51
|
Kim ES, Kim JS, Kim SG, Hwang S, Lee CH, Moon A. Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-Gαq coupling. J Cell Sci 2011; 124:2220-30. [PMID: 21652634 DOI: 10.1242/jcs.076794] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent evidence suggests that inflammation is involved in malignant progression of breast cancer. Sphingosine 1-phosphate (S1P), acting on the G-protein-coupled receptors, is known as a potent inflammatory mediator. In this study, the effect of the inflammatory lipid S1P on the regulation of invasive/migratory phenotypes of MCF10A human breast epithelial cells was investigated to elucidate a causal relationship between inflammation and the control of invasiveness of breast cells. We show that S1P causes induction of matrix metalloproteinase-9 (MMP-9) in vitro and in vivo, and thus enhances invasion and migration. We also show that fos plays a crucial role in the transcriptional activation of MMP-9 by S1P. In addition, activation of extracellular-signal-regulated kinases 1 and 2 (ERK1/2), p38 and alpha serine/threonine-protein kinase (Akt) are involved in the process of S1P-mediated induction of MMP-9 expression and invasion. Activation of the S1P receptor S1P₃ and G(αq) are required for S1P-induced invasive/migratory responses, suggesting that the enhancement of S1P-mediated invasiveness is triggered by the specific coupling of S1P₃ to the heterotrimeric G(αq) subunit. Activation of phospholipase C-β₄ and intracellular Ca²⁺ release are required for S1P-induced MMP-9 upregulation. Taken together, this study demonstrated that S1P regulates MMP-9 induction and invasiveness through coupling of S1P₃ and G(αq) in MCF10A cells, thus providing a molecular basis for the crucial role of S1P in promoting breast cell invasion.
Collapse
Affiliation(s)
- Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 132-714, Korea
| | | | | | | | | | | |
Collapse
|
52
|
Maxwell SA, Cherry EM, Bayless KJ. Akt, 14-3-3ζ, and vimentin mediate a drug-resistant invasive phenotype in diffuse large B-cell lymphoma. Leuk Lymphoma 2011; 52:849-64. [PMID: 21323512 DOI: 10.3109/10428194.2010.551793] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Development of resistance to the CHOP chemotherapeutic regimen (cyclophosphamide, doxorubicin, vincristine, prednisone) remains a major cause of treatment failure and mortality in approximately 40% of patients with diffuse large B-cell lymphoma (DLBCL). We established CHOP-resistant DLBCL cells as a model system to investigate molecular mechanisms involved in multidrug resistance. Two-dimensional differential in-gel (DIGE) analysis identified 10 differentially expressed proteins between CHOP-sensitive and -resistant DLBCL cells that play roles in glycolysis (triosephosphate isomerase-1, enolase-1), cytoskeletal structure (ezrin, vimentin, tubulin-specific chaperone B), purine biosynthesis (serine hydroxymethyltransferase), calcium binding (sorcin), and apoptosis (p53, 14-3-3ζ, Akt). Akt, 14-3-3ζ, and vimentin were up-regulated in CHOP-resistant DLBCL cells. We showed previously that siRNA-mediated knockdown of 14-3-3ζ reversed CHOP resistance in DLBCL cells (Maxwell et al., J Biol Chem 2009;284:22379-22389). Here we show that chemical inhibition of Akt overcomes CHOP resistance in DLBCL cells. CHOP-resistant cells exhibited a five-fold greater ability to invade collagen matrices compared with CHOP-sensitive cells. Knockdown of vimentin by siRNA or withaferin A repressed the invasiveness of CHOP-resistant cells in collagen matrices. Increased expressions of Akt, 14-3-3ζ, and vimentin were observed by Western blotting in primary DLBCL tissues relative to normal lymphatic tissue. The data implicate activation of an Akt-14-3-3ζ signaling pathway in promoting a multidrug-resistant phenotype associated with a vimentin-dependent invasive behavior in DLBCL cells.
