51
|
Han J, Wang F, Yuan SQ, Guo Y, Zeng ZL, Li LR, Yang J, Wang DS, Liu MY, Zhao H, Liu KY, Liao JW, Zou QF, Xu RH. Reduced expression of p21-activated protein kinase 1 correlates with poor histological differentiation in pancreatic cancer. BMC Cancer 2014; 14:650. [PMID: 25182632 PMCID: PMC4242600 DOI: 10.1186/1471-2407-14-650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/22/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND P21-activated protein kinase 1 (PAK1), a main downstream effector of small Rho GTPases, is overexpressed in many malignancies. PAK1 overexpression is associated with poor prognosis in some tumor types, including breast cancer, gastric cancer, and colorectal cancer. However, the expression and clinical relevance of PAK1 expression in human pancreatic cancer remains unknown. METHODS The present study investigated the clinical and prognostic significance of PAK1 expression in pancreatic carcinoma. We examined and scored the expression of PAK1 by immunohistochemistry in 72 primary pancreatic carcinoma samples and 20 liver metastatic samples. The relationships between PAK1 and clinicopathological parameters and prognosis in primary and metastatic pancreatic cancer were analyzed. RESULTS Among the total 92 cases, primary pancreatic cancer samples had a significantly higher rate (38/72, 52.8%) of high PAK1 expression than liver metastatic samples (5/20, 25.0%) (P=0.028). Among the 72 primary pancreatic cancer patients, high PAK1 expression was associated with younger age (P=0.038) and moderately or well differentiated tumor (P=0.007). Moreover, a positive relationship was found between high PAK1 expression and overall survival (OS) (P<0.005). Patients with high PAK1 expression had a better OS than those with low PAK1 expression. Univariate and multivariate analysis by Cox regression including PAK1 and other prognostic pathological markers demonstrated high PAK1 immunostaining as a prognostic factor for survival in pancreatic cancer patients (P<0.005). CONCLUSIONS We report for the first time that PAK1 is a novel prognostic marker for pathologically confirmed human pancreatic cancer. Reduced expression of PAK1 correlates with poor histological differentiation in pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qing-feng Zou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.
| | | |
Collapse
|
52
|
Seisen T, Cancel-Tassin G, Colin P, Cussenot O, Rouprêt M. [Carcinogenic pathways and natural history of upper tract urothelial carcinomas: state-of-the-art review for the yearly scientific report of the French National Association of Urology]. Prog Urol 2014; 24:943-53. [PMID: 25158326 DOI: 10.1016/j.purol.2014.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 06/20/2014] [Accepted: 06/27/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To describe natural history and carcinogenesis of upper tract urothelial carcinoma (UTUC). METHODS A systematic review of the scientific literature was performed in the Medline database (Pubmed) using different associations of the following keywords: upper tract urothelial carcinoma; clonality; carcinogenesis; mutation; chromosomal instability; Lynch syndrome; genetic polymorphism. RESULTS Local development of UTUC is characterized by a highly prevalent multifocality that might be explained by the overlap of "field change" and "intraluminal seeding and implantation" theories. UTUC and bladder tumors share common carcinogenesis mechanisms such as mutations of FGFR3 and TP53 defining two distinct pathways of pathogenesis. Epigenetic alterations corresponding to the hypermethylation of different promoters regulating genes expression and chromosomal instability such as chromosome 9 deletions are also involved in UTUC carcinogenesis. Furthermore, specific genetic risk factors fro UTUC including Lynch syndrome and different polymorphisms might explain an individual susceptibility for developing these tumors. CONCLUSIONS Significant advances have been done in the field of basic research in UTUCs in recent years and have been of particular interest to provide better descriptions of their natural history. Despite these important findings however, some carcinogenic mechanisms remains not elucidated and unknown in the field of UTUC so far.
