51
|
Wang Y, Nishimura MT, Zhao T, Tang D. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:74-87. [PMID: 21645148 DOI: 10.1111/j.1365-313x.2011.04669.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The molecular interactions between Arabidopsis and the pathogenic powdery mildew Golovinomyces cichoracearum were studied by characterizing a disease-resistant Arabidopsis mutant atg2-2. The atg2-2 mutant showed enhanced resistance to powdery mildew and dramatic mildew-induced cell death as well as early senescence phenotypes in the absence of pathogens. Defense-related genes were constitutively activated in atg2-2. In atg2-2 mutants, spontaneous cell death, early senescence and disease resistance required the salicylic acid (SA) pathway, but interestingly, mildew-induced cell death was not fully suppressed by inactivation of SA signaling. Thus, cell death could be uncoupled from disease resistance, suggesting that cell death is not sufficient for resistance to powdery mildew. ATG2 encodes autophagy-related 2, a protein known to be involved in the early steps of autophagosome biogenesis. The atg2-2 mutant exhibited typical autophagy defects in autophagosome formation. Furthermore, mutations in several other ATG genes, including ATG5, ATG7 and ATG10, exhibited similar powdery mildew resistance and mildew-induced cell death phenotypes. Taken together, our findings provide insights into the role of autophagy in cell death and disease resistance, and may indicate general links between autophagy, senescence, programmed cell death and defense responses in plants.
Collapse
Affiliation(s)
- Yiping Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
52
|
Nie H, Wu Y, Yao C, Tang D. Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis. J Genet Genomics 2011; 38:137-48. [DOI: 10.1016/j.jgg.2011.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
53
|
Park DH, Mirabella R, Bronstein PA, Preston GM, Haring MA, Lim CK, Collmer A, Schuurink RC. Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:318-30. [PMID: 21070411 DOI: 10.1111/j.1365-313x.2010.04327.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid γ-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome harbors three genes annotated as gabT GABA transaminases. A DC3000 mutant lacking all three gabT genes was constructed and found to be unable to utilize GABA as a sole carbon and nitrogen source. In complete minimal media supplemented with GABA, the mutant grew less well than wild-type DC3000 and showed strongly reduced expression of hrpL and avrPto, which encode an alternative sigma factor and effector, respectively, associated with the type III secretion system. The growth of the gabT triple mutant was weakly reduced in Arabidopsis ecotype Landberg erecta (Ler) and strongly reduced in the Ler pop2-1 GABA transaminase-deficient mutant that accumulates higher levels of GABA. Much of the ability to grow on GABA-amended minimal media or in Arabidopsis pop2-1 leaves could be restored to the gabT triple mutant by expression in trans of just gabT2. The ability of DC3000 to elicit the hypersensitive response (HR) in tobacco leaves is dependent upon deployment of the type III secretion system, and the gabT triple mutant was less able than wild-type DC3000 to elicit this HR when bacteria were infiltrated along with GABA at levels of 1 mm or more. GABA may have multiple effects on P. syringae-plant interactions, with elevated levels increasing disease resistance.
Collapse
Affiliation(s)
- Duck Hwan Park
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Cacas JL. Devil inside: does plant programmed cell death involve the endomembrane system? PLANT, CELL & ENVIRONMENT 2010; 33:1453-1473. [PMID: 20082668 DOI: 10.1111/j.1365-3040.2010.02117.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Eukaryotic cells have to constantly cope with environmental cues and integrate developmental signals. Cell survival or death is the only possible outcome. In the field of animal biology, tremendous efforts have been put into the understanding of mechanisms underlying cell fate decision. Distinct organelles have been proven to sense a broad range of stimuli and, if necessary, engage cell death signalling pathway(s). Over the years, forward and reverse genetic screens have uncovered numerous regulators of programmed cell death (PCD) in plants. However, to date, molecular networks are far from being deciphered and, apart from the autophagic compartment, no organelles have been assigned a clear role in the regulation of cellular suicide. The endomembrane system (ES) seems, nevertheless, to harbour a significant number of cell death mediators. In this review, the involvement of this system in the control of plant PCD is discussed in-depth, as well as compared and contrasted with what is known in animal and yeast systems.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Institut de Recherche pour le Développement, Equipe 2, Mécanismes des Résistances, Montpellier Cedex 5, France.
