51
|
Ip JCH, Leung PTY, Ho KKY, Qiu JW, Leung KMY. De novo transcriptome assembly of the marine gastropod Reishia clavigera for supporting toxic mechanism studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:39-48. [PMID: 27450239 DOI: 10.1016/j.aquatox.2016.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
The intertidal whelk Reishia clavigera is commonly used as a biomonitor of chemical contamination in the marine environment along Western Pacific region, and as a model for mechanistic studies of organotin-mediated imposex development. However, limited genomic resources of R. clavigera have restricted its role for the investigation of molecular mechanisms of such endocrine disruptions. This study, therefore, aimed to establish tissue-specific transcriptomes of the digestive gland, gonad, head ganglia, penis and the remaining body part of the male and female R. clavigera. By combining the results, a global transcriptome was obtained. A total of 578,134,720 high-quality filtered reads were obtained using Illumina sequencing. The R. clavigera transcriptome comprised of 38,466 transcripts and 32,798 unigenes with predicted open reading frames. The average length of transcripts was 1,709bp with N50 of 2,236bp. Based on sequence similarity searches against public databases, 28,657 transcripts and 24,403 unigenes had at least one BLAST hit. There were 17,530 transcripts and 14,897 unigenes annotated with at least one Gene Ontology (GO) term. Moreover, 5,776 transcripts and 5,137 unigenes were associated with 333 Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways. The numbers of unigenes were similar among the five target tissues and between sexes, but tissue-specific expression profiles were revealed by multivariate analyses. Based on the functional annotation, putative steroid hormone-associated unigenes were identified. In particular, we highlighted the presence of steroid hormone receptor homologues that could be the targets for mechanistic studies of the organotin-mediated imposex development in marine gastropods. This newly generated transcriptome assembly of R. clavigera provides a valuable molecular resource for ecotoxicological and environmental genomic studies.
Collapse
Affiliation(s)
- Jack C H Ip
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Priscilla T Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kevin K Y Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - J W Qiu
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology, Hong Kong Baptist University, Waterloo Road, Kowloon, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
52
|
Kaur S, Baynes A, Lockyer AE, Routledge EJ, Jones CS, Noble LR, Jobling S. Steroid Androgen Exposure during Development Has No Effect on Reproductive Physiology of Biomphalaria glabrata. PLoS One 2016; 11:e0159852. [PMID: 27448327 PMCID: PMC4957768 DOI: 10.1371/journal.pone.0159852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022] Open
Abstract
Gastropod mollusks have been proposed as alternative models for male reproductive toxicity testing, due to similarities in their reproductive anatomy compared to mammals, together with evidence that endocrine disrupting chemicals can cause effects in some mollusks analogous to those seen in mammals. To test this hypothesis, we used the freshwater pulmonate snail, Biomphalaria glabrata, for which various genetic tools and a draft genome have recently become available, to investigate the effects of two steroid androgens on the development of mollusk secondary sexual organs. Here we present the results of exposures to two potent androgens, the vertebrate steroid; 5α-dihydrotestosterone (DHT) and the pharmaceutical anabolic steroid; 17α-methyltestosterone (MT), under continuous flow-through conditions throughout embryonic development and up to sexual maturity. Secondary sexual gland morphology, histopathology and differential gene expression analysis were used to determine whether steroid androgens stimulated or inhibited organ development. No significant differences between tissues from control and exposed snails were identified, suggesting that these androgens elicited no biologically detectable response normally associated with exposure to androgens in vertebrate model systems. Identifying no effect of androgens in this mollusk is significant, not only in the context of the suitability of mollusks as alternative model organisms for testing vertebrate androgen receptor agonists but also, if applicable to other similar mollusks, in terms of the likely impacts of androgens and anti-androgenic pollutants present in the aquatic environment.
Collapse
Affiliation(s)
- Satwant Kaur
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Alice Baynes
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
- * E-mail:
| | - Anne E. Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland
| | - Edwin J. Routledge
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Catherine S. Jones
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland
| | - Leslie R. Noble
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| |
Collapse
|
53
|
Cruzeiro C, Lopes-Marques M, Ruivo R, Rodrigues-Oliveira N, Santos MM, Rocha MJ, Rocha E, Castro LFC. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:61-69. [PMID: 26921727 DOI: 10.1016/j.aquatox.2016.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/18/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.