Collapse
Affiliation(s)
- Steve A Maxwell
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | | | |
Collapse
|
53
|
Davis GE, Stratman AN, Sacharidou A, Koh W. Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:101-65. [PMID: 21482411 DOI: 10.1016/b978-0-12-386041-5.00003-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many studies reveal a fundamental role for extracellular matrix-mediated signaling through integrins and Rho GTPases as well as matrix metalloproteinases (MMPs) in the molecular control of vascular tube morphogenesis in three-dimensional (3D) tissue environments. Recent work has defined an endothelial cell (EC) lumen signaling complex of proteins that controls these vascular morphogenic events. These findings reveal a signaling interdependence between Cdc42 and MT1-MMP to control the 3D matrix-specific process of EC tubulogenesis. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels in 3D matrices that are utilized to remodel EC-lined tubes through EC motility and could facilitate processes such as flow-induced remodeling and arteriovenous EC sorting and differentiation. Within vascular guidance tunnels, key dynamic interactions occur between ECs and pericytes to affect vessel remodeling, diameter, and vascular basement membrane matrix assembly, a fundamental process necessary for endothelial tube maturation and stabilization. Thus, the EC lumen and tube formation mechanism coordinates the concomitant establishment of a network of vascular tubes within tunnel spaces to allow for flow responsiveness, EC-mural cell interactions, and vascular extracellular matrix assembly to control the development of the functional microcirculation.
Collapse
Affiliation(s)
- George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | | | | | | |
Collapse
|
54
|
Udayashankar R, Baker D, Tuckerman E, Laird S, Li TC, Moore HD. Characterization of invasive trophoblasts generated from human embryonic stem cells. Hum Reprod 2010; 26:398-406. [PMID: 21163855 DOI: 10.1093/humrep/deq350] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Abnormal human embryo implantation leads to poor foetal development and miscarriage, or pre-eclampsia. Ethical and practical considerations concerning implantation limit its investigation, and it is often difficult to extrapolate findings in laboratory animals when implantation processes show diverse species differences. Therefore, it is important to develop new in vitro models to study the earliest events of human implantation. The aim of this study was to derive trophoblast cell lines from human embryonic stem cells (hESCs) by a robust protocol and co-culture of these cells with an established endometrial cell culture system to validate a model of trophoblast invasion at implantation. METHODS Derivation of trophoblast cell lines from hESC lines was established by spontaneous and induced differentiation of embryoid bodies and by initial measurement of hCGβ secretion by enzyme-linked immunosorbent assay and their phenotype investigated using gene- and protein-expression markers. Vesicles formed from an aggregating trophoblast were co-cultured with decidualized human endometrial stromal cells in hypoxic (2% oxygen) and normoxic (20% oxygen) environments. RESULTS Derived villous cytotrophoblast cell (CTB) lines further differentiated to invasive, extra-villous CTBs. Eventually, cells lost their proliferative capacity, with some lines acquiring karyotypic changes, such as a gain in the X chromosome. Cell-invasion assays confirmed that the extra-villous CTBs were invasive and erosion of the endometrial stromal layer occurred, particularly under hypoxic conditions in vitro. CONCLUSIONS Trophoblast cell lines derived from hESCs differentiate and adapt in vitro and can be used as a model to study the mechanisms of early trophoblast invasion.
Collapse
Affiliation(s)
- R Udayashankar
- Centre for Stem Cell Biology, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | | | | | |
Collapse
|
55
|
Hakkinen KM, Harunaga JS, Doyle AD, Yamada KM. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng Part A 2010; 17:713-24. [PMID: 20929283 DOI: 10.1089/ten.tea.2010.0273] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interactions between cells and the extracellular matrix are at the core of tissue engineering and biology. However, most studies of these interactions have used traditional two-dimensional (2D) tissue culture, which is less physiological than three-dimensional (3D) tissue culture. In this study, we compared cell behavior in four types of commonly used extracellular matrix under 2D and 3D conditions. Specifically, we quantified parameters of cell adhesion and migration by human foreskin fibroblasts in cell-derived matrix or hydrogels of collagen type I, fibrin, or basement membrane extract (BME). Fibroblasts in 3D were more spindle shaped with fewer lateral protrusions and substantially reduced actin stress fibers than on 2D matrices; cells failed to spread in 3D BME. Cell-matrix adhesion structures were detected in all matrices. Although the shapes of these cell adhesions differed, the total area per cell occupied by cell-matrix adhesions in 2D and 3D was nearly identical. Fibroblasts migrated most rapidly in cell-derived 3D matrix and collagen and migrated minimally in BME, with highest migration directionality in cell-derived matrix. This identification of quantitative differences in cellular responses to different matrix composition and dimensionality should help guide the development of customized 3D tissue culture and matrix scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Kirsi M Hakkinen
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA
| | | | | | | |
Collapse
|
56
|
Madsen CD, Sahai E. Cancer dissemination--lessons from leukocytes. Dev Cell 2010; 19:13-26. [PMID: 20643347 DOI: 10.1016/j.devcel.2010.06.013] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 12/21/2022]
Abstract
Cancer cells can move through tissues in a variety of different ways. In some cases, an epithelial-to-mesenchymal transition enables cancer cells to acquire fibroblast-like migratory properties. However, it is also becoming apparent that some cancer cells move in an amoeboid way similar to leukocytes. This theme will be the focus of the review, where we will discuss the similarities and differences between the mechanisms used by cancer cells and leukocytes to cross parenchymal basement membranes, move through interstitial tissue, and enter and exit the vasculature. Further, we propose that the ability to switch between different migratory mechanisms is critical for cells to relocate from one tissue to another.