| |
Collapse
|
55
|
Ibáñez AJ, Scharte J, Bones P, Pirkl A, Meldau S, Baldwin IT, Hillenkamp F, Weis E, Dreisewerd K. Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis. PLANT METHODS 2010; 6:14. [PMID: 20534155 PMCID: PMC2904756 DOI: 10.1186/1746-4811-6-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/09/2010] [Indexed: 05/22/2023]
Abstract
BACKGROUND Successful defence of tobacco plants against attack from the oomycete Phytophthora nicotianae includes a type of local programmed cell death called the hypersensitive response. Complex and not completely understood signaling processes are required to mediate the development of this defence in the infected tissue. Here, we demonstrate that different families of metabolites can be monitored in small pieces of infected, mechanically-stressed, and healthy tobacco leaves using direct infrared laser desorption ionization orthogonal time-of-flight mass spectrometry. The defence response was monitored for 1 - 9 hours post infection. RESULTS Infrared laser desorption ionization orthogonal time-of-flight mass spectrometry allows rapid and simultaneous detection in both negative and positive ion mode of a wide range of naturally occurring primary and secondary metabolites. An unsupervised principal component analysis was employed to identify correlations between changes in metabolite expression (obtained at different times and sample treatment conditions) and the overall defence response.A one-dimensional projection of the principal components 1 and 2 obtained from positive ion mode spectra was used to generate a Biological Response Index (BRI). The BRI obtained for each sample treatment was compared with the number of dead cells found in the respective tissue. The high correlation between these two values suggested that the BRI provides a rapid assessment of the plant response against the pathogen infection. Evaluation of the loading plots of the principal components (1 and 2) reveals a correlation among three metabolic cascades and the defence response generated in infected leaves. Analysis of selected phytohormones by liquid chromatography electrospray ionization mass spectrometry verified our findings. CONCLUSION The described methodology allows for rapid assessment of infection-specific changes in the plant metabolism, in particular of phenolics, alkaloids, oxylipins, and carbohydrates. Moreover, potential novel biomarkers can be detected and used to predict the quality of plant infections.
Collapse
Affiliation(s)
- Alfredo J Ibáñez
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 31, D-48149 Münster, Germany
| | - Judith Scharte
- Institute of Botany, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, Germany
| | - Philipp Bones
- Institute of Botany, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, Germany
| | - Alexander Pirkl
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 31, D-48149 Münster, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Franz Hillenkamp
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 31, D-48149 Münster, Germany
| | - Engelbert Weis
- Institute of Botany, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 31, D-48149 Münster, Germany
| |
Collapse
|
56
|
Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using combined association and linkage mapping. Proc Natl Acad Sci U S A 2010; 107:10302-7. [PMID: 20479233 DOI: 10.1073/pnas.0913160107] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The model plant Arabidopsis thaliana exhibits extensive natural variation in resistance to parasites. Immunity is often conferred by resistance (R) genes that permit recognition of specific races of a disease. The number of such R genes and their distribution are poorly understood. In this study, we investigated the basis for resistance to the downy mildew agent Hyaloperonospora arabidopsidis ex parasitica (Hpa) in a global sample of A. thaliana. We implemented a combined genome-wide mapping of resistance using populations of recombinant inbred lines and a collection of wild A. thaliana accessions. We tested the interaction between 96 host genotypes collected worldwide and five strains of Hpa. Then, a fraction of the species-wide resistance was genetically dissected using six recently constructed populations of recombinant inbred lines. We found that resistance is usually governed by single dominant R genes that are concentrated in four genomic regions only. We show that association genetics of resistance to diseases such as downy mildew enables increased mapping resolution from quantitative trait loci interval to candidate gene level. Association patterns in quantitative trait loci intervals indicate that the pool of A. thaliana resistance sources against the tested Hpa isolates may be predominantly confined to six RPP (Resistance to Hpa) loci isolated in previous studies. Our results suggest that combining association and linkage mapping could accelerate resistance gene discovery in plants.