Collapse
Affiliation(s)
- Catarina Cruzeiro
- ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Mónica Lopes-Marques
- ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Raquel Ruivo
- CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Nádia Rodrigues-Oliveira
- CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Miguel M Santos
- CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal; FCUP - Faculty of Sciences, Department of Biology, U. Porto, Portugal.
| | - Maria João Rocha
- ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Eduardo Rocha
- ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal; FCUP - Faculty of Sciences, Department of Biology, U. Porto, Portugal.
| |
Collapse
|
54
|
Minakata H, Tsutsui K. Oct-GnRH, the first protostomian gonadotropin-releasing hormone-like peptide and a critical mini-review of the presence of vertebrate sex steroids in molluscs. Gen Comp Endocrinol 2016; 227:109-14. [PMID: 26319132 DOI: 10.1016/j.ygcen.2015.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/07/2015] [Accepted: 07/28/2015] [Indexed: 11/21/2022]
Abstract
In protostome and deuterosome invertebrates, neurosecretory cells play major roles in the endocrine system. The optic glands of cephalopods are indicators of sexual maturation. In mature octopuses, optic glands enlarge and secrete a gonadotropic hormone. A peptide with structural features similar to that of vertebrate gonadotropin-releasing hormone (GnRH) was isolated from the octopus, Octopus vulgaris, and was named oct-GnRH. The discovery of oct-GnRH has triggered structural determinations and predictions of other mollusc GnRH-like peptides in biochemical and in silico studies. Interestingly, cephalopods studied so far are characterized by a single molecular form of oct-GnRH with a C-terminal -Pro-Gly-NH2 sequence, which is critical for gonadotropin-releasing activity in vertebrates. Other molluscan GnRH-like peptides lack the C-terminal -Pro-Gly-NH2 sequence but have -X-NH2 or -Pro-Gly although all protostome GnRH-like peptides have yet to be sequenced. In marine molluscs, relationships between GnRH-like peptides and sex steroids have been studied to verify the hypothesis that molluscs have vertebrate-type sex steroid system. However, it is currently questionable whether such sex steroids are present and whether they play endogenous roles in the reproductive system of molluscs. Because molluscs uptake and store steroids from the environment and fishes release sex steroids into the external environment, it is impossible to rule out the contamination of vertebrate sex steroids in molluscs. The function of key enzymes of steroidogenesis within molluscs remains unclear. Thus, evidence to deny the existence of the vertebrate-type sex steroid system in molluscs has been accumulated. The elucidation of substances, which regulate the maturation and maintenance of gonads and other reproductive functions in molluscs will require rigorous and progressive scientific study.
Collapse
Affiliation(s)
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
55
|
Ouadah-Boussouf N, Babin PJ. Pharmacological evaluation of the mechanisms involved in increased adiposity in zebrafish triggered by the environmental contaminant tributyltin. Toxicol Appl Pharmacol 2016; 294:32-42. [PMID: 26812627 DOI: 10.1016/j.taap.2016.01.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/09/2016] [Accepted: 01/09/2016] [Indexed: 01/06/2023]
Abstract
One proposed contributing factor to the rise in overweight and obesity is exposure to endocrine disrupting chemicals. Tributyltin chloride (TBT), an organotin, induces adipogenesis in cell culture models and may increases adipose mass in vivo in vertebrate model organisms. It has been hypothesized that TBT acts via the peroxisome proliferator activated receptor (PPAR)γ-dependent pathway. However, the mechanisms involved in the effects of TBT exposure on in vivo adipose tissue metabolism remain unexplored. Semitransparent zebrafish larvae, with their well-developed white adipose tissue, offer a unique opportunity for studying the effects of toxicant chemicals and pharmaceuticals on adipocyte biology and whole-organism adiposity in a vertebrate model. Within hours, zebrafish larvae, treated at environmentally-relevant nanomolar concentrations of TBT, exhibited a remarkable increase in adiposity linked to adipocyte hypertrophy. Under the experimental conditions used, we also demonstrated that zebrafish larvae adipose tissue proved to be highly responsive to selected human nuclear receptor agonists and antagonists. Retinoid X receptor (RXR) homodimers and RXR/liver X receptor heterodimers were suggested to be in vivo effectors of the obesogenic effect of TBT on zebrafish white adipose tissue. RXR/PPARγ heterodimers may be recruited to modulate adiposity in zebrafish but were not a necessary requirement for the short term in vivo TBT obesogenic effect. Together, the present results suggest that TBT may induce the promotion of triacylglycerol storage in adipocytes via RXR-dependent pathways without necessary using PPAR isoforms.
