51
|
Lv S, Zhang J, He Y, Liu Q, Wang Z, Liu B, Shi L, Wu Y. MicroRNA‐520e targets AEG‐1 to suppress the proliferation and invasion of colorectal cancer cells through Wnt/GSK‐3β/β‐catenin signalling. Clin Exp Pharmacol Physiol 2019; 47:158-167. [PMID: 31574178 DOI: 10.1111/1440-1681.13185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Samei Lv
- Digestive Department of the Elderly Shaanxi Provincial People’s Hospital Xi’an China
| | - Jian Zhang
- Digestive Department of the Elderly Shaanxi Provincial People’s Hospital Xi’an China
| | - Yu He
- Digestive Department of the Elderly Shaanxi Provincial People’s Hospital Xi’an China
| | - Qian Liu
- Digestive Department of the Elderly Shaanxi Provincial People’s Hospital Xi’an China
| | - Zongyan Wang
- Digestive Department of the Elderly Shaanxi Provincial People’s Hospital Xi’an China
| | - Bin Liu
- Department of General Surgery Shaanxi Provincial People’s Hospital Xi’an China
| | - Liping Shi
- Digestive Department of the Elderly Shaanxi Provincial People’s Hospital Xi’an China
| | - Youwei Wu
- Digestive Department of the Elderly Shaanxi Provincial People’s Hospital Xi’an China
| |
Collapse
|
52
|
Yu M, Yu HL, Li QH, Zhang L, Chen YX. miR-4709 overexpression facilitates cancer proliferation and invasion via downregulating NR3C2 and is an unfavorable prognosis factor in colon adenocarcinoma. J Biochem Mol Toxicol 2019; 33:e22411. [PMID: 31621980 DOI: 10.1002/jbt.22411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/14/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
Abstract
To date, microRNA-4709 (miR-4709) has not been studied in colon adenocarcinoma (COAD) on the basis of experiments. In our study, we aimed to investigate the biological roles and clinical significance of miR-4709 in COAD. The expression difference between miR-4709 and NR3C2 was measured based on The Cancer Genome Atlas database and cells. Kaplan-Meier and logrank tests were applied to determine the overall survival (OS) differences according to the miR-4709 and NR3C2 expression levels. To measure whether the miR-4709 level was associated with COAD cell growth, migration, and invasion, we respectively conducted 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, and transwell assays. A luciferase reporter assay was applied to confirm the relationship between miR-4709 and its predicted target. High expression of miR-4709 was found in COAD tissues and cells. The OS rate in the miR-4709 low expression group was significantly higher than that in the miR-4709 high expression group. Univariate and multivariate analyses exhibited that miR-4709 expression was an independent adverse prognostic factor. Exogenous miR-4709 overexpression promoted proliferation, migration, and invasion of LOVO and SW480 cells. Bioinformatics analysis and luciferase assay demonstrated that miR-4709 directly binds to the 3'-untranslated region of NR3C2. NR3C2 was lowly expressed in COAD and high expression of NR3C2 had a better prognosis compared with that in the low expression of NR3C2. Correlation analysis showed that there is a close association between the level of expression of NR3C2 and miR-4709. Accordingly, miR-4709 may function as an oncogene in COAD and provide a preclinical proof for candidate management to target new miR-4709-NR3C2 signaling for COAD therapy.
Collapse
Affiliation(s)
- Miao Yu
- Department of Colorectal and Anal Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Hua-Long Yu
- Department of Colorectal and Anal Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Quan-Hui Li
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Li Zhang
- Department of Colorectal and Anal Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Xin Chen
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
53
|
Azizpour S, Ezati R, Saidijam M, Razavi AE, Jalilian FA, Mahdavinezhad A, Eslami H, Soltanian A, Mohammadpour H, Kamali F, Amini R. The Expression of Glypican-3 in Colorectal Cancer. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719050037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
54
|
Soleimani A, Khazaei M, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role of TGF-β signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol 2019; 234:14574-14580. [PMID: 30684274 DOI: 10.1002/jcp.28169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Transforming growth factor β (TGF-β) modulates tumor progression by regulating cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. Biological and pharmacological agonists/antagonists, the interplay between intracellular signaling pathways, and microRNAs (miRNAs) control the initiation and activation of the TGF-β signaling pathway. It has been proposed that the expression profiles of tumor suppressor and oncogenic TGF-β miRNAs may be used for the classification, diagnosis, and prognosis of human malignancies. Deregulated miRNAs and aberrant activation of TGF-β signaling are frequently found in human colorectal cancers (CRCs), but a little is known about their mechanisms of action in the development and progression of colorectal carcinoma. This review summarizes the current knowledge of the role of TGF-β signaling regulatory miRNAs in the pathogenesis of CRC for a better understanding and hence better management of this disease.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, United Kingdom
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, Missouri
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
55
|
El-Daly SM, Omara EA, Hussein J, Youness ER, El-Khayat Z. Differential expression of miRNAs regulating NF-κB and STAT3 crosstalk during colitis-associated tumorigenesis. Mol Cell Probes 2019; 47:101442. [PMID: 31479716 DOI: 10.1016/j.mcp.2019.101442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/12/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD) is mostly responsible for the development of colitis-associated colon cancer. Of the several signaling pathways involved in colonic inflammation, the activation and crosstalk between NF-κB and STAT3 serve as the pivotal regulatory hubs that regulate epithelial tumorigenesis by linking inflammation with cancer development. Understanding the molecular mechanisms regulating the crosstalk between NF-κB and STAT3 will help in targeting these signaling pathways and halt epithelial tumorigenesis. MicroRNAs (miRNAs) play important role in the regulation of NF-κB and STAT3 and function in a positive- or negative feedback loop to regulate the crosstalk of these transcription factor. In the present study we evaluated the aberrant expression of a selected panel of miRNAs (miR-181b, miR-31, miR-34a, miR-146b, miR-221, and miR-155) that regulate the crosstalk between NF-κB and STAT3 during colitis-associated tumorigenesis. We used the stepwise colorectal carcinogenesis murine model known as Azoxymethane (AOM)/Dextran sodium sulphate (DSS) to recapitulate the different stages of tumorigenesis. Our results revealed that the expression of the selected miRNAs changed dynamically in a stepwise pattern as colonic tissue transforms from normal to actively inflamed to neoplastic state, in accordance with the gradual activation of NF-κB and STAT3, suggesting that the aberrant expression of these miRNAs could function as the epigenetic switch between inflammation and colorectal tumorigenesis. We were able to elucidate the contribution of miRNAs in the NF-κB - STAT3 crosstalk during the stepwise development of colitis-associated carcinoma, and this could improve our understanding of the molecular pathology of colorectal tumorigenesis and even suggesting a therapeutic strategy by modulating the expression of these regulating miRNAs.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Cairo, Egypt; Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt.