Collapse
Affiliation(s)
- Chris D Madsen
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
57
|
Abstract
There is substantial evidence that sphingosine 1-phosphate (S1P) is involved in cancer. S1P regulates processes such as inflammation, which can drive tumorigenesis; neovascularization, which provides cancer cells with nutrients and oxygen; and cell growth and survival. This occurs at multiple levels and involves S1P receptors, sphingosine kinases, S1P phosphatases and S1P lyase. This Review summarizes current research findings and examines the potential for new therapeutics designed to alter S1P signalling and function in cancer.
Collapse
Affiliation(s)
- Nigel J Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, UK.
| | | |
Collapse
|
58
|
Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood 2010; 115:5259-69. [PMID: 20215637 DOI: 10.1182/blood-2009-11-252692] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here, we define an endothelial cell (EC) lumen signaling complex involving Cdc42, Par6b, Par3, junction adhesion molecule (Jam)-B and Jam-C, membrane type 1-matrix metalloproteinase (MT1-MMP), and integrin alpha(2)beta(1), which coassociate to control human EC tubulogenesis in 3D collagen matrices. Blockade of both Jam-B and Jam-C using antibodies, siRNA, or dominant-negative mutants completely interferes with lumen and tube formation resulting from a lack of Cdc42 activation, inhibition of Cdc42-GTP-dependent signal transduction, and blockade of MT1-MMP-dependent proteolysis. This process requires interdependent Cdc42 and MT1-MMP signaling, which involves Par3 binding to the Jam-B and Jam-C cytoplasmic tails, an interaction that is necessary to physically couple the components of the lumen signaling complex. MT1-MMP proteolytic activity is necessary for Cdc42 activation during EC tube formation in 3D collagen matrices but not on 2D collagen surfaces, whereas Cdc42 activation is necessary for MT1-MMP to create vascular guidance tunnels and tube networks in 3D matrices through proteolytic events. This work reveals a novel interdependent role for Cdc42-dependent signaling and MT1-MMP-dependent proteolysis, a process that occurs selectively in 3D collagen matrices and that requires EC lumen signaling complexes, to control human EC tubulogenesis during vascular morphogenesis.
Collapse
|
59
|
The role of MT2-MMP in cancer progression. Biochem Biophys Res Commun 2010; 393:222-7. [DOI: 10.1016/j.bbrc.2010.01.105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 11/18/2022]
|
60
|
Harjanto D, Zaman MH. Computational study of proteolysis-driven single cell migration in a three-dimensional matrix. Ann Biomed Eng 2010; 38:1815-25. [PMID: 20195760 DOI: 10.1007/s10439-010-9970-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 02/12/2010] [Indexed: 11/26/2022]
Abstract
Cell migration is a fundamental process that is crucial to a variety of physiological events. While traditional approaches have focused on two-dimensional (2D) systems, recent efforts have shifted to studying migration in three-dimensional (3D) matrices. A major distinction that has emerged is the increased importance of cell-matrix interactions in 3D environments. In particular, cell motility in 3D matrices is more dependent on matrix metalloproteinases (MMPs) to degrade steric obstacles than in 2D systems. In this study, we implement the effects of MMP-mediated proteolysis in a force-based computational model of 3D migration, testing two matrix ligand-MMP relationships that have been observed experimentally: linear and log-linear. The model for both scenarios predicts maximal motility at intermediate matrix ligand and MMP levels, with the linear case providing more physiologically compelling results. Recent experimental results suggesting MMP influence on integrin expression are also integrated into the model. While the biphasic behavior is retained, with MMP-integrin feedback peak cell speed is observed in a low ligand, high MMP regime instead of at intermediate ligand and MMP levels for both ligand-MMP relationships. The simulation provides insight into the expanding role of cell-matrix interactions in cell migration in 3D environments and has implications for cancer research.