Collapse
Affiliation(s)
- T Seisen
- Service d'urologie de l'hôpital de la Pitié-Salpétrière, AP-HP, 83, boulevard de l'Hôpital, 75013 Paris, France; GRC5, ONCOTYPE-URO, institut universitaire de cancérologie, UPMC université Paris 06, 75005 Paris, France
| | - G Cancel-Tassin
- GRC5, ONCOTYPE-URO, institut universitaire de cancérologie, UPMC université Paris 06, 75005 Paris, France
| | - P Colin
- Service d'urologie de l'hôpital privé de La Louvière, générale de santé, 59000 Lille, France; Service d'urologie de l'hôpital de Seclin, 59113 Seclin, France
| | - O Cussenot
- Service d'urologie de l'hôpital de la Pitié-Salpétrière, AP-HP, 83, boulevard de l'Hôpital, 75013 Paris, France; GRC5, ONCOTYPE-URO, institut universitaire de cancérologie, UPMC université Paris 06, 75005 Paris, France
| | - M Rouprêt
- Service d'urologie de l'hôpital de la Pitié-Salpétrière, AP-HP, 83, boulevard de l'Hôpital, 75013 Paris, France; GRC5, ONCOTYPE-URO, institut universitaire de cancérologie, UPMC université Paris 06, 75005 Paris, France.
| |
Collapse
|
53
|
Mar VJ, Wong SQ, Logan A, Nguyen T, Cebon J, Kelly JW, Wolfe R, Dobrovic A, McLean C, McArthur GA. Clinical and pathological associations of the activating RAC1 P29S mutation in primary cutaneous melanoma. Pigment Cell Melanoma Res 2014; 27:1117-25. [PMID: 25043693 DOI: 10.1111/pcmr.12295] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/16/2014] [Indexed: 01/12/2023]
Abstract
Activating mutations in the GTPase RAC1 are a recurrent event in cutaneous melanoma. We investigated the clinical and pathological associations of RAC1(P29S) in a cohort of 814 primary cutaneous melanomas with known BRAF and NRAS mutation status. The RAC1(P29S) mutation had a prevalence of 3.3% and was associated with increased thickness (OR=1.6 P = 0.001), increased mitotic rate (OR=1.3 P = 0.03), ulceration (OR=2.4 P = 0.04), nodular subtype (OR=3.4 P = 0.004), and nodal disease at diagnosis (OR=3.3 P = 0.006). BRAF mutant tumors were also associated with nodal metastases (OR=1.9 P = 0.004), despite being thinner at diagnosis than BRAF WT (median 1.2 mm versus 1.6 mm, P < 0.001). Immunohistochemical analysis of 51 melanomas revealed that 47% were immunoreactive for RAC1. Melanomas were more likely to show RAC1 immunoreactivity if they were BRAF mutant (OR=5.2 P = 0.01). RAC1 may therefore be important in regulating the early migration of BRAF mutant tumors. RAC1 mutations are infrequent in primary melanomas but may accelerate disease progression.
Collapse
Affiliation(s)
- Victoria J Mar
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Vic., Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Wang C, Lu S, Jiang J, Jia X, Dong X, Bu P. Hsa-microRNA-101 suppresses migration and invasion by targeting Rac1 in thyroid cancer cells. Oncol Lett 2014; 8:1815-1821. [PMID: 25202416 PMCID: PMC4156273 DOI: 10.3892/ol.2014.2361] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/12/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are 22- to 25-nucleotide non-coding RNA molecules that function as negative regulators of gene expression. In previous years, increasing evidence has arisen implicating the involvement of miRNAs in carcinogenesis. In previous studies, the role of miRNA-101 (miR-101) in tumors has been identified as a tumor suppressor and, until now, the role of miR-101 and Rac1 in thyroid cancer has remained undefined. This study revealed that miR-101 is significantly downregulated in papillary thyroid carcinoma (PTC) tissue and thyroid cancer cell lines, and that the downregulated miR-101 is associated with lymph node metastasis. Infection with the miR-101 murine stem cell virus may markedly inhibit cell migration and invasion in TPC-1 and HTH83 thyroid cancer cell lines. Rac1 was demonstrated to be negatively regulated by miR-101 at the post-transcriptional level, via a specific target site within the 3' untranslated region by dual-luciferase reporter assay. The expression of Rac1 was also observed to inversely correlate with miR-101 expression in PTC tissues; knockdown of Rac1 by shRNA inhibited thyroid cancer cell migration and invasion, resembling that of miR-101 overexpression. Thus, these findings suggested that miR-101 acts as a novel suppressor by targeting the Rac1 gene and inhibiting thyroid cancer cell migration and invasion.