| | - Enayat A Omara
- Pathology Department, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Jihan Hussein
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Eman R Youness
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Zakaria El-Khayat
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
56
|
Chan HN, Ho SL, He D, Li HW. Direct and sensitive detection of circulating miRNA in human serum by ligase-mediated amplification. Talanta 2019; 206:120217. [PMID: 31514897 DOI: 10.1016/j.talanta.2019.120217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/13/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNA) involve in regulating different physiological processes whose dysregulation is associated with a wide range of diseases including cancers, diabetes and cardiovascular problems. Herein, we report a direct, sensitive and highly selective detection assay for circulating microRNA (miRNA). This detection strategy employs magnetic nanoparticles as the reaction platform which can not only allow online pre-concentration and selective separation but also integrates ligation reaction with amplification to enhance the sensitivity of the detection assay. With the presence of the target miRNA, the locked nucleic acid (LNA)-modified molecular beacon (MB) opens up, exposing the binding sites at two ends. The 3'- and 5'-end of the MB responsible for the attachment onto the magnetic nanoparticles, and reporting probe for the attachment of the pair of amplification probes respectively. The ligase ligate RNA to DNA enhance the amplification efficiency. Upon labelled with intercalating fluorophores (YOYO-1) on the hybrids, the quantification of the target miRNA was determined by measuring the fluorescence intensity. A detection limit of 314 fM was achieved with trace amount of sample consumption (~20 μL). As a proof of concept, miRNA-149 was chosen as the target miRNA. This assay is capable of discriminating single-base and reliably quantifying circulating miRNA-149 in both healthy and cancer patient's serums. The result obtained was comparable with that of quantitative reverse transcription polymerase chain reaction (qRT-PCR), suggesting that this direct and sensitive assay can be served as a promising, non-invasive tool for early diagnosis of breast cancer and colorectal cancer.
Collapse
Affiliation(s)
- Hei-Nga Chan
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - See-Lok Ho
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Dinggeng He
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
57
|
Jin Y, Cheng H, Cao J, Shen W. MicroRNA 32 promotes cell proliferation, migration, and suppresses apoptosis in colon cancer cells by targeting OTU domain containing 3. J Cell Biochem 2019; 120:18629-18639. [PMID: 31338872 DOI: 10.1002/jcb.28874] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022]
Abstract
Colorectal cancer is considered as the fourth leading reason of cancer-linked deaths worldwide. However, our knowledge about its pathogenic mechanism remains inadequate. MicroRNA 32 (miR-32), a member of small noncoding RNAs, has been found vital roles in tumorigenesis. This study studied its functions and underlying mechanism in colorectal cancer. The experiment revealed the obvious upregulation of miR-32 in colorectal cancer tissues and six cancer cell lines, compared with normal tissues and cells. Moreover, miR-32 upregulation reduced cell apoptosis and promoted cell proliferation and migration, while its downregulation displayed opposite effects. Dual luciferase reporter assays proved that miR-32 bound to the 3'-untranslated region (3'-UTR) of OTU domain containing 3 (OTUD3), suggesting that miR-32 directly targeted OTUD3. Further experiments demonstrated that overexpression of miR-32 could reduce the expression level of OTUD3. Furthermore, OTUD3 silence promoted proliferation and motility and decreased apoptosis for HCT116 cells and restored partly miR-32-mediated cell proliferation, migration, and antiapoptosis for colon cancer. Therefore, our study indicated that miR-32 enhanced cell proliferation and motility abilities, and inhibited apoptosis by directly targeting OTUD3 in colon cancer cells, which implied that miR-32 was hopeful to be a biomarker or target used for diagnosis and therapy of colon cancer.
