51
|
Maselli DJ, Bhatt SP, Anzueto A, Bowler RP, DeMeo DL, Diaz AA, Dransfield MT, Fawzy A, Foreman MG, Hanania NA, Hersh CP, Kim V, Kinney GL, Putcha N, Wan ES, Wells JM, Westney GE, Young KA, Silverman EK, Han MK, Make BJ. Clinical Epidemiology of COPD: Insights From 10 Years of the COPDGene Study. Chest 2019; 156:228-238. [PMID: 31154041 PMCID: PMC7198872 DOI: 10.1016/j.chest.2019.04.135] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/08/2019] [Accepted: 04/28/2019] [Indexed: 12/16/2022] Open
Abstract
The Genetic Epidemiology of COPD (COPDGene) study is a noninterventional, multicenter, longitudinal analysis of > 10,000 subjects, including smokers with a ≥ 10 pack-year history with and without COPD and healthy never smokers. The goal was to characterize disease-related phenotypes and explore associations with susceptibility genes. The subjects were extensively phenotyped with the use of comprehensive symptom and comorbidity questionnaires, spirometry, CT scans of the chest, and genetic and biomarker profiling. The objective of this review was to summarize the major advances in the clinical epidemiology of COPD from the first 10 years of the COPDGene study. We highlight the influence of age, sex, and race on the natural history of COPD, and the impact of comorbid conditions, chronic bronchitis, exacerbations, and asthma/COPD overlap.
Collapse
Affiliation(s)
- Diego J Maselli
- Division of Pulmonary Diseases and Critical Care, UT Health San Antonio, and South Texas Veterans Health System, San Antonio, TX
| | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Antonio Anzueto
- Division of Pulmonary Diseases and Critical Care, UT Health San Antonio, and South Texas Veterans Health System, San Antonio, TX
| | - Russell P Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alejandro A Diaz
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mark T Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ashraf Fawzy
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Marilyn G Foreman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Morehouse School of Medicine, Atlanta, GA
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Victor Kim
- Department of Thoracic Medicine and Surgery, Temple University School of Medicine, Philadelphia, PA
| | - Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emily S Wan
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; VA Boston Healthcare System, Jamaica Plain, MA
| | - J Michael Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Gloria E Westney
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Morehouse School of Medicine, Atlanta, GA
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI
| | - Barry J Make
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO.
| |
Collapse
|
52
|
de Blasio F, Scalfi L, Di Gregorio A, Alicante P, Bianco A, Tantucci C, Bellofiore B, de Blasio F. Raw Bioelectrical Impedance Analysis Variables Are Independent Predictors of Early All-Cause Mortality in Patients With COPD. Chest 2019; 155:1148-1157. [DOI: 10.1016/j.chest.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
|
53
|
Sanders KJC, Degens JHRJ, Dingemans AMC, Schols AMWJ. Cross-sectional and longitudinal assessment of muscle from regular chest computed tomography scans: L1 and pectoralis muscle compared to L3 as reference in non-small cell lung cancer. Int J Chron Obstruct Pulmon Dis 2019; 14:781-789. [PMID: 31040657 PMCID: PMC6452800 DOI: 10.2147/copd.s194003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Computed tomography (CT) is increasingly used in clinical research for single-slice assessment of muscle mass to correlate with clinical outcome and evaluate treatment efficacy. The third lumbar level (L3) is considered as reference for muscle, but chest scans generally do not reach beyond the first lumbar level (L1). This study investigates if pectoralis muscle and L1 are appropriate alternatives for L3. Methods CT scans of 115 stage IV non-small cell lung cancer patients were analyzed before and during tumor therapy. Skeletal muscle assessed at pectoralis and L1 muscle was compared to L3 at baseline. Furthermore, the prognostic significance of changes in muscle mass determined at different locations was investigated. Results Pearson’s correlation coefficient between skeletal muscle at L3 and L1 was stronger (r=0.90, P<0.001) than between L3 and pectoralis muscle (r=0.71, P<0.001). Cox regression analysis revealed that L3 (HR 0.943, 95% CI: 0.92–0.97, P<0.001) and L1 muscle loss (HR 0.954, 95% CI: 0.93–0.98, P<0.001) predicted overall survival, whereas pectoralis muscle loss did not. Conclusion L1 is a better alternative than pectoralis muscle to substitute L3 for analysis of muscle mass from regular chest CT scans.