Collapse
Affiliation(s)
- Chenghai Wang
- Department of Pathology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Sijia Lu
- Department of Pathology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jixin Jiang
- Department of Pathology, The Affiliated Jiangsu Subei Hospital, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaoqin Jia
- Department of Pathology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaoyun Dong
- Department of Chinese and Western Integrative Medicine, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ping Bu
- Department of Chinese and Western Integrative Medicine, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
55
|
Kou B, Gao Y, Du C, Shi Q, Xu S, Wang CQ, Wang X, He D, Guo P. miR-145 inhibits invasion of bladder cancer cells by targeting PAK1. Urol Oncol 2014; 32:846-54. [PMID: 24954107 DOI: 10.1016/j.urolonc.2014.01.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVES MicroRNAs play important roles in cancer. In many cancers, miR-145 acts as a tumor suppressor, and it is down-regulated in bladder cancer. In the present study, we explored the modulation of oncogenic gene PAK1 by miR-145 in bladder cancer. MATERIAL AND METHODS Expression of miR-145 was detected in bladder cancer tissues and cell lines by quantitative real-time polymerase chain reaction. Through the bioinformatics approach, PAK1 has been predicted to be a direct target of miR-145 and was confirmed by the PAK1 messenger RNA 3'-untranslated region luciferase activity assay. To investigate whether miR-145 regulates PAK1 expression, it was overexpressed in J82 and T24 bladder cancer cells. In 10 paired bladder normal and tumor tissues, we determined the relationship between miR-145 and PAK1 through quantitative real-time polymerase chain reaction and western blot. By using transwell invasion assay and western blotting analysis, we investigated the effects of miR-145 and PAK1 on bladder cancer cell invasion and expression of invasion marker genes. RESULTS The level of miR-145 decreases and PAK1 protein expression up-regulates in bladder cancer tissue, as compared with the paired normal bladder tissue. Moreover, miR-145 directly targets PAK1 in bladder cancer cells. The level of miR-145 negatively correlates with PAK1 protein expression in bladder cancer. In addition, PAK1 promotes invasion and enhances the expression and activity of MMP-9, whereas miR-145 inhibits bladder cancer cell invasion and expressions of PAK1 and MMP-9. CONCLUSIONS Our results indicate that miR-145 inhibits bladder cancer cell invasion, at least partly through targeting PAK1. Restoration or replacement of miR-145 could be an efficient approach to inhibit PAK1 and bladder cancer development in the tumor therapy.
Collapse
Affiliation(s)
- Bo Kou
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Yang Gao
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Chong Du
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Qi Shi
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Shan Xu
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Chen-Qing Wang
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China
| | - Xinyang Wang
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Dalin He
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Peng Guo
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China.