Collapse
Affiliation(s)
- Nafia Ouadah-Boussouf
- Maladies Rares: Génétique et Métabolisme (MRGM), Univ. Bordeaux, INSERM, U1211, F-33615 Pessac, France
| | - Patrick J Babin
- Maladies Rares: Génétique et Métabolisme (MRGM), Univ. Bordeaux, INSERM, U1211, F-33615 Pessac, France.
| |
Collapse
|
56
|
Goldstone JV, Sundaramoorthy M, Zhao B, Waterman MR, Stegeman JJ, Lamb DC. Genetic and structural analyses of cytochrome P450 hydroxylases in sex hormone biosynthesis: Sequential origin and subsequent coevolution. Mol Phylogenet Evol 2016; 94:676-687. [PMID: 26432395 PMCID: PMC4801120 DOI: 10.1016/j.ympev.2015.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022]
Abstract
Biosynthesis of steroid hormones in vertebrates involves three cytochrome P450 hydroxylases, CYP11A1, CYP17A1 and CYP19A1, which catalyze sequential steps in steroidogenesis. These enzymes are conserved in the vertebrates, but their origin and existence in other chordate subphyla (Tunicata and Cephalochordata) have not been clearly established. In this study, selected protein sequences of CYP11A1, CYP17A1 and CYP19A1 were compiled and analyzed using multiple sequence alignment and phylogenetic analysis. Our analyses show that cephalochordates have sequences orthologous to vertebrate CYP11A1, CYP17A1 or CYP19A1, and that echinoderms and hemichordates possess CYP11-like but not CYP19 genes. While the cephalochordate sequences have low identity with the vertebrate sequences, reflecting evolutionary distance, the data show apparent origin of CYP11 prior to the evolution of CYP19 and possibly CYP17, thus indicating a sequential origin of these functionally related steroidogenic CYPs. Co-occurrence of the three CYPs in early chordates suggests that the three genes may have coevolved thereafter, and that functional conservation should be reflected in functionally important residues in the proteins. CYP19A1 has the largest number of conserved residues while CYP11A1 sequences are less conserved. Structural analyses of human CYP11A1, CYP17A1 and CYP19A1 show that critical substrate binding site residues are highly conserved in each enzyme family. The results emphasize that the steroidogenic pathways producing glucocorticoids and reproductive steroids are several hundred million years old and that the catalytic structural elements of the enzymes have been conserved over the same period of time. Analysis of these elements may help to identify when precursor functions linked to these enzymes first arose.
Collapse
Affiliation(s)
- Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | - Bin Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Michael R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - David C Lamb
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
57
|
Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System. PLoS One 2015; 10:e0144991. [PMID: 26710071 PMCID: PMC4692385 DOI: 10.1371/journal.pone.0144991] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3′,5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute to better understanding of the evolution of the TH system.
