loke
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Salam A Assi
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Maria Rosaria Imperato
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Anetta Ptasinska
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Pierre Cauchy
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Yura Grabovska
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Natalia Martinez Soria
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Manoj Raghavan
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - H Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, the Netherlands
| | - Peter N Cockerill
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK.
| |
Collapse
|
54
|
Glass JL, Hassane D, Wouters BJ, Kunimoto H, Avellino R, Garrett-Bakelman FE, Guryanova OA, Bowman R, Redlich S, Intlekofer AM, Meydan C, Qin T, Fall M, Alonso A, Guzman ML, Valk PJM, Thompson CB, Levine R, Elemento O, Delwel R, Melnick A, Figueroa ME. Epigenetic Identity in AML Depends on Disruption of Nonpromoter Regulatory Elements and Is Affected by Antagonistic Effects of Mutations in Epigenetic Modifiers. Cancer Discov 2017; 7:868-883. [PMID: 28408400 DOI: 10.1158/2159-8290.cd-16-1032] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/20/2016] [Accepted: 04/07/2017] [Indexed: 11/16/2022]
Abstract
We performed cytosine methylation sequencing on genetically diverse patients with acute myeloid leukemia (AML) and found leukemic DNA methylation patterning is primarily driven by nonpromoter regulatory elements and CpG shores. Enhancers displayed stronger differential methylation than promoters, consisting predominantly of hypomethylation. AMLs with dominant hypermethylation featured greater epigenetic disruption of promoters, whereas those with dominant hypomethylation displayed greater disruption of distal and intronic regions. Mutations in IDH and DNMT3A had opposing and mutually exclusive effects on the epigenome. Notably, co-occurrence of both mutations resulted in epigenetic antagonism, with most CpGs affected by either mutation alone no longer affected in double-mutant AMLs. Importantly, this epigenetic antagonism precedes malignant transformation and can be observed in preleukemic LSK cells from Idh2R140Q or Dnmt3aR882H single-mutant and Idh2R140Q/Dnmt3aR882H double-mutant mice. Notably, IDH/DNMT3A double-mutant AMLs manifested upregulation of a RAS signaling signature and displayed unique sensitivity to MEK inhibition ex vivo as compared with AMLs with either single mutation.Significance: AML is biologically heterogeneous with subtypes characterized by specific genetic and epigenetic abnormalities. Comprehensive DNA methylation profiling revealed that differential methylation of nonpromoter regulatory elements is a driver of epigenetic identity, that gene mutations can be context-dependent, and that co-occurrence of mutations in epigenetic modifiers can result in epigenetic antagonism. Cancer Discov; 7(8); 868-83. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 783.
Collapse
Affiliation(s)
- Jacob L Glass
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Hematology/Oncology Division, Weill Medical College of Cornell University, New York, New York
| | - Duane Hassane
- Institute of Computational Biomedicine, Weill Medical College of Cornell University, New York, New York
| | - Bas J Wouters
- Department of Medicine, Hematology/Oncology Division, Weill Medical College of Cornell University, New York, New York.,Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hiroyoshi Kunimoto
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roberto Avellino
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Francine E Garrett-Bakelman
- Department of Medicine, Hematology/Oncology Division, Weill Medical College of Cornell University, New York, New York.,Department of Medicine, University of Virginia, Charlottesville, Virginia.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Olga A Guryanova
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shira Redlich
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew M Intlekofer
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cem Meydan
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Tingting Qin
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mame Fall
- Epigenomics Core Facility, Weill Medical College of Cornell University, New York, New York
| | - Alicia Alonso
- Epigenomics Core Facility, Weill Medical College of Cornell University, New York, New York
| | - Monica L Guzman
- Department of Medicine, Hematology/Oncology Division, Weill Medical College of Cornell University, New York, New York
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Craig B Thompson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ross Levine
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Olivier Elemento
- Institute of Computational Biomedicine, Weill Medical College of Cornell University, New York, New York
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Ari Melnick
- Department of Medicine, Hematology/Oncology Division, Weill Medical College of Cornell University, New York, New York.