| |
Collapse
|
56
|
Abe H, Kamai T, Hayashi K, Anzai N, Shirataki H, Mizuno T, Yamaguchi Y, Masuda A, Yuki H, Betsunoh H, Yashi M, Fukabori Y, Yoshida KI. The Rho-kinase inhibitor HA-1077 suppresses proliferation/migration and induces apoptosis of urothelial cancer cells. BMC Cancer 2014; 14:412. [PMID: 24908363 PMCID: PMC4081468 DOI: 10.1186/1471-2407-14-412] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/23/2014] [Indexed: 11/15/2022] Open
Abstract
Background Activation of Rho, one of the small GTPases, and its major downstream target Rho-kinase (ROCK) promotes the development and metastasis of cancer. We previously showed that elevation of Rho and ROCK expression was associated with tumor invasion, metastasis, and an unfavorable prognosis in patients with urothelial cancer of the bladder or upper urinary tract. Methods We investigated the effects of a ROCK inhibitor on the growth, migration, and apoptosis of bladder cancer cells. We also examined phosphorylation of RhoA (RhoA activity) by measuring its GTP-bound active form and assessed the expression of ROCK to explore the underlying molecular mechanisms. Results Lysophosphatidic acid (LPA) and geranylgeraniol (GGOH) induced an increase of cell proliferation and migration in association with promotion of RhoA activity and upregulation of ROCK expression. The ROCK inhibitor fasudil (HA-1077) suppressed cell proliferation and migration, and also induced apoptosis in a dose-dependent manner. HA-1077 dramatically suppressed the expression of ROCK-I and ROCK-II, but did not affect RhoA activity. Conclusions These findings suggest that ROCK could be a potential molecular target for the treatment of urothelial cancer.
Collapse
Affiliation(s)
| | - Takao Kamai
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kuželová K, Grebeňová D, Holoubek A, Röselová P, Obr A. Group I PAK inhibitor IPA-3 induces cell death and affects cell adhesivity to fibronectin in human hematopoietic cells. PLoS One 2014; 9:e92560. [PMID: 24664099 PMCID: PMC3963893 DOI: 10.1371/journal.pone.0092560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
P21-activated kinases (PAKs) are involved in the regulation of multiple processes including cell proliferation, adhesion and migration. However, the current knowledge about their function is mainly based on results obtained in adherent cell types. We investigated the effect of group I PAK inhibition using the compound IPA-3 in a variety of human leukemic cell lines (JURL-MK1, MOLM-7, K562, CML-T1, HL-60, Karpas-299, Jurkat, HEL) as well as in primary blood cells. IPA-3 induced cell death with EC50 ranging from 5 to more than 20 μM. Similar range was found for IPA-3-mediated dephosphorylation of a known PAK downstream effector, cofilin. The cell death was associated with caspase-3 activation, PARP cleavage and apoptotic DNA fragmentation. In parallel, 20 μM IPA-3 treatment induced rapid and marked decrease of the cell adhesivity to fibronectin. Per contra, partial reduction of PAK activity using lower dose IPA-3 or siRNA resulted in a slight increase in the cell adhesivity. The changes in the cell adhesivity were also studied using real-time microimpedance measurement and by interference reflection microscopy. Significant differences in the intracellular IPA-3 level among various cell lines were observed indicating that an active mechanism is involved in IPA-3 transport.
Collapse
Affiliation(s)
- Kateřina Kuželová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- * E-mail:
| | - Dana Grebeňová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Aleš Holoubek
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Pavla Röselová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Adam Obr
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
58
|
Zhao H, Dong T, Zhou H, Wang L, Huang A, Feng B, Quan Y, Jin R, Zhang W, Sun J, Zhang D, Zheng M. miR-320a suppresses colorectal cancer progression by targeting Rac1. Carcinogenesis 2013; 35:886-95. [PMID: 24265291 DOI: 10.1093/carcin/bgt378] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical epigenetic regulators involved in cancer progression. miR-320a has been identified to be a novel tumour suppressive miRNA in colorectal cancer (CRC). However, the detailed molecular mechanisms are not fully understood. Here, we reported that miR-320a inversely associated with CRC aggressiveness in both cell lines and clinical specimens. Functional studies demonstrated that miR-320a significantly decreased the capability of cell migration/invasion and induced G0/G1 growth arrest in vitro and in vivo. Furthermore, Rac1 was identified as one of the direct downstream targets of miR-320a and miR-320a specifically binds to the conserved 8-mer at position 1140-1147 of Rac1 3'-untranslated region to regulate Rac1 protein expression. Over-expression of miR-320a in SW620 cells inhibited Rac1 expression, whereas reduction of miR-320a by anti-miR-320a in SW480 cells enhanced Rac1 expression. Re-expression of Rac1 in the SW620/miR-320a cells restored the cell migration/invasion inhibited by miR-320a, whereas knockdown of Rac1 in the SW480/anti-miR-320a cells repressed these cellular functions elevated by anti-miR-320a. Conclusively, our results demonstrate that miR-320a functions as a tumour-suppressive miRNA through targeting Rac1 in CRC.