Collapse
Affiliation(s)
- Yanzhao Jin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Hua Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Jiaqing Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Wei Shen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| |
Collapse
|
58
|
Cheung KWE, Choi SYR, Lee LTC, Lee NLE, Tsang HF, Cheng YT, Cho WCS, Wong EYL, Wong SCC. The potential of circulating cell free RNA as a biomarker in cancer. Expert Rev Mol Diagn 2019; 19:579-590. [PMID: 31215265 DOI: 10.1080/14737159.2019.1633307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/14/2019] [Indexed: 01/15/2023]
Abstract
Introduction: It is now clear that circulating cell-free ribonucleic acids (ccfRNAs), including messenger RNA (mRNA) and miRNA, are potential cancer biomarkers. As ccfmiRNA is relatively more stable than ccfmRNA, research should concentrate on developing novel methods to preserve the stability of ccfmRNA and standardization of the protocol which includes extraction, detection, and multicenter validation. Areas covered: This literature review concentrates on the potential of ccfRNA being used as a biomarker in cancer, with special focus on mRNAs and microRNAs (miRNAs). Expert opinion: With the advancement of high-throughput technologies such as RNA sequencing, a panel of biomarkers will be used for the diagnosis, prognosis and therapeutic monitoring of cancer patients. In order to achieve this important target, bioinformatics education to pathologists, scientists, and technologists in molecular diagnostic laboratories is essential. Moreover, the panel of these new ccfRNAs biomarkers has to obtain approval or clearance from an authority such as the US Food and Drug Administration (FDA), and the standard of utilizing these new protocols has to be recognized via accreditation exercise. Therefore, there is still a long way to go before an extensively use of ccfRNA biomarkers in cancer patients can be realized.
Collapse
Affiliation(s)
- Ka Wan Emily Cheung
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Sin-Yu Rachel Choi
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Lok Ting Claire Lee
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Nga Lam Ella Lee
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Hin Fung Tsang
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Yin Tung Cheng
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - William Chi Shing Cho
- b Department of Clinical Oncology , Queen Elizabeth Hospital, Kowloon , Hong Kong Special Administrative Region , China
| | - Elaine Yue Ling Wong
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Sze Chuen Cesar Wong
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| |
Collapse
|
59
|
Lee DH, Kim KC, Hwang CJ, Park KR, Jung YS, Kim SY, Kim JY, Song JK, Song MJ, Choi MK, Hwang DY, Han SB, Hong JT. Decreased Lung Tumor Development in SwAPP Mice through the Downregulation of CHI3L1 and STAT 3 Activity via the Upregulation of miRNA342-3p. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:63-72. [PMID: 30849743 PMCID: PMC6406047 DOI: 10.1016/j.omtn.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
We previously found that lung tumor development was reduced in a presenilin (PS) Alzheimer's disease (AD) mouse model. Here, we investigated whether this reducing effect could occur in a different AD mouse model. We investigated urethane-induced (1 mg/g) lung tumor development and melanoma growth in Swedish amyloid precursor protein (SwAPP) transgenic mice. The expression of chitinase-3-like-1 (Chi3L1) increased during lung tumor development and melanoma growth, which was accompanied by an increase in the activity of signal transducer and activator of transcription 3 (STAT3) and the downregulation of miRNA342-3p in wild-type mice. Like tumor development, the expression of Chi3L1 and STAT3 activity was reduced in the SwAPP mice, whereas the expression of miRNA342-3p was upregulated. In addition, Chi3L1 knockdown in the lung cancer and melanoma tissues reduced cancer cell growth and STAT3 activity but enhanced miRNA342-3p expression. However, the miRNA342-3p mimic decreased Chi3L1 expression, cancer cell growth, and STAT3 activity. Moreover, a STAT3 inhibitor reduced Chi3L1 expression and cancer cell growth but enhanced miRNA342-3p expression. These data showed that lung tumor development was reduced through the decrease of Chi3L1 expression via the STAT3-dependent upregulation of miRNA342-3p. This study indicates that lung tumor development could be reduced in SwAPP AD mice.
Collapse
Affiliation(s)
- Dong Hun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Ki Cheon Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Kyung Ran Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Young Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sun Young Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Ji Young Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Ju Kyung Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Min Ji Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Min Ki Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Dae Youn Hwang
- College of Natural Resources and Life Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
60
|
Anvarnia A, Mohaddes‐Gharamaleki F, Asadi M, Akbari M, Yousefi B, Shanehbandi D. Dysregulated microRNAs in colorectal carcinogenesis: New insight to cell survival and apoptosis regulation. J Cell Physiol 2019; 234:21683-21693. [DOI: 10.1002/jcp.28872] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Alireza Anvarnia
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Farzad Mohaddes‐Gharamaleki
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
61
|
Li M, Wan G, Yu H, Xiong W. High-intensity focused ultrasound inhibits invasion and metastasis of colon cancer cells by enhancing microRNA-124-mediated suppression of STAT3. FEBS Open Bio 2019; 9:1128-1136. [PMID: 30980700 PMCID: PMC6551491 DOI: 10.1002/2211-5463.12642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/31/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
Metastasis is the primary contributor to colorectal cancer mortality. High‐intensity focused ultrasound (HIFU) is an emerging technology for tumor therapy that exerts its effects through tumor ablation, mechanical disruption, and enhancement of immune responses. However, it remains unclear whether HIFU can influence tumor metastasis. Here, we examined the effect of HIFU on tumor metastasis of colorectal cancer cells and the underlying mechanisms. HIFU was observed to inhibit migration of HCT‐116 cells in vitro and suppress lung metastasis in a mouse model of colon cancer. In addition, HIFU up‐regulated microRNA (miR) ‐124 expression, which inhibited the activation of signal transducer and activator of transcription 3 (STAT3) and inhibited migration of HCT‐116 cells. Treatment with an inhibitor of miR‐124 reversed the effect of HIFU on cell migration. In conclusion, our results suggest that HIFU exerts anti‐metastatic effects in colon cancer, and this effect is possibly mediated via up‐regulation of miR‐124 and subsequent miR‐124‐mediated STAT3 suppression.