Collapse
|
57
|
Pogány M, von Rad U, Grün S, Dongó A, Pintye A, Simoneau P, Bahnweg G, Kiss L, Barna B, Durner J. Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. PLANT PHYSIOLOGY 2009; 151:1459-75. [PMID: 19726575 PMCID: PMC2773049 DOI: 10.1104/pp.109.141994] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 08/28/2009] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) NADPH oxidases have been reported to suppress the spread of pathogen- and salicylic acid-induced cell death. Here, we present dual roles of RBOHD (for respiratory burst oxidase homolog D) in an Arabidopsis-Alternaria pathosystem, suggesting either initiation or prevention of cell death dependent on the distance from pathogen attack. Our data demonstrate that a rbohD knockout mutant exhibits increased spread of cell death at the macroscopic level upon inoculation with the fungus Alternaria brassicicola. However, the cellular patterns of reactive oxygen species accumulation and cell death are fundamentally different in the AtrbohD mutant compared with the wild type. Functional RBOHD causes marked extracellular hydrogen peroxide accumulation as well as cell death in distinct, single cells of A. brassicicola-infected wild-type plants. This single cell response is missing in the AtrbohD mutant, where infection triggers spreading-type necrosis preceded by less distinct chloroplastic hydrogen peroxide accumulation in large clusters of cells. While the salicylic acid analog benzothiadiazole induces the action of RBOHD and the development of cell death in infected tissues, the ethylene inhibitor aminoethoxyvinylglycine inhibits cell death, indicating that both salicylic acid and ethylene positively regulate RBOHD and cell death. Moreover, A. brassicicola-infected AtrbohD plants hyperaccumulate ethylene and free salicylic acid compared with the wild type, suggesting negative feedback regulation of salicylic acid and ethylene by RBOHD. We propose that functional RBOHD triggers death in cells that are damaged by fungal infection but simultaneously inhibits death in neighboring cells through the suppression of free salicylic acid and ethylene levels.
Collapse
|
58
|
Fekete C, Fung RWM, Szabó Z, Qiu W, Chang L, Schachtman DP, Kovács LG. Up-regulated transcripts in a compatible powdery mildew-grapevine interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:732-8. [PMID: 19362490 DOI: 10.1016/j.plaphy.2009.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/11/2009] [Accepted: 03/14/2009] [Indexed: 05/01/2023]
Abstract
Powdery mildews (Erysiphales) are obligate biotrophic pathogens that invade susceptible plant cells without triggering cell death. This suggests a highly adept mechanism of parasitism which enables powdery mildews to avoid detection or evade defenses by their host. To better understand this plant-pathogen interaction, we employed suppression subtractive hybridization (SSH), differential hybridization and quantitative real-time (qRT) PCR for the identification of grapevine (Vitis vinifera L.) genes that were specifically up-regulated in response to the grape powdery mildew Erysiphe necator Schwein. We identified 25 grapevine transcripts that increased in abundance upon infection in leaves of the susceptible host V. vinifera Cabernet Sauvignon. Despite the compatible interaction between the pathogen and plant, several of the E. necator-induced transcripts represented typical defense response genes. Among the transcripts identified were those that encoded a leucine-rich repeat serine/threonine kinase-like receptor, an MYB transcription factor, and two ubiquitination-associated proteins, indicating the stimulation of intracellular signal transduction and regulatory functions. A number of genes characteristic of senescence processes, including metallothioneins, a deoxyribonuclease, an aspartyl protease and a subtilase-like serine protease, also were identified. These transcripts expanded the list of previously identified E. necator-responsive grapevine genes and facilitated a more comprehensive view of the molecular events that underlie this economically important plant-pathogen interaction.
Collapse
Affiliation(s)
- Csaba Fekete
- Department of Agriculture, Missouri State University, Mountain Grove, MO 65711, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 2009; 323:1357-60. [PMID: 19228999 PMCID: PMC4737487 DOI: 10.1126/science.1166289] [Citation(s) in RCA: 427] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stripe rust is a devastating fungal disease that afflicts wheat in many regions of the world. New races of Puccinia striiformis, the pathogen responsible for this disease, have overcome most of the known race-specific resistance genes. We report the map-based cloning of the gene Yr36 (WKS1), which confers resistance to a broad spectrum of stripe rust races at relatively high temperatures (25 degrees to 35 degrees C). This gene includes a kinase and a putative START lipid-binding domain. Five independent mutations and transgenic complementation confirmed that both domains are necessary to confer resistance. Yr36 is present in wild wheat but is absent in modern pasta and bread wheat varieties, and therefore it can now be used to improve resistance to stripe rust in a broad set of varieties.