Collapse
Affiliation(s)
- Hongchao Zhao
- Shanghai Key Laboratory of Gastric Neoplasms, Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Bid HK, Roberts RD, Manchanda PK, Houghton PJ. RAC1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther 2013; 12:1925-34. [PMID: 24072884 DOI: 10.1158/1535-7163.mct-13-0164] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Angiogenesis and metastasis are well recognized as processes fundamental to the development of malignancy. Both processes involve the coordination of multiple cellular and chemical activities through myriad signaling networks, providing a mass of potential targets for therapeutic intervention. This review will focus on one master regulator of cell motility, RAC1, and the existing data with regard to its role in cell motility, including particular roles for tumor angiogenesis and invasion/metastasis. We also emphasize the preclinical investigations carried out with RAC1 inhibitors to evaluate the therapeutic potential of this target. Herein, we explore potential future directions as well as the challenges of targeting RAC1 in the treatment of cancer. Recent insights at the molecular and cellular levels are paving the way for a more directed and detailed approach to target mechanisms of RAC1 regulating angiogenesis and metastasis. Understanding these mechanisms may provide insight into RAC1 signaling components as alternative therapeutic targets for tumor angiogenesis and metastasis.
Collapse
Affiliation(s)
- Hemant K Bid
- Corresponding Author: Peter J. Houghton, Center for Childhood Cancer, The Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205.
| | | | | | | |
Collapse
|
60
|
Ku JH, Byun SS, Jeong H, Kwak C, Kim HH, Lee SE. Lymphovascular invasion as a prognostic factor in the upper urinary tract urothelial carcinoma: a systematic review and meta-analysis. Eur J Cancer 2013; 49:2665-2680. [PMID: 23721778 DOI: 10.1016/j.ejca.2013.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/06/2013] [Accepted: 04/22/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND The objective of the present study was to conduct a systematic review and meta-analysis of the published literature investigating lymphovascular invasion (LVI) and its effects on upper urinary tract urothelial carcinoma (UTUC) prognosis. METHODS To identify relevant studies, PubMed, Cochrane Library, OVID and SCOPUS database were searched from the inception until June 2012. RESULTS A total of 17 trials met the eligibility criteria for the meta-analysis. The total number of patients included was 4896, ranging from 60 to 2492 per study. None of the 17 included studies was based on the data of prospective analysis of survival. In 13 of 17 studies, patients had received adjuvant chemotherapy. Despite our attempts to limit the between-study heterogeneity through a strict inclusion criteria, there was a between-study heterogeneity in the effect of LVI on all of the meta-analyses, with a p value of <0.05 and I(2) generally greater than 50%. Thus, the hazard ratio (HR) was calculated using the random-effect model. The pooled HRs were statistically significant for disease-free survival (pooled HR, 1.91; 95% confidence interval [CI], 1.40-2.41), cancer-specific survival (CSS) (pooled HR, 1.72; 95% CI, 1.28-2.71) and overall survival (pooled HR, 4.05; 95% CI, -0.44-8.53). There was no clear evidence of funnel plot asymmetry, and thus, no evidence of publication bias was found. CONCLUSIONS Our meta-analysis showed that LVI is predictive of mortality in UTUC. However, these findings should be interpreted with caution due to the heterogeneity in the series. These results need to be further confirmed by an adequately designed prospective study to provide a better conclusion on the relationship between LVI and the outcome of patients with UTUC.