Collapse
Affiliation(s)
- Karin J C Sanders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands,
| | - Juliette H R J Degens
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands,
| | - Anne-Marie C Dingemans
- Department of Respiratory Medicine, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands,
| |
Collapse
|
54
|
Billatos E, Duan F, Moses E, Marques H, Mahon I, Dymond L, Apgar C, Aberle D, Washko G, Spira A. Detection of early lung cancer among military personnel (DECAMP) consortium: study protocols. BMC Pulm Med 2019; 19:59. [PMID: 30845938 PMCID: PMC6407252 DOI: 10.1186/s12890-019-0825-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death due in large part to our inability to diagnose it at an early and potentially curable stage. Screening for lung cancer via low dose computed tomographic (LDCT) imaging has been demonstrated to improve mortality but also results in a high rate of false positive tests. The identification and application of non-invasive molecular biomarkers that improve the performance of CT imaging for the detection of lung cancer in high risk individuals would aid in clinical decision-making, eliminate the need for unnecessary LDCT follow-up, and further refine the screening criteria for an already large high-risk population. METHODS The Detection of Early Lung Cancer Among Military Personnel (DECAMP) consortium is conducting two multicenter prospective studies with the goals of developing an integrated panel of both airway and blood-based molecular biomarkers that discriminate benign and malignant indeterminate nodules detected on CT scan as well as predict the future development of lung cancer in high-risk individuals. To achieve these goals, DECAMP is compiling an extensive array of biospecimens including nasal brushings, serum, plasma and intrathoracic airway samples (bronchial brushings and bronchial biopsies) from normal-appearing airway epithelium. DISCUSSION This bank of samples is the foundation for multiple DECAMP efforts focused on the identification of those at greatest risk of developing lung cancer as well as the discrimination of benign and malignant pulmonary nodules. The clinical, imaging and biospecimen repositories will serve as a resource for the biomedical community and their investigation of the molecular basis of chronic respiratory disease. TRIAL REGISTRATION Retrospectively registered as NCT01785342 - DECAMP-1: Diagnosis and Surveillance of Indeterminate Pulmonary Nodules (DECAMP-1). Date of Registration: February 7, 2013. Retrospectively registered as NCT02504697 - DECAMP-2: Screening of Patients With Early Stage Lung Cancer or at High Risk for Developing Lung Cancer (DECAMP-2). Date of Registration: July 22, 2015.
Collapse
Affiliation(s)
- Ehab Billatos
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine, Boston, MA 02118 USA
| | - Fenghai Duan
- Department of Biostatistics, Brown University, Providence, RI 02912 USA
| | - Elizabeth Moses
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118 USA
| | - Helga Marques
- Department of Biostatistics, Brown University, Providence, RI 02912 USA
| | - Irene Mahon
- American College of Radiology Imaging Network, Philadelphia, PA 19103 USA
| | - Lindsey Dymond
- American College of Radiology Imaging Network, Philadelphia, PA 19103 USA
| | - Charles Apgar
- American College of Radiology Imaging Network, Philadelphia, PA 19103 USA
| | - Denise Aberle
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA 90024 USA
| | - George Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s University, Boston, MA 02115 USA
| | - Avrum Spira
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine, Boston, MA 02118 USA
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118 USA
| | - on behalf of the DECAMP investigators
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine, Boston, MA 02118 USA
- Department of Biostatistics, Brown University, Providence, RI 02912 USA
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118 USA
- American College of Radiology Imaging Network, Philadelphia, PA 19103 USA
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA 90024 USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s University, Boston, MA 02115 USA
| |
Collapse
|
55
|