Collapse
|
58
|
Huan P, Wang H, Liu B. A Label-Free Proteomic Analysis on Competent Larvae and Juveniles of the Pacific Oyster Crassostrea gigas. PLoS One 2015; 10:e0135008. [PMID: 26247880 PMCID: PMC4527670 DOI: 10.1371/journal.pone.0135008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/17/2015] [Indexed: 11/19/2022] Open
Abstract
Current understandings on the molecular mechanisms underlying bivalve metamorphosis are still fragmentary, and a comprehensive description is required. In this study, using a large-scale label-free proteomic approach, we described and compared the proteomes of competent larvae (CL) and juveniles (JU) of the Pacific oyster, Crassostrea gigas. A total of 788 proteins were identified: 392 in the CL proteome and 636 in the JU proteome. Gene Ontology analysis of the proteome from each sample revealed active metabolic processes in both stages. Further quantitative analyses revealed 117 proteins that were differentially expressed between the two samples. These proteins were divided into eight groups: cytoskeleton and cell adhesion, protein synthesis and degradation, immunity and stress response, development of particular tissues, signal regulation, metabolism and energy supply, transport, and other proteins. A certification experiment using real-time PCR assay confirmed 20 of 30 examined genes exhibited the same trends at the mRNA and protein levels. The differentially expressed proteins may play roles in tissue remodeling, signal transduction, and organ development during and after metamorphosis. Novel roles were proposed for some differentially expressed proteins, such as chymotrypsin. The results of this work provide an overview of metamorphosis and post-metamorphosis development of C. gigas at the protein level. Future studies on the functions of the differentially expressed proteins will help to obtain a more in-depth understanding of bivalve metamorphosis.
Collapse
Affiliation(s)
- Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hongxia Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| |
Collapse
|
59
|
Nagasawa K, Oouchi H, Itoh N, Takahashi KG, Osada M. In Vivo Administration of Scallop GnRH-Like Peptide Influences on Gonad Development in the Yesso Scallop, Patinopecten yessoensis. PLoS One 2015; 10:e0129571. [PMID: 26030928 PMCID: PMC4451010 DOI: 10.1371/journal.pone.0129571] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022] Open
Abstract
Existing research on the role of gonadotropin-releasing hormone (GnRH) in bivalve reproduction is inadequate, even though a few bivalve GnRH orthologs have been cloned. The objective of this paper was to elucidate the in vivo effect of GnRH administration in Yesso scallop reproduction. We performed in vivo administration of scallop GnRH (py-GnRH) synthetic peptide into the developing gonad, and analyzed its effect on gonad development for 6 weeks during the reproductive season. The resulting sex ratio in the GnRH administered (GnRH(+)) group might be male biased, whereas the control (GnRH(-)) group had an equal sex ratio throughout the experiment. The gonad index (GI) of males in the GnRH(+) group increased from week 2 to 24.8% at week 6. By contrast the GI of the GnRH(-) group peaked in week 4 at 16.6%. No significant difference was seen in female GI between the GnRH(+) and GnRH(-) groups at any sampling point. Oocyte diameter in the GnRH(+) group remained constant (about 42–45 μm) throughout the experiment, while in the GnRH(-) group it increased from 45 to 68 μm i.e. normal oocyte growth. The number of spermatogonia in the germinal acini of males in the GnRH(+) group increased from week 4 to 6. Hermaphrodites appeared in the GnRH(+) group in weeks 2 and 4. Their gonads contained many apoptotic cells including oocytes. In conclusion, this study suggests that py-GnRH administration could have a potential to accelerate spermatogenesis and cause an inhibitory effect on oocyte growth in scallops.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Hitoshi Oouchi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Naoki Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Keisuke G. Takahashi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
60
|
Huang W, Xu F, Li J, Li L, Que H, Zhang G. Evolution of a novel nuclear receptor subfamily with emphasis on the member from the Pacific oyster Crassostrea gigas. Gene 2015; 567:164-72. [PMID: 25956376 DOI: 10.1016/j.gene.2015.04.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/16/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
Nuclear receptors (NRs) belong to the transcription factor superfamily that regulates development, homeostasis, differentiation, and reproduction in metazoans via control of gene expression. Recently, rapid advances in genome projects on various metazoans have provided new opportunities for studying the evolution and function of NRs. Typically structured NRs are divided into six subfamilies. Here, the gene for a typically structured NR (CgNR8A1) was cloned from the Pacific oyster Crassostrea gigas. However, this novel receptor could not be assigned to a known NR subfamily. By data mining, nine other CgNR8A1 gene homologs were identified in metazoans such as cnidarians, mollusks, annelids, echinoderms, hemichordates, and cephalochordates. Phylogenetic analysis showed that these receptors belonged to a novel NR subfamily, hereafter designated as NR8. Evolutionary analysis revealed that the NR8 subfamily was phylogenetically the third-oldest NR subfamily, and it originated from a common ancestor of Eumetazoa; several gene loss events occurred independently in ancestors of vertebrates, ecdysozoans, and platyhelminths, which do not have NR8 members. Furthermore, the function of CgNR8A1 was investigated to provide an insight into the functions of this novel NR subfamily. A nuclear localization signal peptide, GKHRNKKPRLD, was identified in CgNR8A1, and a recombinant full-length protein of CgNR8A1 was localized in the nuclei of HeLa cells. The mRNA expression profile of CgNR8A1 suggested that it might be involved in the embryogenesis of C. gigas. The electrophoretic mobility shift assay showed that CgNR8A1 binds strongly to conserved DNA core motifs DR0, DR2, and DR4 and weakly to DR1, DR3, DR5, Half, and Pal0. In summary, the novel NR8 subfamily identified in this study improves our understanding of NR evolution, and the functional analysis of CgNR8A1 provided further insights into the functions of NR8A1s.