| | - Maria E Figueroa
- Department of Human Genetics and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
55
|
Expression and regulation of C/EBPα in normal myelopoiesis and in malignant transformation. Blood 2017; 129:2083-2091. [PMID: 28179278 DOI: 10.1182/blood-2016-09-687822] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022] Open
Abstract
One of the most studied transcription factors in hematopoiesis is the leucine zipper CCAAT-enhancer binding protein α (C/EBPα), which is mainly involved in cell fate decisions for myeloid differentiation. Its involvement in acute myeloid leukemia (AML) is diverse, with patients frequently exhibiting mutations, deregulation of gene expression, or alterations in the function of C/EBPα. In this review, we emphasize the importance of C/EBPα for neutrophil maturation, its role in myeloid priming of hematopoietic stem and progenitor cells, and its indispensable requirement for AML development. We discuss that mutations in the open reading frame of CEBPA lead to an altered C/EBPα function, affecting the expression of downstream genes and consequently deregulating myelopoiesis. The emerging transcriptional mechanisms of CEBPA are discussed based on recent studies. Novel insights on how these mechanisms may be deregulated by oncoproteins or mutations/variants in CEBPA enhancers are suggested in principal to reveal novel mechanisms of how CEBPA is deregulated at the transcriptional level.
Collapse
|
56
|
Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms. Proc Natl Acad Sci U S A 2016; 114:E327-E336. [PMID: 28031487 DOI: 10.1073/pnas.1619052114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genetic variants affecting hematopoiesis can influence commonly measured blood cell traits. To identify factors that affect hematopoiesis, we performed association studies for blood cell traits in the population-based Estonian Biobank using high-coverage whole-genome sequencing (WGS) in 2,284 samples and SNP genotyping in an additional 14,904 samples. Using up to 7,134 samples with available phenotype data, our analyses identified 17 associations across 14 blood cell traits. Integration of WGS-based fine-mapping and complementary epigenomic datasets provided evidence for causal mechanisms at several loci, including at a previously undiscovered basophil count-associated locus near the master hematopoietic transcription factor CEBPA The fine-mapped variant at this basophil count association near CEBPA overlapped an enhancer active in common myeloid progenitors and influenced its activity. In situ perturbation of this enhancer by CRISPR/Cas9 mutagenesis in hematopoietic stem and progenitor cells demonstrated that it is necessary for and specifically regulates CEBPA expression during basophil differentiation. We additionally identified basophil count-associated variation at another more pleiotropic myeloid enhancer near GATA2, highlighting regulatory mechanisms for ordered expression of master hematopoietic regulators during lineage specification. Our study illustrates how population-based genetic studies can provide key insights into poorly understood cell differentiation processes of considerable physiologic relevance.
Collapse
|
58
|
Hu X. CRISPR/Cas9 system and its applications in human hematopoietic cells. Blood Cells Mol Dis 2016; 62:6-12. [PMID: 27736664 DOI: 10.1016/j.bcmd.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
Since 2012, the CRISPR-Cas9 system has been quickly and successfully tested in a broad range of organisms and cells including hematopoietic cells. The application of CRISPR-Cas9 in human hematopoietic cells mainly involves the genes responsible for HIV infection, β-thalassemia and sickle cell disease (SCD). The successful disruption of CCR5 and CXCR4 genes in T cells by CRISPR-Cas9 promotes the prospect of the technology in the functional cure of HIV. More recently, eliminating CCR5 and CXCR4 in induced pluripotent stem cells (iPSCs) derived from patients and targeting the HIV genome have been successfully carried out in several laboratories. The outcome from these approaches bring us closer to the goal of eradicating HIV infection. For hemoglobinopathies the ability to produce iPSC-derived from patients with the correction of hemoglobin (HBB) mutations by CRISPR-Cas9 has been tested in a number of laboratories. These corrected iPSCs also show the potential to differentiate into mature erythrocytes expressing high-level and normal HBB. In light of the initial success of CRESPR-Cas9 in target mutated gene(s) in the iPSCs, a combination of genomic editing and autogenetic stem cell transplantation would be the best strategy for root treatment of the diseases, which could replace traditional allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Xiaotang Hu
- Department of Biology, College of Arts & Sciences, Barry University, 11300 Northeast Second Avenue, Miami Shores, FL 33161, United States.
| |
Collapse
|
59
|
Miano JM, Zhu QM, Lowenstein CJ. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research. Arterioscler Thromb Vasc Biol 2016; 36:1058-75. [PMID: 27102963 PMCID: PMC4882230 DOI: 10.1161/atvbaha.116.304790] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 12/26/2022]
Abstract
Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of laboratories could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any laboratory can quickly assemble reagents for developing new mouse models for cardiovascular research. Here, we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for 2-component and 3-component CRISPR editing are summarized with many applications in mice including frameshift mutations, deletion of enhancers and noncoding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions.
Collapse
Affiliation(s)
- Joseph M Miano
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.).
| | - Qiuyu Martin Zhu
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.)
| | - Charles J Lowenstein
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.)
| |
Collapse
|