Collapse
Affiliation(s)
- Dewi Harjanto
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | |
Collapse
|
61
|
Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DDW. 3D timelapse analysis of muscle satellite cell motility. Stem Cells 2010; 27:2527-38. [PMID: 19609936 PMCID: PMC2798070 DOI: 10.1002/stem.178] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin α7β1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of “pathfinding” cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues. Stem Cells2009;27:2527–2538
Collapse
Affiliation(s)
- Ashley L Siegel
- Division of Biology,University of Missouri, Columbia, Missouri, USA
| | | | | | | | | |
Collapse
|
62
|
Rowe RG, Weiss SJ. Navigating ECM barriers at the invasive front: the cancer cell-stroma interface. Annu Rev Cell Dev Biol 2010; 25:567-95. [PMID: 19575644 DOI: 10.1146/annurev.cellbio.24.110707.175315] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A seminal event in cancer progression is the ability of the neoplastic cell to mobilize the necessary machinery to breach surrounding extracellular matrix barriers while orchestrating a host stromal response that ultimately supports tissue-invasive and metastatic processes. With over 500 proteolytic enzymes identified in the human genome, interconnecting webs of protease-dependent and protease-independent processes have been postulated to drive the cancer cell invasion program via schemes of daunting complexity. Increasingly, however, a body of evidence has begun to emerge that supports a unifying model wherein a small group of membrane-tethered enzymes, termed the membrane-type matrix metalloproteinases (MT-MMPs), plays a dominant role in regulating cancer cell, as well as stromal cell, traffic through the extracellular matrix barriers assembled by host tissues in vivo. Understanding the mechanisms that underlie the regulation and function of these metalloenzymes as host cell populations traverse the dynamic extracellular matrix assembled during neoplastic states should provide new and testable theories regarding cancer invasion and metastasis.
Collapse
Affiliation(s)
- R Grant Rowe
- The Division of Molecular Medicine & Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
63
|
Bayless KJ, Kwak HI, Su SC. Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices. Nat Protoc 2009; 4:1888-98. [DOI: 10.1038/nprot.2009.221] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
64
|
Fisher KE, Sacharidou A, Stratman AN, Mayo AM, Fisher SB, Mahan RD, Davis MJ, Davis GE. MT1-MMP- and Cdc42-dependent signaling co-regulate cell invasion and tunnel formation in 3D collagen matrices. J Cell Sci 2009; 122:4558-69. [PMID: 19934222 DOI: 10.1242/jcs.050724] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Complex signaling events control tumor invasion in three-dimensional (3D) extracellular matrices. Recent evidence suggests that cells utilize both matrix metalloproteinase (MMP)-dependent and MMP-independent means to traverse 3D matrices. Herein, we demonstrate that lysophosphatidic-acid-induced HT1080 cell invasion requires membrane-type-1 (MT1)-MMP-mediated collagenolysis to generate matrix conduits the width of a cellular nucleus. We define these spaces as single-cell invasion tunnels (SCITs). Once established, cells can migrate within SCITs in an MMP-independent manner. Endothelial cells, smooth muscle cells and fibroblasts also generate SCITs during invasive events, suggesting that SCIT formation represents a fundamental mechanism of cellular motility within 3D matrices. Coordinated cellular signaling events are required during SCIT formation. MT1-MMP, Cdc42 and its associated downstream effectors such as MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) and Pak4 (p21 protein-activated kinase 4), protein kinase Calpha and the Rho-associated coiled-coil-containing protein kinases (ROCK-1 and ROCK-2) coordinate signaling necessary for SCIT formation. Finally, we show that MT1-MMP and Cdc42 are fundamental components of a co-associated invasion-signaling complex that controls directed single-cell invasion of 3D collagen matrices.