Collapse
Affiliation(s)
- Daolin Fu
- Dept. of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Cristobal Uauy
- Dept. of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Assaf Distelfeld
- Dept. of Plant Sciences, University of California, Davis, CA 95616, USA
- Dept. of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
| | - Ann Blechl
- USDA-ARS, Western Regional Research Center, Albany, CA 94710, USA
| | - Lynn Epstein
- Dept. of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Xianming Chen
- USDA-ARS and Dept. of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Hanan Sela
- Dept. of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
| | - Tzion Fahima
- Dept. of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
| | - Jorge Dubcovsky
- Dept. of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
60
|
Chandran D, Tai YC, Hather G, Dewdney J, Denoux C, Burgess DG, Ausubel FM, Speed TP, Wildermuth MC. Temporal global expression data reveal known and novel salicylate-impacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis. PLANT PHYSIOLOGY 2009; 149:1435-51. [PMID: 19176722 PMCID: PMC2649394 DOI: 10.1104/pp.108.132985] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/23/2009] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) is a critical mediator of plant innate immunity. It plays an important role in limiting the growth and reproduction of the virulent powdery mildew (PM) Golovinomyces orontii on Arabidopsis (Arabidopsis thaliana). To investigate this later phase of the PM interaction and the role played by SA, we performed replicated global expression profiling for wild-type and SA biosynthetic mutant isochorismate synthase1 (ics1) Arabidopsis from 0 to 7 d after infection. We found that ICS1-impacted genes constitute 3.8% of profiled genes, with known molecular markers of Arabidopsis defense ranked very highly by the multivariate empirical Bayes statistic (T(2) statistic). Functional analyses of T(2)-selected genes identified statistically significant PM-impacted processes, including photosynthesis, cell wall modification, and alkaloid metabolism, that are ICS1 independent. ICS1-impacted processes include redox, vacuolar transport/secretion, and signaling. Our data also support a role for ICS1 (SA) in iron and calcium homeostasis and identify components of SA cross talk with other phytohormones. Through our analysis, 39 novel PM-impacted transcriptional regulators were identified. Insertion mutants in one of these regulators, PUX2 (for plant ubiquitin regulatory X domain-containing protein 2), results in significantly reduced reproduction of the PM in a cell death-independent manner. Although little is known about PUX2, PUX1 acts as a negative regulator of Arabidopsis CDC48, an essential AAA-ATPase chaperone that mediates diverse cellular activities, including homotypic fusion of endoplasmic reticulum and Golgi membranes, endoplasmic reticulum-associated protein degradation, cell cycle progression, and apoptosis. Future work will elucidate the functional role of the novel regulator PUX2 in PM resistance.
Collapse
Affiliation(s)
- Divya Chandran
- Department of Plant and Microbial Biology , University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Li Y, Windham MT, Trigiano RN, Reed SM, Spiers JM, Rinehart TA. Bright-Field and Fluorescence Microscopic Study of Development of Erysiphe polygoni in Susceptible and Resistant Bigleaf Hydrangea. PLANT DISEASE 2009; 93:130-134. [PMID: 30764105 DOI: 10.1094/pdis-93-2-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Temporal development of Erysiphe polygoni and responses of bigleaf hydrangeas (Hydrangea macrophylla) to the fungal attack were investigated using bright-field and fluorescence microscopy. Conidia germinated 2 h after inoculation (HAI) and formed primary appressoria at the tip of the primary germ tubes within 4 HAI. Secondary germ tubes were initiated from primary appressoria or other parts of conidia 12 HAI. Hyphae developed through elongation of secondary germ tubes, and paired lateral appressoria were formed along hyphae within 2 days after inoculation (DAI). Conidiophores and conidia were formed 5 DAI. In the susceptible cultivar Nikko Blue and the resistant cultivar Veitchii, the fungus established a parasitic relationship, which was indicated by the formation of haustoria under primary appressoria and development of secondary germ tubes at 1 DAI. A hypersensitive response (HR) and accumulation of callose were detected in both resistant and susceptible cultivars at 3 DAI. Resistance to powdery mildew in Veitchii was evident by manifestation of early accumulation of callose, relatively high percentage of necrotic infected cells, and restricted colony development compared to the susceptible cultivar Nikko Blue. Restricting hyphal growth and sporulation by early response of callose accumulation and HR are important resistance mechanisms that could be used in screening hydrangeas for resistance to powdery mildew.