Collapse
Affiliation(s)
- Meiying Li
- Department of Ultrasound, Shanghai University of Traditional Chinese Medicine Affiliated PUTUO Hospital, China
| | - Guangsheng Wan
- Oncology Department of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Affiliated PUTUO Hospital, China
| | - Hongjie Yu
- Oncology Department of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Affiliated PUTUO Hospital, China
| | - Wei Xiong
- Department of Ultrasound, Shanghai University of Traditional Chinese Medicine Affiliated PUTUO Hospital, China
| |
Collapse
|
62
|
Vymetalkova V, Vodicka P, Vodenkova S, Alonso S, Schneider-Stock R. DNA methylation and chromatin modifiers in colorectal cancer. Mol Aspects Med 2019; 69:73-92. [PMID: 31028771 DOI: 10.1016/j.mam.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Colorectal carcinogenesis is a multistep process involving the accumulation of genetic alterations over time that ultimately leads to disease progression and metastasis. Binding of transcription factors to gene promoter regions alone cannot explain the complex regulation pattern of gene expression during this process. It is the chromatin structure that allows for a high grade of regulatory flexibility for gene expression. Posttranslational modifications on histone proteins such as acetylation, methylation, or phosphorylation determine the accessibility of transcription factors to DNA. DNA methylation, a chemical modification of DNA that modulates chromatin structure and gene transcription acts in concert with these chromatin conformation alterations. Another epigenetic mechanism regulating gene expression is represented by small non-coding RNAs. Only very recently epigenetic alterations have been included in molecular subtype classification of colorectal cancer (CRC). In this chapter, we will provide examples of the different epigenetic players, focus on their role for epithelial-mesenchymal transition and metastatic processes and discuss their prognostic value in CRC.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Sona Vodenkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, (IGTP-PMPPC), Campus Can Ruti, 08916, Badalona, Barcelona, Spain
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital of Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 22, 91054, Erlangen, Germany.
| |
Collapse
|
63
|
Karimi L, Zeinali T, Hosseinahli N, Mansoori B, Mohammadi A, Yousefi M, Asadi M, Sadreddini S, Baradaran B, Shanehbandi D. miRNA-143 replacement therapy harnesses the proliferation and migration of colorectal cancer cells in vitro. J Cell Physiol 2019; 234:21359-21368. [PMID: 31032951 DOI: 10.1002/jcp.28745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
miR-143 is a tumor suppressor miRNA which its downregulation is frequently reported in colorectal cancer (CRC). This miRNA is a negative regulator of K-RAS, c-MYC, BCL-2, and MMP-9 genes which are engaged in tumor growth and metastasis. In the present study, miR-143 restoration was performed by transfection of the pCMV-miR-143 vector into the SW-480 CRC cells. Subsequently, alterations in proliferative and migratory potential of the cells were investigated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and wound-healing assays, respectively. Moreover, to detect apoptosis incidence in the transfected cells, 4',6-diamidino-2-phenylindole (DAPI) staining was used. Furthermore, mRNA levels of c-MYC, K-RAS, MMP-9, and BCL-2, as potential targets of miR-143, were assessed by quantitative Real-Time PCR (qRT-PCR). Also the expression levels of c-MYC, K-RAS, and MMP-9 proteins were investigated by the western blot analysis. Finally, the ratio of BAX to BCL-2 expression, as a potential marker of the response to apoptosis stimuli, was compared between the control and test groups. Furthermore, the trypan blue test was performed to determine the cell viability in cell suspension. According to the results, a decreased viability and migratory potential was observed for the miR-143 receiving cells. The DAPI staining also confirmed the occurrence of apoptosis. Moreover, BCL-2, K-RAS, MMP-9, and c-MYC mRNAs were significantly downregulated in the miR-143 grafted cells. The BAX/BCL-2 ratio also indicated a notable increase in the cells with miR-143 overexpression. In brief, miR-143 replacement could be considered as an effective strategy for the management of CRC and attenuating its invasive features.
Collapse
Affiliation(s)
- Leila Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Zeinali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nayer Hosseinahli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
64
|
Liu Y, Tan J, Ou S, Chen J, Chen L. MicroRNA-101-3p suppresses proliferation and migration in hepatocellular carcinoma by targeting the HGF/c-Met pathway. Invest New Drugs 2019; 38:60-69. [PMID: 30929159 DOI: 10.1007/s10637-019-00766-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
MicroRNAs are involved in each stage of tumor development. Activation of the hepatocyte growth factor (HGF)/c-Met axis facilitates the proliferation and migration of cancer cells, and the HGF/c-MET pathway provides potential targets for anticancer treatment. However, the interaction between HGF and miRNAs in hepatocellular carcinoma (HCC) remains unknown. Previous studies have shown that miR-101 is downregulated in various types of cancer and acts as a tumor suppressor, but the role of miR-101 in HCC has not yet been well defined. Here, we show that HGF is upregulated while microRNA-101-3p is significantly downregulated in the tumor tissues of HCC. By combining bioinformatics analysis and luciferase reporter assays, we demonstrated that HGF is a direct target of miR-101. In vitro experiments indicated that miR-101 inhibits the migration and proliferation of HCC cells by targeting the HGF/c-MET axis, and in vivo studies showed that overexpressed miR-101 dramatically suppresses tumor growth. Therefore, the present study identifies miR-101 as a negative regulator of HGF/c-MET and suggests that miRNAs can be used as targeted drugs for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, Infectious Diseases Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Juan Tan
- Department of Pathology, Infectious Diseases Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuangyan Ou
- Medical Oncology Institute, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jun Chen
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan, China
| | - Limin Chen