Collapse
Affiliation(s)
- Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
61
|
Tao YF, Pang L, Du XJ, Sun LC, Hu SY, Lu J, Cao L, Zhao WL, Feng X, Wang J, Wu D, Wang N, Ni J, Pan J. Differential mRNA expression levels of human histone-modifying enzymes in normal karyotype B cell pediatric acute lymphoblastic leukemia. Int J Mol Sci 2013; 14:3376-94. [PMID: 23389039 PMCID: PMC3588049 DOI: 10.3390/ijms14023376] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 11/16/2022] Open
Abstract
Histone modification enzymes regulate gene expression by altering the accessibility of promoters to transcription factors. We sought to determine whether the genes encoding histone modification enzymes are dysregulated in pediatric acute lymphoblastic leukemia (ALL). A real-time PCR array was designed, tested and used to profile the expression of 85 genes encoding histone modification enzymes in bone marrow mononuclear cells from 30 pediatric ALL patients and 20 normal controls. The expression profile of histone-modifying genes was significantly different between normal karyotype B cell pediatric ALL and normal controls. Eleven genes were upregulated in pediatric ALL, including the histone deacetylases HDAC2 and PAK1, and seven genes were downregulated, including PRMT2 and the putative tumor suppressor EP300. Future studies will seek to determine whether these genes serve as biomarkers of pediatric ALL. Ingenuity Pathway Analysis revealed that Gene Expression and Organ Morphology was the highest rated network, with 13 focus molecules (significance score = 35). Ingenuity Pathway Analysis also indicated that curcumin and miR-34 are upstream regulators of histone-modifying enzymes; future studies will seek to validate these results and examine the role of curcumin and miR-34 in leukemia. This study provides new clues into the molecular mechanisms of pediatric ALL.
Collapse
Affiliation(s)
- Yan-Fang Tao
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou 215003, Jiangsu, China; E-Mails: (Y.-F.T.); (L.P.); (S.-Y.H.); (J.L.); (L.C.); (W.-L.Z.); (X.F.); (J.W.); (D.W.); (N.W.)
| | - Li Pang
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou 215003, Jiangsu, China; E-Mails: (Y.-F.T.); (L.P.); (S.-Y.H.); (J.L.); (L.C.); (W.-L.Z.); (X.F.); (J.W.); (D.W.); (N.W.)
| | - Xiao-Juan Du
- Department of Gastroenterology, the 5th Hospital of Chinese PLA, Yinchuan 750004, Ningxia, China; E-Mail:
| | - Li-Chao Sun
- Department of Cell and Molecular Biology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing100021, China; E-Mail:
| | - Shao-Yan Hu
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou 215003, Jiangsu, China; E-Mails: (Y.-F.T.); (L.P.); (S.-Y.H.); (J.L.); (L.C.); (W.-L.Z.); (X.F.); (J.W.); (D.W.); (N.W.)
| | - Jun Lu
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou 215003, Jiangsu, China; E-Mails: (Y.-F.T.); (L.P.); (S.-Y.H.); (J.L.); (L.C.); (W.-L.Z.); (X.F.); (J.W.); (D.W.); (N.W.)
| | - Lan Cao
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou 215003, Jiangsu, China; E-Mails: (Y.-F.T.); (L.P.); (S.-Y.H.); (J.L.); (L.C.); (W.-L.Z.); (X.F.); (J.W.); (D.W.); (N.W.)
| | - Wen-Li Zhao
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou 215003, Jiangsu, China; E-Mails: (Y.-F.T.); (L.P.); (S.-Y.H.); (J.L.); (L.C.); (W.-L.Z.); (X.F.); (J.W.); (D.W.); (N.W.)
| | - Xing Feng
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou 215003, Jiangsu, China; E-Mails: (Y.-F.T.); (L.P.); (S.-Y.H.); (J.L.); (L.C.); (W.-L.Z.); (X.F.); (J.W.); (D.W.); (N.W.)
| | - Jian Wang
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou 215003, Jiangsu, China; E-Mails: (Y.-F.T.); (L.P.); (S.-Y.H.); (J.L.); (L.C.); (W.-L.Z.); (X.F.); (J.W.); (D.W.); (N.W.)
