51
|
Lip GY, Banerjee A, Boriani G, Chiang CE, Fargo R, Freedman B, Lane DA, Ruff CT, Turakhia M, Werring D, Patel S, Moores L. Antithrombotic Therapy for Atrial Fibrillation. Chest 2018; 154:1121-1201. [DOI: 10.1016/j.chest.2018.07.040] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 02/08/2023] Open
|
52
|
Affiliation(s)
- Andrea Cervi
- Department of Medicine Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Mark Crowther
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
53
|
Rukoyatkina N, Shpakova V, Panteleev M, Kharazova A, Gambaryan S, Geiger J. Multifaceted effects of arachidonic acid and interaction with cyclic nucleotides in human platelets. Thromb Res 2018; 171:22-30. [PMID: 30240944 DOI: 10.1016/j.thromres.2018.09.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Arachidonic acid induced aggregation is a generally accepted test for aspirin resistance. However, doubts have been raised that arachidonic acid stimulated aggregation can be regarded as reliable testing for aspirin resistance. Arachidonic acid, in addition to platelet activation, can induce phosphatidylserine translocation on the outer surface of platelet membrane which could be mediated by apoptosis pathways or transformation of platelets to the procoagulant state. MATERIALS AND METHODS We explored effects of arachidonic acid over a vast range of concentrations and a wide range of read-outs for human platelet activation, procoagulant activity, and platelet viability. Additionally we tested whether cAMP- or cGMP-dependent protein kinase activation can inhibit procoagulant activity or platelet viability. RESULTS Arachidonic acid-induced washed platelet activation was detected at low micromolar concentrations during the first 2 min of stimulation. After longer incubation and/or at higher concentrations arachidonic acid triggered platelet procoagulant activity and reduced platelet viability. At the same time, arachidonic acid stimulated adenylate cyclase mediated protein phosphorylation which correlated with reduced platelet activation. Moreover, additional stimulation of cAMP- or cGMP-dependent protein kinase inhibited only platelet activation, but did not prevent pro-coagulant activity and platelet death. CONCLUSIONS While arachidonic acid induces platelet activation at low concentrations and during short incubation time, higher concentrations and lasting incubation evokes adenylate cyclase activation and subsequent protein phosphorylation corresponding to reduced platelet activation, but also enhanced pro-coagulant activity and reduced viability. Our observations provide further proof for the complex fine tuning of platelet responses in a time and agonist concentration dependent manner.
Collapse
Affiliation(s)
- Natalia Rukoyatkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences St. Petersburg, Russia
| | - Valentina Shpakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences St. Petersburg, Russia
| | - Michael Panteleev
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra Kharazova
- Department of Cytology and Histology, St. Petersburg State University, St. Petersburg, Russia
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences St. Petersburg, Russia; Department of Cytology and Histology, St. Petersburg State University, St. Petersburg, Russia
| | - Joerg Geiger
- Interdisciplinary Bank of Biomaterials and Data, Wuerzburg, Germany.
| |
Collapse
|
54
|
Al-Horani RA, Afosah DK. Recent advances in the discovery and development of factor XI/XIa inhibitors. Med Res Rev 2018; 38:1974-2023. [PMID: 29727017 PMCID: PMC6173998 DOI: 10.1002/med.21503] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Factor XIa (FXIa) is a serine protease homodimer that belongs to the intrinsic coagulation pathway. FXIa primarily catalyzes factor IX activation to factor IXa, which subsequently activates factor X to factor Xa in the common coagulation pathway. Growing evidence suggests that FXIa plays an important role in thrombosis with a relatively limited contribution to hemostasis. Therefore, inhibitors targeting factor XI (FXI)/FXIa system have emerged as a paradigm-shifting strategy so as to develop a new generation of anticoagulants to effectively prevent and/or treat thromboembolic diseases without the life-threatening risk of internal bleeding. Several inhibitors of FXI/FXIa proteins have been discovered or designed over the last decade including polypeptides, active site peptidomimetic inhibitors, allosteric inhibitors, antibodies, and aptamers. Antisense oligonucleotides (ASOs), which ultimately reduce the hepatic biosynthesis of FXI, have also been introduced. A phase II study, which included patients undergoing elective primary unilateral total knee arthroplasty, revealed that a specific FXI ASO effectively protects patients against venous thrombosis with a relatively limited risk of bleeding. Initial findings have also demonstrated the potential of FXI/FXIa inhibitors in sepsis, listeriosis, and arterial hypertension. This review highlights various chemical, biochemical, and pharmacological aspects of FXI/FXIa inhibitors with the goal of advancing their development toward clinical use.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Daniel K. Afosah
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| |
Collapse
|
55
|
Purification and Characterization of a Novel Antiplatelet Peptide from Deinagkistrodon acutus Venom. Toxins (Basel) 2018; 10:toxins10080332. [PMID: 30115892 PMCID: PMC6115707 DOI: 10.3390/toxins10080332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 01/06/2023] Open
Abstract
Animal venoms are considered as one of the most important sources for drug development. Deinagkistrodon acutus is famous for its toxicity to the human hematological system and envenomed patients develop a coagulation disorder with the symptoms of hemorrhage and microthrombi formation. The purpose of this study was to separate antiplatelet peptides from D. acutus venom using a combination of an ultrafiltration technique and reversed-phase high performance liquid chromatography (HPLC), which was guided by monitoring antiplatelet aggregation bioactivity. A novel octa-peptide named DAA-8 was found. This peptide inhibited protease-activated receptor1 (PAR-1) agonist (SFLLRN-NH2) induced platelet aggregation and it also inhibited platelet aggregation induced by thrombin, ADP, and collagen. Furthermore, DAA-8 showed significant antithrombotic activity and resulted in a slightly increased bleeding risk in vivo. This is the first report of a peptide derived from snake venom, which inhibited PAR-1 agonist-induced platelet aggregation. This peptide may provide a template to design a new PAR-1 inhibitor.