Collapse
Affiliation(s)
- Kevin E Fisher
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Niggli V, Schlicht D, Affentranger S. Specific roles of Rac1 and Rac2 in motile functions of HT1080 fibrosarcoma cells. Biochem Biophys Res Commun 2009; 386:688-92. [PMID: 19555660 DOI: 10.1016/j.bbrc.2009.06.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 11/16/2022]
Abstract
Rho family proteins are constitutively activated in the highly invasive human fibrosarcoma HT1080 cells. We now investigated the specific roles of Rac1 and Rac2 in regulating morphology, F-actin organization, adhesion, migration, and chemotaxis of HT1080 cells. Downregulation of Rac1 using specific siRNA probes resulted in cell rounding, markedly decreased spreading, adhesion, and chemotaxis of HT1080 cells. 2D migration on laminin-coated surfaces in contrast was not markedly affected. Selective Rac2 depletion did not affect cell morphology, cell adhesion, and 2D migration, but significantly reduced chemotaxis. Downregulation of both Rac1 and Rac2 resulted in an even more marked reduction, but not complete abolishment, of chemotaxis indicating distinct as well as overlapping roles of both proteins in chemotaxis. Rac1 thus is selectively required for HT1080 cell spreading and adhesion whereas Rac1 and Rac2 are both required for efficient chemotaxis.
Collapse
Affiliation(s)
- Verena Niggli
- Department of Pathology, University of Bern, Murtenstr. 31, CH-3010 Bern, Switzerland.
| | | | | |
Collapse
|
66
|
Riches K, Morley ME, Turner NA, O'Regan DJ, Ball SG, Peers C, Porter KE. Chronic hypoxia inhibits MMP-2 activation and cellular invasion in human cardiac myofibroblasts. J Mol Cell Cardiol 2009; 47:391-9. [PMID: 19523958 PMCID: PMC2723933 DOI: 10.1016/j.yjmcc.2009.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/21/2009] [Accepted: 06/02/2009] [Indexed: 11/30/2022]
Abstract
Cardiac myofibroblasts are pivotal to adaptive remodelling after myocardial infarction (MI). These normally quiescent cells invade and proliferate as a wound healing response, facilitated by activation of matrix metalloproteinases, particularly MMP-2. Following MI these reparative events occur under chronically hypoxic conditions yet the mechanisms by which hypoxia might modulate MMP-2 activation and cardiac myofibroblast invasion have not been investigated. Human cardiac myofibroblasts cultured in collagen-supplemented medium were exposed to normoxia (20% O2) or hypoxia (1% O2) for up to 48 h. Secreted levels of total and active MMP-2 were quantified using gelatin zymography, TIMP-2 and membrane-associated MT1-MMP were quantified with ELISA, whole cell MT1-MMP by immunoblotting and immunocytochemistry and MT1-MMP mRNA with real-time RT-PCR. Cellular invasion was assessed in modified Boyden chambers and migration by scratch wound assay. In the human cardiac myofibroblast, MT1-MMP was central to MMP-2 activation and activated MMP-2 necessary for invasion, confirmed by gene silencing. MMP-2 activation was substantially attenuated by hypoxia (P < 0.001), paralleled by inhibition of myofibroblast invasion (P < 0.05). In contrast, migration was independent of either MT1-MMP or MMP-2. Reduced membrane expression of MT1-MMP (P < 0.05) was responsible for the hypoxic reduction of MMP-2 activation, with no change in either total MMP-2 or TIMP-2. In conclusion, hypoxia reduces MMP-2 activation and subsequent invasion of human cardiac myofibroblasts by reducing membrane expression of MT1-MMP and may delay healing after MI. Regulation of these MMPs remains an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Kirsten Riches
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
67
|
Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 2009; 114:237-47. [PMID: 19339693 DOI: 10.1182/blood-2008-12-196451] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here we show that endothelial cells (EC) require matrix type 1-metalloproteinase (MT1-MMP) for the formation of lumens and tube networks in 3-dimensional (3D) collagen matrices. A fundamental consequence of EC lumen formation is the generation of vascular guidance tunnels within collagen matrices through an MT1-MMP-dependent proteolytic process. Vascular guidance tunnels represent a conduit for EC motility within these spaces (a newly remodeled 2D matrix surface) to both assemble and remodel tube structures. Interestingly, it appears that twice as many tunnel spaces are created than are occupied by tube networks after several days of culture. After tunnel formation, these spaces represent a 2D migratory surface within 3D collagen matrices allowing for EC migration in an MMP-independent fashion. Blockade of EC lumenogenesis using inhibitors that interfere with the process (eg, integrin, MMP, PKC, Src) completely abrogates the formation of vascular guidance tunnels. Thus, the MT1-MMP-dependent proteolytic process that creates tunnel spaces is directly and functionally coupled to the signaling mechanisms required for EC lumen and tube network formation. In summary, a fundamental and previously unrecognized purpose of EC tube morphogenesis is to create networks of matrix conduits that are necessary for EC migration and tube remodeling events critical to blood vessel assembly.