Distinct profile and prognostic impact of body composition changes in idiopathic pulmonary fibrosis and idiopathic pleuroparenchymal fibroelastosis. Sci Rep 2018; 8:14074. [PMID: 30232390 PMCID: PMC6145941 DOI: 10.1038/s41598-018-32478-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Change in body composition with skeletal muscle wasting, a major component of pulmonary cachexia, is associated with mortality in chronic obstructive pulmonary disease and cancer. However, its relevance in interstitial lung diseases (ILDs) remains unclear. We hypothesized changes in body composition would be associated with mortality in ILDs. We measured the cross-sectional-area (ESMCSA) and muscle attenuation (ESMMA) of erector-spinae muscles, as determined by CT-imaging, in patients with idiopathic pulmonary fibrosis (IPF; n = 131) and idiopathic pleuroparenchymal fibroelastosis (iPPFE; n = 43) and controls. Subsequently, implications with prognosis were evaluated. The ESMCSA of ILD patients, but not ESMMA, was significantly smaller than that in controls. Lower ESMCSA with decreased BMI were recorded in iPPFE patients versus IPF patients, whilst IPF patients had decreased ESMCSA without BMI decline. Lower ESMCSA in IPF patients were associated with poorer prognoses. Conversely, decreased ESMMA were associated with worse survival in iPPFE patients. Multivariate analyses showed that ESMCSA in IPF and ESMMA in iPPFE were independent risk factors for mortality. Distinct changes in body composition had prognostic significance among patients with IPF and iPPFE. Lower ESMCSA and ESMMA were independently associated with poor prognosis in IPF and iPPFE, respectively. These results suggest values to measure body composition changes in managing patients with IPF and iPPFE.
Collapse
|
56
|
Diaz AA, Martinez CH, Harmouche R, Young TP, McDonald ML, Ross JC, Han ML, Bowler R, Make B, Regan EA, Silverman EK, Crapo J, Boriek AM, Kinney GL, Hokanson JE, Estepar RSJ, Washko GR. Pectoralis muscle area and mortality in smokers without airflow obstruction. Respir Res 2018; 19:62. [PMID: 29636050 PMCID: PMC5894181 DOI: 10.1186/s12931-018-0771-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Background Low muscle mass is associated with increased mortality in the general population but its prognostic value in at-risk smokers, those without expiratory airflow obstruction, is unknown. We aimed to test the hypothesis that reduced muscle mass is associated with increased mortality in at-risk smokers. Methods Measures of both pectoralis and paravertebral erector spinae muscle cross-sectional area (PMA and PVMA, respectively) as well as emphysema on chest computed tomography (CT) scans were performed in 3705 current and former at-risk smokers (≥10 pack-years) aged 45–80 years enrolled into the COPDGene Study between 2008 and 2013. Vital status was ascertained through death certificate. The association between low muscle mass and mortality was assessed using Cox regression analysis. Results During a median of 6.5 years of follow-up, 212 (5.7%) at-risk smokers died. At-risk smokers in the lowest (vs. highest) sex-specific quartile of PMA but not PVMA had 84% higher risk of death in adjusted models for demographics, smoking, dyspnea, comorbidities, exercise capacity, lung function, emphysema on CT, and coronary artery calcium content (hazard ratio [HR] 1.85 95% Confidence interval [1.14–3.00] P = 0.01). Results were consistent when the PMA index (PMA/height2) was used instead of quartiles. The association between PMA and death was modified by smoking status (P = 0.04). Current smokers had a significantly increased risk of death (lowest vs. highest PMA quartile, HR 2.25 [1.25–4.03] P = 0.007) while former smokers did not. Conclusions Low muscle mass as measured on chest CT scans is associated with increased mortality in current smokers without airflow obstruction. Trial registration NCT00608764 Electronic supplementary material The online version of this article (10.1186/s12931-018-0771-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro A Diaz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Carlos H Martinez
- Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Rola Harmouche
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas P Young
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Merry-Lynn McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James C Ross
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mei Lan Han
- Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Russell Bowler
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Barry Make
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Elizabeth A Regan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Edwin K Silverman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James Crapo
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Aladin M Boriek
- Division of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Gregory L Kinney
- Colorado School of Public Health, University of Colorado-Denver, Aurora, CO, USA
| | - John E Hokanson
- Colorado School of Public Health, University of Colorado-Denver, Aurora, CO, USA
| | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| |
Collapse
|