| | - Dong Wu
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou 215003, Jiangsu, China; E-Mails: (Y.-F.T.); (L.P.); (S.-Y.H.); (J.L.); (L.C.); (W.-L.Z.); (X.F.); (J.W.); (D.W.); (N.W.)
| | - Na Wang
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou 215003, Jiangsu, China; E-Mails: (Y.-F.T.); (L.P.); (S.-Y.H.); (J.L.); (L.C.); (W.-L.Z.); (X.F.); (J.W.); (D.W.); (N.W.)
| | - Jian Ni
- Translational Research Center, The Second Clinical School, Nanjing Medical University, Nanjing 210011, Jiangsu, China; E-Mail:
| | - Jian Pan
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou 215003, Jiangsu, China; E-Mails: (Y.-F.T.); (L.P.); (S.-Y.H.); (J.L.); (L.C.); (W.-L.Z.); (X.F.); (J.W.); (D.W.); (N.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-512-6778-8216
| |
Collapse
|
62
|
Walsh K, McKinney MS, Love C, Liu Q, Fan A, Patel A, Smith J, Beaven A, Jima DD, Dave SS. PAK1 mediates resistance to PI3K inhibition in lymphomas. Clin Cancer Res 2013; 19:1106-15. [PMID: 23300274 DOI: 10.1158/1078-0432.ccr-12-1060] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE The phosphoinositide 3-kinase (PI3K) pathway is known to play an active role in many malignancies. The role of PI3K inhibition in the treatment of lymphomas has not been fully delineated. We sought to identify a role for therapeutic PI3K inhibition across a range of B-cell lymphomas. EXPERIMENTAL DESIGN We selected three small molecule inhibitors to test in a panel of 60 cell lines that comprised diverse lymphoma types. We tested the selective PI3K inhibitor BKM120 and the dual PI3K/mTOR inhibitors BEZ235 and BGT226 in these cell lines. We applied gene expression profiling to better understand the molecular mechanisms associated with responsiveness to these drugs. RESULTS We found that higher expression of the PAK1 gene was significantly associated with resistance to all three PI3K inhibitors. Through RNA-interference-mediated knockdown of the PAK1 gene, we showed a dramatic increase in the sensitivity to PI3K inhibition. We further tested a small-molecule inhibitor of PAK1 and found significant synergy between PI3K and PAK1 inhibition. CONCLUSION Thus, we show that PI3K inhibition is broadly effective in lymphomas and PAK1 is a key modulator of resistance to PI3K inhibition.
Collapse
Affiliation(s)
- Katherine Walsh
- Duke Institute for Genome Sciences and Policy and Department of Medicine, Duke Cancer Institute, Duke University Medical Center, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Ho H, Soto Hopkin A, Kapadia R, Vasudeva P, Schilling J, Ganesan AK. RhoJ modulates melanoma invasion by altering actin cytoskeletal dynamics. Pigment Cell Melanoma Res 2013; 26:218-25. [PMID: 23253891 DOI: 10.1111/pcmr.12058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/04/2012] [Indexed: 12/25/2022]
Abstract
Rho family GTPases regulate diverse processes in human melanoma ranging from tumor formation to metastasis and chemoresistance. In this study, a combination of in vitro and in vivo approaches was utilized to determine whether RHOJ, a CDC42 homologue that regulates melanoma chemoresistance, also controls melanoma migration. Depletion or overexpression of RHOJ altered cellular morphology, implicating a role for RHOJ in modulating actin cytoskeletal dynamics. RHOJ depletion inhibited melanoma cell migration and invasion in vitro and melanoma tumor growth and lymphatic spread in mice. Molecular studies revealed that RHOJ alters actin cytoskeletal dynamics by inducing the phosphorylation of LIMK, cofilin, and p41-ARC (ARP2/3 complex subunit) in a PAK1-dependent manner in vitro and in tumor xenografts. Taken together, these observations identify RHOJ as a melanoma linchpin determinant that regulates both actin cytoskeletal dynamics and chemoresistance by activating PAK1.