Collapse
|
56
|
Antoniak S. The coagulation system in host defense. Res Pract Thromb Haemost 2018; 2:549-557. [PMID: 30046760 PMCID: PMC6046589 DOI: 10.1002/rth2.12109] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
The blood coagulation system and immune system of higher organisms are thought to have a common ancestral origin. During infections, the blood coagulation system is activated and components of the hemostatic system are directly involved in the immune response and immune system modulations. The current view is that the activation of coagulation is beneficial for infections with bacteria and viruses. It limits pathogen dissemination and supports pathogen killing and tissue repair. On the other hand, over-activation can lead to thrombosis with subsequent depletion of hemostatic factors and secondary bleeding. This review will summarize the current knowledge on blood coagulation and pathogen infection with focus on most recent studies of the role of the different parts of the blood coagulation system in selected bacterial and viral infections.
Collapse
Affiliation(s)
- Silvio Antoniak
- Program in Thrombosis and HemostasisDepartment of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
57
|
Morishima Y, Honda Y. A direct oral factor Xa inhibitor edoxaban ameliorates neointimal hyperplasia following vascular injury and thrombosis in apolipoprotein E-deficient mice. J Thromb Thrombolysis 2018; 46:95-101. [PMID: 29704172 DOI: 10.1007/s11239-018-1673-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vascular injury activates the coagulation cascade. Some studies report that coagulation factor Xa and thrombin are implicated in proliferation of vascular smooth muscle cells and neointimal hyperplasia after vascular injury. The aim of this study was to determine the effect of an oral direct factor Xa inhibitor, edoxaban, on neointimal hyperplasia following the carotid artery injury in apolipoprotein E (ApoE)-deficient mice. Vascular injury was induced by the application of 10% ferric chloride to the carotid artery for 3 min in ApoE-deficient mice. After vascular injury, all animals were fed with high-cholesterol chow for 6 weeks. Edoxaban at 15 mg/kg was orally administered to the mice 1 h before (n = 10) or 1 h after (n = 9) ferric chloride injury, and thereafter 10 mg/kg edoxaban was orally administered b.i.d. for 6 weeks. Thrombus formation and neointimal hyperplasia were evaluated. Treatment with 15 mg/kg edoxaban before vascular injury almost completely inhibited thrombus formation, and following chronic administration of edoxaban significantly suppressed neointimal hyperplasia. In the mice treated with edoxaban after vascular injury, there was wide interindividual variability. In some mice (four out of nine) the neointimal hyperplasia was inhibited like in edoxaban-pretreated mice, but there was no statistical difference compared with control. This study demonstrated that inhibition of the coagulation and thrombosis by edoxaban ameliorated neointimal hyperplasia caused by vascular injury and high-cholesterol diets in ApoE-deficient mice. This suggests that factor Xa has a crucial role in the formation of neointima following vascular injury.The abstract should be followed by 3-4 bullet points that highlight major findings. The final bullet point should emphasize future directions for research.