- Department of Pathology, Infectious Diseases Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
65
|
Wang G, Yu Y, Wang YZ, Wang JJ, Guan R, Sun Y, Shi F, Gao J, Fu XL. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol 2019; 234:17023-17049. [PMID: 30888065 DOI: 10.1002/jcp.28436] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yang Yu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Rui Guan
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Sun
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
66
|
Moreno EC, Pascual A, Prieto-Cuadra D, Laza VF, Molina-Cerrillo J, Ramos-Muñoz ME, Rodríguez-Serrano EM, Soto JL, Carrato A, García-Bermejo ML, Guillén-Ponce C. Novel Molecular Characterization of Colorectal Primary Tumors Based on miRNAs. Cancers (Basel) 2019; 11:cancers11030346. [PMID: 30862091 PMCID: PMC6468580 DOI: 10.3390/cancers11030346] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNA) expression in colorectal (CR) primary tumours can facilitate a more precise molecular characterization. We identified and validated a miRNA profile associated with clinical and histopathological features that might be useful for patient stratification. In situ hybridization array using paraffin-embedded biopsies of CR primary tumours were used to screen 1436 miRNAs. 17 miRNAs were selected for validation by quantitative reverse transcription polymerase chain reaction (qRT-PCR) (n = 192) and were further correlated with clinical and histopathological data. We demonstrated that miRNAs associated to Colorectal Cancer (CRC) diagnosis age (over 50s and 60s) included miR-1-3p, miR-23b-3p, miR-27b-3p, miR-143-3p, miR-145-5p and miR-193b-5p. miR-23b-3p and miR-24-3p discriminated between Lynch Syndrome and sporadic CRC. miR-10a-5p, miR-20a-5p, miR-642b and Let-7a-5p were associated to stroma abundance. miR-642b and Let-7a-5p were associated with to peritumoral inflammation abundance. miR-1-3p, miR-143-3p and miR-145-5p correlated with mucinous component. miR-326 correlated with tumour location (right or left sided). miR-1-3p associated with tumour grade. miR-20a-5p, miR-193b-5p, miR-320a, miR-326 and miR-642b-3p associated to tumour stage and progression. Remarkably, we also demonstrated that miR-1-3p and miR-326 expression significantly associated with patient overall survival (OS). Hierarchical clustering and bioinformatics analysis indicated that selected miRNAs could re-classify the patients and work cooperatively, modulating common target genes involved in colorectal cancer key signalling pathways. In conclusion, molecular characterization of CR primary tumours based on miRNAs could lead to more accurate patient reclassification and may be useful for efficient patient management.
Collapse
Affiliation(s)
- Elisa Conde Moreno
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramon y Cajal Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain.
| | - Alejandro Pascual
- Pathology Department, Ramon y Cajal Research Institute, University Hospital, 28034 Madrid, Spain.
| | - Daniel Prieto-Cuadra
- SynlabPathology, Pathology Department, Virgen de la Victoria, University Hospital, 29010 Málaga, Spain.
| | - Val F Laza
- Microbiology Department and Bioinformatics Core Facility, IRYCIS, 28034 Madrid, Spain.
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramon y Cajal Research Institute, University Hospital, IRYCIS, 28034 Madrid, Spain.
| | - Miren Edurne Ramos-Muñoz
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramon y Cajal Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain.
| | | | - José Luis Soto
- Hereditary Cancer Program Valencian Region, Molecular Genetics Laboratory, Elche University Hospital, Elche, 03202 Alicante, Spain.
| | - Alfredo Carrato
- Medical Oncology Department, Ramon y Cajal Research Institute, University Hospital, IRYCIS, Alcala University, 28034 Ciberonc, Spain.
| | - María Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramon y Cajal Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain.
| | - Carmen Guillén-Ponce
- Medical Oncology Department, Ramon y Cajal Research Institute, University Hospital, IRYCIS, 28034 Madrid, Spain.
| |
Collapse
|
67
|
Karimi N, Ali Hosseinpour Feizi M, Safaralizadeh R, Hashemzadeh S, Baradaran B, Shokouhi B, Teimourian S. Serum overexpression of miR-301a and miR-23a in patients with colorectal cancer. J Chin Med Assoc 2019; 82:215-220. [PMID: 30913118 DOI: 10.1097/jcma.0000000000000031] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound vesicles with complex cargoes including proteins, lipids, and nucleic acids. EVs have received significant attention due to their specific features including stability under harsh conditions and involvement in cell-to-cell communication. Circulating EVs and the molecules associated with them are important in the diagnosis and prognosis of cancers. MicroRNAs (miRNAs) are a group of small noncoding RNAs that have a role in regulating gene expression. Current literature shows that circulating miRNAs can be used as noninvasive biomarkers for early detection of cancers. The present study was set to investigate the potential role of serum exosomal miRNA expression levels in colorectal cancer (CRC) patients and evaluate their correlation with clinicopathologic features. METHODS Exosome-enriched fractions were isolated from the serum of 25 CRC patients and 13 age- and sex-matched healthy controls using a polymer-based precipitation method. During the pilot phase, real-time polymerase chain reaction (RT-PCR) was carried out on 12 CRC patients and eight healthy participants to evaluate the expression difference of 11 candidate miRNAs between CRC patients and tumor free subjects. Finally, the results were validated in a separate group, which was similar in size to the pilot group. The clinicopathologic data were also collected and the relationship between aberrant miRNA expression and clinicopathological parameters were investigated. RESULTS There were high expressions of exosomal miR-23a and miR-301a in serum samples of CRC patients compared to normal controls in training and validation phases; these differences were not significantly correlated with clinicopathologic features. Receiver operating characteristic curve analysis showed that miR-301a and miR-23a were able to discriminate CRC patients from normal subjects. CONCLUSION The findings provide evidence on the roles of miR-301a and miR-23a in CRC development and their potential roles as noninvasive biomarkers for early detection of CRC.