Collapse
|
68
|
Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. ACTA ACUST UNITED AC 2009; 185:11-9. [PMID: 19332889 PMCID: PMC2700505 DOI: 10.1083/jcb.200807195] [Citation(s) in RCA: 471] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue invasion during metastasis requires cancer cells to negotiate a stromal environment dominated by cross-linked networks of type I collagen. Although cancer cells are known to use proteinases to sever collagen networks and thus ease their passage through these barriers, migration across extracellular matrices has also been reported to occur by protease-independent mechanisms, whereby cells squeeze through collagen-lined pores by adopting an ameboid phenotype. We investigate these alternate models of motility here and demonstrate that cancer cells have an absolute requirement for the membrane-anchored metalloproteinase MT1-MMP for invasion, and that protease-independent mechanisms of cell migration are only plausible when the collagen network is devoid of the covalent cross-links that characterize normal tissues.
Collapse
Affiliation(s)
- Farideh Sabeh
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
69
|
Hudson LG, Zeineldin R, Silberberg M, Stack MS. Activated epidermal growth factor receptor in ovarian cancer. Cancer Treat Res 2009; 149:203-26. [PMID: 19763438 PMCID: PMC3701255 DOI: 10.1007/978-0-387-98094-2_10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | |
Collapse
|
70
|
Rupp PA, Visconti RP, Czirók A, Cheresh DA, Little CD. Matrix metalloproteinase 2-integrin alpha(v)beta3 binding is required for mesenchymal cell invasive activity but not epithelial locomotion: a computational time-lapse study. Mol Biol Cell 2008; 19:5529-40. [PMID: 18923152 DOI: 10.1091/mbc.e07-05-0480] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular invasive behavior through three-dimensional collagen gels was analyzed using computational time-lapse imaging. A subpopulation of endocardial cells, derived from explanted quail cardiac cushions, undergoes an epithelial-to-mesenchymal transition and invades the substance of the collagen gels when placed in culture. In contrast, other endocardial cells remain epithelial and move over the gel surface. Here, we show that integrin alpha(v)beta3 and matrix metalloproteinase (MMP)2 are present and active in cushion mesenchymal tissue. More importantly, functional assays show that mesenchymal invasive behavior is dependent on MMP2 activity and integrin alpha(v)beta3 binding. Inhibitors of MMP enzymatic activity and molecules that prevent integrin alpha(v)beta3 binding to MMP2, via its hemopexin domain, result in significantly reduced cellular protrusive activity and invasive behavior. Computational analyses show diminished intensity and persistence time of motility in treated invasive mesenchymal cells, but no reduction in motility of the epithelial-like cells moving over the gel surface. Thus, quantitative time-lapse data show that mesenchymal cell invasive behavior, but not epithelial cell locomotion over the gel surface, is partially regulated by the MMP2-integrin interactions.