Collapse
Affiliation(s)
- Yoshiyuki Morishima
- Medical Science Department, Daiichi Sankyo Co., Ltd., 3-5-1 Nihonbashi Honcho, Chuo-ku, Tokyo, 103-8426, Japan.
| | - Yuko Honda
- Rare Disease and LCM Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
58
|
Pathak M, Kaira BG, Slater A, Emsley J. Cell Receptor and Cofactor Interactions of the Contact Activation System and Factor XI. Front Med (Lausanne) 2018; 5:66. [PMID: 29619369 PMCID: PMC5871670 DOI: 10.3389/fmed.2018.00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/26/2018] [Indexed: 01/02/2023] Open
Abstract
The contact activation system (CAS) or contact pathway is central to the crosstalk between coagulation and inflammation and contributes to diverse disorders affecting the cardiovascular system. CAS initiation contributes to thrombosis but is not required for hemostasis and can trigger plasma coagulation via the intrinsic pathway [through factor XI (FXI)] and inflammation via bradykinin release. Activation of factor XII (FXII) is the principal starting point for the cascade of proteolytic cleavages involving FXI, prekallikrein (PK), and cofactor high molecular weight kininogen (HK) but the precise location and cell receptor interactions controlling these reactions remains unclear. FXII, PK, FXI, and HK utilize key protein domains to mediate binding interactions to cognate cell receptors and diverse ligands, which regulates protease activation. The assembly of contact factors has been demonstrated on the cell membranes of a variety of cell types and microorganisms. The cooperation between the contact factors and endothelial cells, platelets, and leukocytes contributes to pathways driving thrombosis yet the basis of these interactions and the relationship with activation of the contact factors remains undefined. This review focuses on cell receptor interactions of contact proteins and FXI to develop a cell-based model for the regulation of contact activation.
Collapse
Affiliation(s)
- Monika Pathak
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Bubacarr Gibril Kaira
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Alexandre Slater
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jonas Emsley
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
59
|
Coagulation factor XII in thrombosis and inflammation. Blood 2018; 131:1903-1909. [PMID: 29483100 DOI: 10.1182/blood-2017-04-569111] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Combinations of proinflammatory and procoagulant reactions are the unifying principle for a variety of disorders affecting the cardiovascular system. The factor XII-driven contact system starts coagulation and inflammatory mechanisms via the intrinsic pathway of coagulation and the bradykinin-producing kallikrein-kinin system, respectively. The biochemistry of the contact system in vitro is well understood; however, its in vivo functions are just beginning to emerge. Challenging the concept of the coagulation balance, targeting factor XII or its activator polyphosphate, provides protection from thromboembolic diseases without interfering with hemostasis. This suggests that the polyphosphate/factor XII axis contributes to thrombus formation while being dispensable for hemostatic processes. In contrast to deficiency in factor XII providing safe thromboprotection, excessive FXII activity is associated with the life-threatening inflammatory disorder hereditary angioedema. The current review summarizes recent findings of the polyphosphate/factor XII-driven contact system at the intersection of procoagulant and proinflammatory disease states. Elucidating the contact system offers the exciting opportunity to develop strategies for safe interference with both thrombotic and inflammatory disorders.
Collapse
|
60
|
Pechlivani N, Ajjan RA. Thrombosis and Vascular Inflammation in Diabetes: Mechanisms and Potential Therapeutic Targets. Front Cardiovasc Med 2018; 5:1. [PMID: 29404341 PMCID: PMC5780411 DOI: 10.3389/fcvm.2018.00001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease remains the main cause of morbidity and mortality in patients with diabetes. The risk of vascular ischemia is increased in this population and outcome following an event is inferior compared to individuals with normal glucose metabolism. The reasons for the adverse vascular profile in diabetes are related to a combination of more extensive atherosclerotic disease coupled with an enhanced thrombotic environment. Long-term measures to halt the accelerated atherosclerotic process in diabetes have only partially addressed vascular pathology, while long-term antithrombotic management remains largely similar to individuals without diabetes. We address in this review the pathophysiological mechanisms responsible for atherosclerosis with special emphasis on diabetes-related pathways. We also cover the enhanced thrombotic milieu, characterized by increased platelet activation, raised activity of procoagulant proteins together with compromised function of the fibrinolytic system. Potential new therapeutic targets to reduce the risk of atherothrombosis in diabetes are explored, including alternative use of existing therapies. Special emphasis is placed on diabetes-specific therapeutic targets that have the potential to reduce vascular risk while keeping an acceptable clinical side effect profile. It is now generally acknowledged that diabetes is not a single clinical entity but a continuum of various stages of the condition with each having a different vascular risk. Therefore, we propose that future therapies aiming to reduce vascular risk in diabetes require a stratified approach with each group having a "stage-specific" vascular management strategy. This "individualized care" in diabetes may prove to be essential to improve vascular outcome in this high risk population.