Collapse
Affiliation(s)
- Wen Huang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Xu
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Juan Li
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Li Li
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Huayong Que
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Guofan Zhang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
61
|
Kaur S, Jobling S, Jones CS, Noble LR, Routledge EJ, Lockyer AE. The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: implications for developing new model organisms. PLoS One 2015; 10:e0121259. [PMID: 25849443 PMCID: PMC4388693 DOI: 10.1371/journal.pone.0121259] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 02/01/2023] Open
Abstract
Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.
Collapse
Affiliation(s)
- Satwant Kaur
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Catherine S. Jones
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leslie R. Noble
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Edwin J. Routledge
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Anne E. Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
- * E-mail:
| |
Collapse
|
62
|
Detection of marine microalgal biotoxins using bioassays based on functional expression of tunicate xenobiotic receptors in yeast. Toxicon 2015; 95:13-22. [DOI: 10.1016/j.toxicon.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 12/20/2022]
|
63
|
Families of nuclear receptors in vertebrate models: characteristic and comparative toxicological perspective. Sci Rep 2015; 5:8554. [PMID: 25711679 PMCID: PMC4339804 DOI: 10.1038/srep08554] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023] Open
Abstract
Various synthetic chemicals are ligands for nuclear receptors (NRs) and can cause adverse effects in vertebrates mediated by NRs. While several model vertebrates, such as mouse, chicken, western clawed frog and zebrafish, are widely used in toxicity testing, few NRs have been well described for most of these classes. In this report, NRs in genomes of 12 vertebrates are characterized via bioinformatics approaches. Although numbers of NRs varied among species, with 40-42 genes in birds to 66-74 genes in teleost fishes, all NRs had clear homologs in human and could be categorized into seven subfamilies defined as NR0B-NR6A. Phylogenetic analysis revealed conservative evolutionary relationships for most NRs, which were consistent with traditional morphology-based systematics, except for some exceptions in Dolphin (Tursiops truncatus). Evolution of PXR and CAR exhibited unexpected multiple patterns and the existence of CAR possibly being traced back to ancient lobe-finned fishes and tetrapods (Sarcopterygii). Compared to the more conservative DBD of NRs, sequences of LBD were less conserved: Sequences of THRs, RARs and RXRs were ≥90% similar to those of the human, ERs, AR, GR, ERRs and PPARs were more variable with similarities of 60%-100% and PXR, CAR, DAX1 and SHP were least conserved among species.
Collapse
|
64
|
Richter I, Fidler AE. Marine invertebrate xenobiotic-activated nuclear receptors: their application as sensor elements in high-throughput bioassays for marine bioactive compounds. Mar Drugs 2014; 12:5590-618. [PMID: 25421319 PMCID: PMC4245547 DOI: 10.3390/md12115590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/31/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023] Open
Abstract
Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds.