Collapse
Affiliation(s)
- Yonghao Li
- Dept. of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996-4560
| | - Mark T Windham
- Dept. of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996-4560
| | - Robert N Trigiano
- Dept. of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996-4560
| | - Sandra M Reed
- USDA/ARS Floral & Nursery Plants Research Unit, McMinnville, TN 37110
| | - James M Spiers
- USDA/ARS Thad Cochran Horticultural Research Laboratory, Poplarville, MS 39470
| | - Timothy A Rinehart
- USDA/ARS Thad Cochran Horticultural Research Laboratory, Poplarville, MS 39470
| |
Collapse
|
62
|
Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. THE PLANT CELL 2008; 20:3163-79. [PMID: 19001565 PMCID: PMC2613663 DOI: 10.1105/tpc.108.060053] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 10/14/2008] [Accepted: 10/21/2008] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana resistance gene RPW8 triggers the hypersensitive response (HR) to restrict powdery mildew infection via the salicylic acid-dependent signaling pathway. To further understand how RPW8 signaling is regulated, we have conducted a genetic screen to identify mutations enhancing RPW8-mediated HR-like cell death (designated erh). Here, we report the isolation and characterization of the Arabidopsis erh1 mutant, in which the At2g37940 locus is knocked out by a T-DNA insertion. Loss of function of ERH1 results in salicylic acid accumulation, enhanced transcription of RPW8 and RPW8-dependent spontaneous HR-like cell death in leaf tissues, and reduction in plant stature. Sequence analysis suggests that ERH1 may encode the long-sought Arabidopsis functional homolog of yeast and protozoan inositolphosphorylceramide synthase (IPCS), which converts ceramide to inositolphosphorylceramide. Indeed, ERH1 is able to rescue the yeast aur1 mutant, which lacks the IPCS, and the erh1 mutant plants display reduced ( approximately 53% of wild type) levels of leaf IPCS activity, indicating that ERH1 encodes a plant IPCS. Consistent with its biochemical function, the erh1 mutation causes ceramide accumulation in plants expressing RPW8. These data reinforce the concept that sphingolipid metabolism (specifically, ceramide accumulation) plays an important role in modulating plant programmed cell death associated with defense.
Collapse
Affiliation(s)
- Wenming Wang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Fabro G, Di Rienzo JA, Voigt CA, Savchenko T, Dehesh K, Somerville S, Alvarez ME. Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. PLANT PHYSIOLOGY 2008; 146:1421-39. [PMID: 18218973 PMCID: PMC2259087 DOI: 10.1104/pp.107.111286] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 01/08/2008] [Indexed: 05/21/2023]
Abstract
Compatibility between plants and obligate biotrophic fungi requires fungal mechanisms for efficiently obtaining nutrients and counteracting plant defenses under conditions that are expected to induce changes in the host transcriptome. A key step in the proliferation of biotrophic fungi is haustorium differentiation. Here we analyzed global gene expression patterns in Arabidopsis thaliana leaves during the formation of haustoria by Golovinomyces cichoracearum. At this time, the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) were found to be enhanced. The responses of wild-type, npr1-1, and jar1-1 plants were used to categorize the sensitivity of gene expression changes to NPR1 and JAR1, which are components of the SA and JA signaling pathways, respectively. We found that the infection process was the major source of variation, with 70 genes identified as having similarly altered expression patterns regardless of plant genotype. In addition, principal component analysis (PCA) identified genes responding both to infection and to lack of functional JAR1 (17 genes) or NPR1 (18 genes), indicating that the JA and SA signaling pathways function as secondary sources of variation. Participation of these genes in the SA or JA pathways had not been described previously. We found that some of these genes may be sensitive to the balance between the SA and JA pathways, representing novel markers for the elucidation of cross-talk points between these signaling cascades. Conserved putative regulatory motifs were found in the promoter regions of each subset of genes. Collectively, our results indicate that gene expression changes in response to infection by obligate biotrophic fungi may support fungal nutrition by promoting alterations in host metabolism. In addition, these studies provide novel markers for the characterization of defense pathways and susceptibility features under this infection condition.
Collapse
Affiliation(s)
- Georgina Fabro
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|