Collapse
Affiliation(s)
- Nikoletta Pechlivani
- School of Medicine, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Ramzi A Ajjan
- School of Medicine, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
61
|
|
62
|
Ely LK, Lolicato M, David T, Lowe K, Kim YC, Samuel D, Bessette P, Garcia JL, Mikita T, Minor DL, Coughlin SR. Structural Basis for Activity and Specificity of an Anticoagulant Anti-FXIa Monoclonal Antibody and a Reversal Agent. Structure 2018; 26:187-198.e4. [PMID: 29336885 DOI: 10.1016/j.str.2017.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/23/2017] [Accepted: 12/13/2017] [Indexed: 11/18/2022]
Abstract
Coagulation factor XIa is a candidate target for anticoagulants that better separate antithrombotic efficacy from bleeding risk. We report a co-crystal structure of the FXIa protease domain with DEF, a human monoclonal antibody that blocks FXIa function and prevents thrombosis in animal models without detectable increased bleeding. The light chain of DEF occludes the FXIa S1 subsite and active site, while the heavy chain provides electrostatic interactions with the surface of FXIa. The structure accounts for the specificity of DEF for FXIa over its zymogen and related proteases, its active-site-dependent binding, and its ability to inhibit substrate cleavage. The inactive FXIa protease domain used to obtain the DEF-FXIa crystal structure reversed anticoagulant activity of DEF in plasma and in vivo and the activity of a small-molecule FXIa active-site inhibitor in vitro. DEF and this reversal agent for FXIa active-site inhibitors may help support clinical development of FXIa-targeting anticoagulants.
Collapse
Affiliation(s)
- Lauren K Ely
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tovo David
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kate Lowe
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yun Cheol Kim
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Dharmaraj Samuel
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Paul Bessette
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Jorge L Garcia
- PMI PreClinical, 1031 Bing Street, San Carlos, CA 94070, USA
| | - Thomas Mikita
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA.
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
63
|
Lip GY, Freedman B, De Caterina R, Potpara TS. Stroke prevention in atrial fibrillation: Past, present and future. Thromb Haemost 2017; 117:1230-1239. [DOI: 10.1160/th16-11-0876] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/09/2017] [Indexed: 01/05/2023]
Abstract
SummaryConcepts and our approaches to stroke prevention in atrial fibrillation (AF) have changed markedly over the last decade. There has been an evolution over the approach to stroke and bleeding risk assessment, as well as new treatment options. An increasing awareness of AF has led to calls to improve the detection of and population screening for AF. Stroke and bleeding risk assessment continues to evolve, and the ongoing debate on balance between simplicity and practicality, against precision medicine will continue. In this review article, we provide an overview of past, present and the (likely) future concepts and approaches to stroke prevention in AF. We propose three simple steps (the Birmingham ‘3-step’) that offers a practical management pathway to help streamline and simplify decision-making for stroke prevention in patients with AF.Note: The review process for this paper was fully handled by Christian Weber, Editor in Chief.
Collapse
|
64
|
Riber CF, Andersen AHF, Rolskov LA, Zuwala K, Gajda P, Løvschall KB, Dagnæs-Hansen F, Banda DH, Pietschmann T, Tolstrup M, Zelikin AN. Synthetic Polymer with a Structure-Driven Hepatic Deposition and Curative Pharmacological Activity in Hepatic Cells. ACS Macro Lett 2017; 6:935-940. [PMID: 35650894 DOI: 10.1021/acsmacrolett.7b00471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthetic polymers make strong contributions as tools for delivery of biological drugs and chemotherapeutics. The most praised characteristic of polymers in these applications is complete lack of pharmacological function such as to minimize the side effects within the human body. In contrast, synthetic polymers with curative pharmacological activity are truly rare. Moreover, such activity is typically nonspecific rather than structure-defined. In this work, we present the discovery of poly(ethylacrylic acid) (PEAA) as a polymer with a suit of structure-defined, unexpected, pharmacological, and pharmacokinetic properties not observed in close structural analogues. Specifically, PEAA reveals capacity to bind to albumin with ensuing natural hepatic deposition in vivo and exhibits concurrent inhibitory activity against the hepatitis C virus and inflammation in hepatic cells. Our findings provide a view on synthetic polymers as curative, functional agents and present PEAA as a unique biomedical tool with applications related to health of the human liver.
Collapse
Affiliation(s)
- Camilla Frich Riber
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Anna Halling Folkmar Andersen
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Lærke Anegaard Rolskov
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Kaja Zuwala
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Paulina Gajda
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Kaja Borup Løvschall
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | | | - Dominic H. Banda
- Institute
of Experimental Virology, TWINCORE Centre for Experimental and Clinical
Infection Research, Medical School Hannover/Helmholtz Centre for Infection Research, Hannover, Germany
| | - Thomas Pietschmann
- Institute
of Experimental Virology, TWINCORE Centre for Experimental and Clinical
Infection Research, Medical School Hannover/Helmholtz Centre for Infection Research, Hannover, Germany
| | - Martin Tolstrup
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Alexander N. Zelikin
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
65
|
Bouckaert C, Zhu S, Govers-Riemslag JW, Depoorter M, Diamond SL, Pochet L. Discovery and assessment of water soluble coumarins as inhibitors of the coagulation contact pathway. Thromb Res 2017; 157:126-133. [DOI: 10.1016/j.thromres.2017.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/26/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022]
|