Collapse
Affiliation(s)
- Ingrid Richter
- Environmental Technology Group, Cawthron Institute, Private Bag 2, Nelson 7012, New Zealand.
| | - Andrew E Fidler
- Environmental Technology Group, Cawthron Institute, Private Bag 2, Nelson 7012, New Zealand.
| |
Collapse
|
65
|
Hwang DS, Lee BY, Kim HS, Lee MC, Kyung DH, Om AS, Rhee JS, Lee JS. Genome-wide identification of nuclear receptor (NR) superfamily genes in the copepod Tigriopus japonicus. BMC Genomics 2014; 15:993. [PMID: 25407996 PMCID: PMC4247118 DOI: 10.1186/1471-2164-15-993] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/04/2014] [Indexed: 01/14/2023] Open
Abstract
Background Nuclear receptors (NRs) are a large superfamily of proteins defined by a DNA-binding domain (DBD) and a ligand-binding domain (LBD). They function as transcriptional regulators to control expression of genes involved in development, homeostasis, and metabolism. The number of NRs differs from species to species, because of gene duplications and/or lineage-specific gene losses during metazoan evolution. Many NRs in arthropods interact with the ecdysteroid hormone and are involved in ecdysone-mediated signaling in arthropods. The nuclear receptor superfamily complement has been reported in several arthropods, including crustaceans, but not in copepods. We identified the entire NR repertoire of the copepod Tigriopus japonicus, which is an important marine model species for ecotoxicology and environmental genomics. Results Using whole genome and transcriptome sequences, we identified a total of 31 nuclear receptors in the genome of T. japonicus. Nomenclature of the nuclear receptors was determined based on the sequence similarities of the DNA-binding domain (DBD) and ligand-binding domain (LBD). The 7 subfamilies of NRs separate into five major clades (subfamilies NR1, NR2, NR3, NR4, and NR5/6). Although the repertoire of NR members in, T. japonicus was similar to that reported for other arthropods, there was an expansion of the NR1 subfamily in Tigriopus japonicus. The twelve unique nuclear receptors identified in T. japonicus are members of NR1L. This expansion may be a unique lineage-specific feature of crustaceans. Interestingly, E78 and HR83, which are present in other arthropods, were absent from the genomes of T. japonicus and two congeneric copepod species (T. japonicus and Tigriopus californicus), suggesting copepod lineage-specific gene loss. Conclusions We identified all NR receptors present in the copepod, T. japonicus. Knowledge of the copepod nuclear receptor repertoire will contribute to a better understanding of copepod- and crustacean-specific NR evolution. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-993) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
66
|
André A, Ruivo R, Gesto M, Castro LFC, Santos MM. Retinoid metabolism in invertebrates: when evolution meets endocrine disruption. Gen Comp Endocrinol 2014; 208:134-45. [PMID: 25132059 DOI: 10.1016/j.ygcen.2014.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/20/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023]
Abstract
Recent genomic and biochemical evidence in invertebrate species pushes back the origin of the retinoid metabolic and signaling modules to the last common ancestor of all bilaterians. However, the evolution of retinoid pathways are far from fully understood. In the majority of non-chordate invertebrate lineages, the ongoing functional characterization of retinoid-related genes (metabolism and signaling pathways), as well as the characterization of the endogenous retinoid content (precursors and active retinoids), is still incomplete. Despite limited, the available data supports the presence of biologically active retinoid pathways in invertebrates. Yet, the mechanisms controlling the spatial and temporal distribution of retinoids as well as their physiological significance share similarities and differences with vertebrates. For instance, retinol storage in the form of retinyl esters, a key feature for the maintenance of retinoid homeostatic balance in vertebrates, was only recently demonstrated in some mollusk species, suggesting that such ability is older than previously anticipated. In contrast, the enzymatic repertoire involved in this process is probably unlike that of vertebrates. The suggested ancestry of active retinoid pathways implies that many more metazoan species might be potential targets for endocrine disrupting chemicals. Here, we review the current knowledge about the occurrence and functionality of retinoid metabolic and signaling pathways in invertebrate lineages, paying special attention to the evolutionary origin of retinoid storage mechanisms. Additionally, we summarize existing information on the endocrine disruption of invertebrate retinoid modules by environmental chemicals. Research priorities in the field are highlighted.
Collapse
Affiliation(s)
- A André
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - R Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - M Gesto
- Laboratorio de Fisioloxía Animal, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - M M Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|