Collapse
Affiliation(s)
- Paul A Rupp
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
71
|
Fortier S, Labelle D, Sina A, Moreau R, Annabi B. Silencing of the MT1-MMP/ G6PT axis suppresses calcium mobilization by sphingosine-1-phosphate in glioblastoma cells. FEBS Lett 2008; 582:799-804. [PMID: 18267120 DOI: 10.1016/j.febslet.2008.01.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 01/25/2023]
Abstract
The contributions of membrane type-1 matrix metalloproteinase (MT1-MMP) and of the glucose-6-phosphate transporter (G6PT) in sphingosine-1-phosphate (S1P)-mediated Ca(2+) mobilization were assessed in glioblastoma cells. We show that gene silencing of MT1-MMP or G6PT decreased the extent of S1P-induced Ca(2+) mobilization, chemotaxis, and extracellular signal-related kinase phosphorylation. Chlorogenic acid and (-)-epigallocatechin-3-gallate, two diet-derived inhibitors of G6PT and of MT1-MMP, respectively, reduced S1P-mediated Ca(2+) mobilization. An intact MT1-MMP/G6PT signaling axis is thus required for efficient Ca(2+) mobilization in response to bioactive lipids such as S1P. Targeted inhibition of either MT1-MMP or G6PT may lead to reduced infiltrative and invasive properties of brain tumor cells.
Collapse
Affiliation(s)
- Simon Fortier
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BioMed, Université du Québec à Montréal, Succ Centre-ville, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
72
|
Abstract
The complex interactions of cells with extracellular matrix (ECM) play crucial roles in mediating and regulating many processes, including cell adhesion, migration, and signaling during morphogenesis, tissue homeostasis, wound healing, and tumorigenesis. Many of these interactions involve transmembrane integrin receptors. Integrins cluster in specific cell-matrix adhesions to provide dynamic links between extracellular and intracellular environments by bi-directional signaling and by organizing the ECM and intracellular cytoskeletal and signaling molecules. This mini review discusses these interconnections, including the roles of matrix properties such as composition, three-dimensionality, and porosity, the bi-directional functions of cellular contractility and matrix rigidity, and cell signaling. The review concludes by speculating on the application of this knowledge of cell-matrix interactions in the formation of cell adhesions, assembly of matrix, migration, and tumorigenesis to potential future therapeutic approaches.
Collapse
Affiliation(s)
- Allison L Berrier
- Katrina Visiting Faculty Program, National Center on Minority Health and Health Disparities, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
73
|
Endogenous RGS proteins attenuate Galpha(i)-mediated lysophosphatidic acid signaling pathways in ovarian cancer cells. Cell Signal 2007; 20:381-9. [PMID: 18083345 DOI: 10.1016/j.cellsig.2007.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 10/30/2007] [Indexed: 01/06/2023]
Abstract
Lysophosphatidic acid is a bioactive phospholipid that is produced by and stimulates ovarian cancer cells, promoting proliferation, migration, invasion, and survival. Effects of LPA are mediated by cell surface G-protein coupled receptors (GPCRs) that activate multiple heterotrimeric G-proteins. G-proteins are deactivated by Regulator of G-protein Signaling (RGS) proteins. This led us to hypothesize that RGS proteins may regulate G-protein signaling pathways initiated by LPA in ovarian cancer cells. To determine the effect of endogenous RGS proteins on LPA signaling in ovarian cancer cells, we compared LPA activity in SKOV-3 ovarian cancer cells expressing G(i) subunit constructs that are either insensitive to RGS protein regulation (RGSi) or their RGS wild-type (RGSwt) counterparts. Both forms of the G-protein contained a point mutation rendering them insensitive to inhibition with pertussis toxin, and cells were treated with pertussis toxin prior to experiments to eliminate endogenous G(i/o) signaling. The potency and efficacy of LPA-mediated inhibition of forskolin-stimulated adenylyl cyclase activity was enhanced in cells expressing RGSi G(i) proteins as compared to RGSwt G(i). We further showed that LPA signaling that is subject to RGS regulation terminates much faster than signaling thru RGS insensitive G-proteins. Finally, LPA-stimulated SKOV-3 cell migration, as measured in a wound-induced migration assay, was enhanced in cells expressing Galpha(i2) RGSi as compared to cells expressing Galpha(i2) RGSwt, suggesting that endogenous RGS proteins in ovarian cancer cells normally attenuate this LPA effect. These data establish RGS proteins as novel regulators of LPA signaling in ovarian cancer cells.
Collapse
|