Collapse
Affiliation(s)
- Nasibeh Karimi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shahryar Hashemzadeh
- Department of General & Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical sciences, Tabriz, Iran
| | - Behrooz Shokouhi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
68
|
Lu M, Huang H, Yang J, Li J, Zhao G, Li W, Li X, Liu G, Wei L, Shi B, Zhao C, Fu Y. miR-338-3p regulates the proliferation, apoptosis and migration of SW480 cells by targeting MACC1. Exp Ther Med 2019; 17:2807-2814. [PMID: 30906469 DOI: 10.3892/etm.2019.7260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
The mortality and incidence rates of colorectal cancer (CRC) vary widely worldwide. miR-338-3p inhibits tumor cell proliferation in several types of cancer, however, the role of miR-338-3p on CRC remains unknown. The aim of the current study was to investigate the cellular function of miRNA-338-3p (miR-338-3p) in CRC, the malignant behavior of CRC cells and the interaction between miR-338-3p and metastasis-associated in colon cancer-1 (MACC1). miR-338-3p expression was significantly decreased in CRC tissue compared with adjacent normal tissue. In the CRC cell line SW480, miR-338-3p overexpression suppressed cell proliferation and migration and induced G1/S cell cycle arrest and apoptosis. By contrast, miR-338-3p knockdown significantly enhanced cell proliferation and migration, and suppressed G1/S cell cycle arrest and apoptosis. Furthermore, the dual-luciferase reporter assay confirmed MACC1 as a direct target of miR-338-3p. In addition, miR-338-3p overexpression reduced the level of MACC1 protein expression and MACC1 expression was significantly upregulated in CRC tissue samples. MACC1 siRNA significantly reduced CRC cell proliferation and migration, whilst cell apoptosis was significantly increased. In conclusion, miR-338-3p expression was decreased in CRC. miR-338-3p regulated the proliferation, apoptosis and migration of CRC cells by targeting MACC1.
Collapse
Affiliation(s)
- Mingliang Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Hua Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jinhui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jun Li
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Gongfang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Weihua Li
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xinhua Li
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Guobin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Li Wei
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Baoping Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Chunping Zhao
- Department of Gastroenterology, No. 1 People's Hospital of Dali City, Dali, Yunnan 671000, P.R. China
| | - Yan Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
69
|
Zhou X, Dai E, Song Q, Ma X, Meng Q, Jiang Y, Jiang W. In silico drug repositioning based on drug-miRNA associations. Brief Bioinform 2019; 21:498-510. [DOI: 10.1093/bib/bbz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract
Drug repositioning has become a prevailing tactic as this strategy is efficient, economical and low risk for drug discovery. Meanwhile, recent studies have confirmed that small-molecule drugs can modulate the expression of disease-related miRNAs, which indicates that miRNAs are promising therapeutic targets for complex diseases. In this study, we put forward and verified the hypothesis that drugs with similar miRNA profiles may share similar therapeutic properties. Furthermore, a comprehensive drug–drug interaction network was constructed based on curated drug-miRNA associations. Through random network comparison, topological structure analysis and network module extraction, we found that the closely linked drugs in the network tend to treat the same diseases. Additionally, the curated drug–disease relationships (from the CTD) and random walk with restarts algorithm were utilized on the drug–drug interaction network to identify the potential drugs for a given disease. Both internal validation (leave-one-out cross-validation) and external validation (independent drug–disease data set from the ChEMBL) demonstrated the effectiveness of the proposed approach. Finally, by integrating drug-miRNA and miRNA-disease information, we also explain the modes of action of drugs in the view of miRNA regulation. In summary, our work could determine novel and credible drug indications and offer novel insights and valuable perspectives for drug repositioning.
Collapse
Affiliation(s)
- Xu Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Enyu Dai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Qian Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Xueyan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Qianqian Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| |
Collapse
|
70
|
Zhu GF, Xu YW, Li J, Niu HL, Ma WX, Xu J, Zhou PR, Liu X, Ye DL, Liu XR, Yan T, Zhai WK, Xu ZJ, Liu C, Wang L, Wang H, Luo JM, Liu L, Li XQ, Guo S, Jiang HP, Shen P, Lin HK, Yu DH, Ding YQ, Zhang QL. Mir20a/106a-WTX axis regulates RhoGDIa/CDC42 signaling and colon cancer progression. Nat Commun 2019; 10:112. [PMID: 30631060 PMCID: PMC6328557 DOI: 10.1038/s41467-018-07998-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Wilms tumor gene on the X chromosome (WTX) is a putative tumor suppressor gene in Wilms tumor, but its expression and functions in other tumors are unclear. Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in women and the second leading cause in men in the United States. We demonstrated that WTX frequently lost in CRC which was highly correlated with cell proliferation, tumor invasion and metastasis. Mechanistically, WTX loss disrupts the interaction between RhoGDIα and CDC42 by losing of the binding with RhoGDIα and triggers the activation of CDC42 and its downstream cascades, which promotes CRC development and liver metastasis. The aberrant upregulation of miR-20a/miR-106a were identified as the reason of WTX loss in CRC both in vivo and in vitro. These study defined the mechanism how miR-20a/miR-106a-mediated WTX loss regulates CRC progression and metastasis, and provided a potential therapeutic target for preventing CRC progression.