Collapse
Affiliation(s)
- Hsiang Ho
- Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
64
|
Affiliation(s)
- Laura M Machesky
- Beatson Institute for Cancer Research, Glasgow University College of Medical, Veterinary and Life Sciences, Garscube Campus, Switchback Rd., Glasgow G61 1BD, UK.
| | | |
Collapse
|
65
|
RhoT1 and Smad4 are correlated with lymph node metastasis and overall survival in pancreatic cancer. PLoS One 2012; 7:e42234. [PMID: 22860091 PMCID: PMC3409151 DOI: 10.1371/journal.pone.0042234] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 07/05/2012] [Indexed: 12/22/2022] Open
Abstract
Cancer cell invasion and metastasis are the most important adverse prognostic factors for pancreatic cancer. Identification of biomarkers associated with outcome of pancreatic cancer may provide new approaches and targets for anticancer therapy. The aim of this study is to examine the relationship between the expression of RhoT1, Smad4 and p16 and metastasis and survival in patients with pancreatic cancer. The analysis showed that the high cytoplasmic expression levels of RhoT1, Smad4 and p16 in pancreatic cancer tissues had significantly negative correlation with lymph node metastasis (LNM) (P = 0.017, P = 0.032, P = 0.042, respectively). However, no significant association was observed between perineural invasion (PNI) and the expression of above three proteins (all P>0.05). Additionally, the survival analysis showed that the low expression levels of RhoT1 and Smad4 were significantly associated with worse survival (P = 0.034, P = 0.047, respectively). In conclusion, these results indicated that the low-expression levels of RhoT1 and Smad4 were significantly associated with LNM and shorter survival. RhoT1 may be considered as a potential novel marker for predicting the outcome in patients with pancreatic cancer.
Collapse
|
66
|
Mashidori T, Shirataki H, Kamai T, Nakamura F, Yoshida KI. Increased alpha-taxilin protein expression is associated with the metastatic and invasive potential of renal cell cancer. ACTA ACUST UNITED AC 2011; 32:103-10. [PMID: 21551945 DOI: 10.2220/biomedres.32.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intracellular vesicle trafficking is the principal transportation system in eukaryotic cells, and is considered to be involved in a variety of processes related to cell proliferation. A protein named alpha-taxilin has been identified as a binding partner of the syntaxin family, which coordinates intracellular vesicle trafficking. To clarify the role of alpha-taxilin in renal cell carcinoma (RCC), we investigated alpha-taxilin protein expression in clear cell RCC tissues. We analyzed alphataxilin protein in matched sets of tumor and non-tumor tissues from the surgical specimens of 52 Japanese RCC patients by Western blotting. We also studied the relation between alpha-taxilin protein expression in tumor tissues and various clinicopathological features. The alpha-taxilin protein level was higher in tumor tissues than in non-tumor tissues (P < 0.05). Increased expression of alpha-taxilin protein in primary tumors was related to local invasion (P < 0.001), pathological vessel invasion (P < 0.001), and metastasis (P < 0.0001). Kaplan-Meier plots of survival for patients with low versus high alpha-taxilin expression revealed that high expression in tumor tissues was associated with shorter overall survival in all patients (P < 0.05) and with shorter disease-free survival in patients without metastasis (P < 0.01). These findings suggest that alpha-taxilin influences the metastatic and invasive potential of RCC.
Collapse
Affiliation(s)
- Tomoko Mashidori
- Department of Urology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | | | | | | | | |
Collapse
|
67
|
van der Meel R, Symons MH, Kudernatsch R, Kok RJ, Schiffelers RM, Storm G, Gallagher WM, Byrne AT. The VEGF/Rho GTPase signalling pathway: A promising target for anti-angiogenic/anti-invasion therapy. Drug Discov Today 2011; 16:219-28. [DOI: 10.1016/j.drudis.2011.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/26/2010] [Accepted: 01/14/2011] [Indexed: 12/17/2022]
|