51
|
De Smedt E, Maes K, Verhulst S, Lui H, Kassambara A, Maes A, Robert N, Heirman C, Cakana A, Hose D, Breckpot K, van Grunsven LA, De Veirman K, Menu E, Vanderkerken K, Moreaux J, De Bruyne E. Loss of RASSF4 Expression in Multiple Myeloma Promotes RAS-Driven Malignant Progression. Cancer Res 2017; 78:1155-1168. [DOI: 10.1158/0008-5472.can-17-1544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
|
52
|
Bustoros M, Mouhieddine TH, Detappe A, Ghobrial IM. Established and Novel Prognostic Biomarkers in Multiple Myeloma. Am Soc Clin Oncol Educ Book 2017; 37:548-560. [PMID: 28561668 DOI: 10.1200/edbk_175175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by notable interpatient heterogeneity. There have been important advances in therapy and overall survival, but some patients with high-risk features still have poor survival rates. Therefore, accurate identification of this subset of patients has been integral to improvement of patient outcome. During the last few years, cytogenetics, gene expression profiling, MRI and PET/CT, as well as serum free light chain assays have been used as accurate biomarkers to better characterize the diverse course and outcome of the disease. With the recent advances of massive parallel sequencing techniques, the development of new models that better stratify high-risk groups are beginning to be developed. The use of multiparameter flow cytometry and next-generation sequencing have paved the way for assessment of minimal residual disease and better prognostication of post-therapeutic outcomes. Circulating tumor cells and circulating tumor DNA are promising potential biomarkers that demonstrate the spatial and temporal heterogeneity of MM. Finally, more prognostic markers are being developed that are specific to immunotherapeutic agents. In this review, we discuss these traditional and novel biomarkers that have been developed for MM and also those that can predict disease progression from precursor stages. Together, these biomarkers will help improve our understanding of the intrapatient and interpatient variabilities and help develop precision medicine for patients with high-risk MM.
Collapse
Affiliation(s)
- Mark Bustoros
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Tarek H Mouhieddine
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Alexandre Detappe
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Irene M Ghobrial
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
53
|
Wu P, Li T, Li R, Jia L, Zhu P, Liu Y, Chen Q, Tang D, Yu Y, Li C. 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat Commun 2017; 8:1937. [PMID: 29203764 PMCID: PMC5715138 DOI: 10.1038/s41467-017-01793-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 10/17/2017] [Indexed: 01/06/2023] Open
Abstract
The Hi-C method is widely used to study the functional roles of the three-dimensional (3D) architecture of genomes. Here, we integrate Hi-C, whole-genome sequencing (WGS) and RNA-seq to study the 3D genome architecture of multiple myeloma (MM) and how it associates with genomic variation and gene expression. Our results show that Hi-C interaction matrices are biased by copy number variations (CNVs) and can be used to detect CNVs. Also, combining Hi-C and WGS data can improve the detection of translocations. We find that CNV breakpoints significantly overlap with topologically associating domain (TAD) boundaries. Compared to normal B cells, the numbers of TADs increases by 25% in MM, the average size of TADs is smaller, and about 20% of genomic regions switch their chromatin A/B compartment types. In summary, we report a 3D genome interaction map of aneuploid MM cells and reveal the relationship among CNVs, translocations, 3D genome reorganization, and gene expression regulation. Chromosome conformation capture techniques enable the study of genome organization in cancer cells. Here, the authors use Hi-C, WGS, and RNA-seq to study the 3D genome of multiple myeloma and find that genome disorganization is associated with copy number variations and changes in gene expression.
Collapse
Affiliation(s)
- Pengze Wu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Tingting Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ruifeng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lumeng Jia
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ping Zhu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yifang Liu
- PKU-Tsinghua-NIBS Graduate Program, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Daiwei Tang
- PKU-Tsinghua-NIBS Graduate Program, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuezhou Yu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China. .,Center for Statistical Science, Peking University, Beijing, 100871, China.
| |
Collapse
|
54
|
Nwabo Kamdje AH, Takam Kamga P, Tagne Simo R, Vecchio L, Seke Etet PF, Muller JM, Bassi G, Lukong E, Kumar Goel R, Mbo Amvene J, Krampera M. Developmental pathways associated with cancer metastasis: Notch, Wnt, and Hedgehog. Cancer Biol Med 2017; 14:109-120. [PMID: 28607802 PMCID: PMC5444923 DOI: 10.20892/j.issn.2095-3941.2016.0032] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Master developmental pathways, such as Notch, Wnt, and Hedgehog, are signaling systems that control proliferation, cell death, motility, migration, and stemness. These systems are not only commonly activated in many solid tumors, where they drive or contribute to cancer initiation, but also in primary and metastatic tumor development. The reactivation of developmental pathways in cancer stroma favors the development of cancer stem cells and allows their maintenance, indicating these signaling pathways as particularly attractive targets for efficient anticancer therapies, especially in advanced primary tumors and metastatic cancers. Metastasis is the worst feature of cancer development. This feature results from a cascade of events emerging from the hijacking of epithelial-mesenchymal transition, angiogenesis, migration, and invasion by transforming cells and is associated with poor survival, drug resistance, and tumor relapse. In the present review, we summarize and discuss experimental data suggesting pivotal roles for developmental pathways in cancer development and metastasis, considering the therapeutic potential. Emerging targeted antimetastatic therapies based on Notch, Wnt, and Hedgehog pathways are also discussed.
Collapse
Affiliation(s)
| | - Paul Takam Kamga
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | | | - Jean Marc Muller
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Giulio Bassi
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Erique Lukong
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Raghuveera Kumar Goel
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Jeremie Mbo Amvene
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Mauro Krampera
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| |
Collapse
|