Collapse
Affiliation(s)
- Gui-Fang Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Yang-Wei Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Jian Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Hui-Lin Niu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Wen-Xia Ma
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Jia Xu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Pei-Rong Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Xia Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Dan-Li Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Xiao-Rong Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Tao Yan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Wei-Ke Zhai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Zhi-Jun Xu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Chun Liu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Lei Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Hao Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Jia-Mao Luo
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Xuan-Qi Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, GuangDong, 510630, China
| | - Hui-Ping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, GuangDong, 510630, China
| | - Peng Shen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Hui-Kuan Lin
- Cancer Biology Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Di-Hua Yu
- Department of Molecular & Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China.
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China.
| | - Qing-Ling Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China.
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China.
| |
Collapse
|
71
|
Fadaka AO, Pretorius A, Klein A. Biomarkers for Stratification in Colorectal Cancer: MicroRNAs. Cancer Control 2019; 26:1073274819862784. [PMID: 31431043 PMCID: PMC6704426 DOI: 10.1177/1073274819862784] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most widely recognized and deadly malignancies worldwide. In spite of the fact that the death rates have declined over the previous decade, particularly because of enhanced screening or potential treatment alternatives, CRC still remains the third leading cause of cancer-related mortality in the world, with an estimated incidence of over 1 million new cases and approximately 600 000 deaths estimated yearly. Unlike prostate and lung cancer, CRC is not easily detectable in its early stage, which may also account for its high mortality rate. MicroRNAs (miRNAs) are a class of noncoding RNAs. The roles of these noncoding RNAs have been implicated in cancer pathogenesis, most especially CRC, due to their ability to posttranscriptionally regulate the expression of oncogenes and tumor suppressor genes. Dysregulated expression of many miRNAs regulates the expression of hundreds of growth regulatory genes and pathways that are important in the multistep model of colorectal carcinogenesis. If CRC is detected early, it is a largely treatable disease. Early diagnosis, including the identification of premalignant adenomas, is regarded a major concept for improving patient survival in CRC treatment. Several lines of research suggest that miRNAs are closely implicated in the metastatic process in CRC and some of these miRNAs could be useful as promising clinical tools for identifying specific stages of CRC due to their differential expression. This review discusses the correlation between CRC staging relative to the specific expression of miRNA for early detection, treatment, and disease management.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Ashley Pretorius
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Ashwil Klein
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
72
|
Wang X, Lu J, Cao J, Ma B, Gao C, Qi F. MicroRNA-18a promotes hepatocellular carcinoma proliferation, migration, and invasion by targeting Bcl2L10. Onco Targets Ther 2018; 11:7919-7934. [PMID: 30519035 PMCID: PMC6235330 DOI: 10.2147/ott.s180971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is known to feature several microRNA dysregulations. This study aimed to determine and investigate the prognostic value of microRNA (miRNA/miR)-18a and its role in regulating the progression of HCC. METHODS miR-18a expressions in human HCC tissues, pair-matched adjacent normal liver tissues as well as in HCC cell lines were determined by quantitative real-time PCR. The prognostic value of miR-18a was determined using Kaplan-Meier survival analysis and multivariable Cox regression assay. The ability of miR-18a in promoting HCC progression was verified in vitro. RESULTS miR-18a expressions in HCC tissues and cells were more than twice those of the normal control group (P<0.05). miR-18a expression was associated with the alpha-fetoprotein (AFP) level, TNM stage, tumor size, and intrahepatic vascular invasion (P<0.05). Kaplan- Meier survival analysis revealed that HCC patients with high expression of miR-18a possessed a more unfavorable prognosis (log-rank P<0.001). Overexpression of miR-18a promoted cell apoptosis and proliferation, induced S phase transition, as well as enhanced the migration and invasion ability of HCC cells. miR-18a was found to directly target the downstream molecule Bcl2L10. Furthermore, overexpressing Bcl2L10 was able to partly reverse the promoting effects of miR-18a on HCC cell progression. CONCLUSION miR-18a may serve as a prognostic biomarker of HCC as it is demonstrated to carry out a decisive role in HCC progression by promoting HCC cell invasion, migration, and proliferation through targeting Bcl2L10.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Jisen Cao
- Department of Hepatobiliary Surgery, Tianjin Third Center Hospital, Tianjin, China
| | - Bozhao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| |
Collapse
|
73
|
Yang D, Li R, Xia J, Li W, Zhou H. miR‑3666 suppresses cellular proliferation and invasion in colorectal cancer by targeting SATB2. Mol Med Rep 2018; 18:4847-4854. [PMID: 30320357 PMCID: PMC6236275 DOI: 10.3892/mmr.2018.9540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNA-3666 (miR-3666) acts as a tumor suppressor in cervical cancer, non-small cell lung cancer and thyroid carcinoma; however, the function of miR-3666 in colorectal cancer (CRC) remains largely unknown. In the present study, was demonstrated that miR-3666 was significantly downregulated in CRC tissues compared with in adjacent normal tissues by reverse transcription-quantitative polymerase chain reaction. Additionally, miR-3666 may serve as a prognostic biomarker for patients with CRC. Via functional experiments, the present study reported that miR-3666 overexpression significantly inhibited the proliferation, migration and invasion of CRC cells as determined by Cell Counting Kit-8 and Transwell assays, and vice versa. In addition, miR-3666 was reported to directly target special AT-rich sequence binding protein 2 (SATB2) in CRC cells; overexpression of miR-3666 significantly suppressed the expression of SATB2 in CRC cells as determined by western blotting. Furthermore, an inverse correlation was observed between the expression levels of miR-3666 and SATB2 in CRC tissues. Restoration of SATB1 expression significantly reversed the effects of miR-3666 mimic on CRC cells. In summary, the results of the present study indicated that miR-3666 may serve as a tumor suppressor in CRC by targeting SATB2.
Collapse
Affiliation(s)
- Daqing Yang
- Department of Colorectal Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Rizeng Li
- Department of Colorectal Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianfu Xia
- Department of Colorectal Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Wencai Li
- Department of Colorectal Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Hong Zhou
- Department of Colorectal Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
74
|
Kral J, Korenkova V, Novosadova V, Langerova L, Schneiderova M, Liska V, Levy M, Veskrnova V, Spicak J, Opattova A, Jiraskova K, Vymetalkova V, Vodicka P, Slyskova J. Expression profile of miR-17/92 cluster is predictive of treatment response in rectal cancer. Carcinogenesis 2018; 39:1359-1367. [DOI: 10.1093/carcin/bgy100] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jan Kral
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vlasta Korenkova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Vendula Novosadova
- Laboratory of Transgenic Models of Diseases, Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Division BIOCEV, Vestec, Czech Republic
| | - Lucie Langerova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | | | - Vaclav Liska
- Department of Surgery, Teaching Hospital and Medical School of Charles University, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Julius Spicak
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alena Opattova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Katerina Jiraskova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Jana Slyskova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
75
|
The Dual Role of MicroRNAs in Colorectal Cancer Progression. Int J Mol Sci 2018; 19:ijms19092791. [PMID: 30227605 PMCID: PMC6164944 DOI: 10.3390/ijms19092791] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is responsible for one of the major cancer incidence and mortality worldwide. It is well known that MicroRNAs (miRNAs) play vital roles in maintaining the cell development and other physiological processes, as well as, the aberrant expression of numerous miRNAs involved in CRC progression. MiRNAs are a class of small, endogenous, non-coding, single-stranded RNAs that bind to the 3’-untranslated region (3′-UTR) complementary sequences of their target mRNA, resulting in mRNA degradation or inhibition of its translation as a post-transcriptional regulators. Moreover, miRNAs also can target the long non-coding RNA (lncRNA) to regulate the expression of its target genes involved in proliferation and metastasis of CRC. The functions of these dysregulated miRNAs appear to be context specific, with evidence of having a dual role in both oncogenes and tumor suppression depending on the cellular environment in which they are expressed. Therefore, the unique expression profiles of miRNAs relate to the diagnosis, prognosis, and therapeutic outcome in CRC. In this review, we focused on several oncogenic and tumor-suppressive miRNAs specific to CRC, and assess their functions to uncover the molecular mechanisms of tumor initiation and progression in CRC. These data promised that miRNAs can be used as early detection biomarkers and potential therapeutic target in CRC patients.
Collapse
|
76
|
Fadaka AO, Ojo BA, Adewale OB, Esho T, Pretorius A. Effect of dietary components on miRNA and colorectal carcinogenesis. Cancer Cell Int 2018; 18:130. [PMID: 30202241 PMCID: PMC6127951 DOI: 10.1186/s12935-018-0631-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers diagnosed and among the commonest causes of cancer-related mortality globally. Despite the various available treatment options, millions of people still suffer from this illness and most of these treatment options have several limitations. Therefore, a less expensive, non-invasive or a treatment that requires the use of dietary products remains a focal point in this review. Main body Aberrant microRNA expression has been revealed to have a functional role in the initiation and progression of CRC. These has shown significant promise in the diagnosis and prognosis of CRC, owing to their unique expression profile associated with cancer types and malignancies. Moreover, microRNA therapeutics show a great promise in preclinical studies, and these encourage further development of their clinical use in CRC patients. Additionally, emerging studies show the chemo-preventive potential of dietary components in microRNA modulation using several CRC models. This review examines the dietary interplay between microRNAs and CRC incidence. Improving the understanding of the interactions between microRNAs and dietary components in the carcinogenesis of CRC will assist the study of CRC progression and finally, in developing personalized approaches for cancer prevention and therapy. Conclusion Although miRNA research is still at its infancy, it could serve as a promising predictive biomarkers and therapeutic targets for CRC. Given the ever-expanding number of miRNAs, understanding their functional aspects represents a promising option for further research.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- 1Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.,3Department of Biochemistry, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Babajide A Ojo
- 2Department of Nutritional Science, Oklahoma State University, 301, Human Sciences, Stillwater, OK 74075 USA
| | - Olusola Bolaji Adewale
- 3Department of Biochemistry, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Temitope Esho
- 4Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann Str. 52, 50931 Cologne, Germany
| | - Ashley Pretorius
- Biotechnology Innovation Division, Aminotek PTY LTD, Suite 2C, Oude Westhof Village Square Bellville, 7530 South Africa
| |
Collapse
|
77
|
Chand M, Keller DS, Mirnezami R, Bullock M, Bhangu A, Moran B, Tekkis PP, Brown G, Mirnezami A, Berho M. Novel biomarkers for patient stratification in colorectal cancer: A review of definitions, emerging concepts, and data. World J Gastrointest Oncol 2018; 10:145-158. [PMID: 30079141 PMCID: PMC6068858 DOI: 10.4251/wjgo.v10.i7.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/22/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) treatment has become more personalised, incorporating a combination of the individual patient risk assessment, gene testing, and chemotherapy with surgery for optimal care. The improvement of staging with high-resolution imaging has allowed more selective treatments, optimising survival outcomes. The next step is to identify biomarkers that can inform clinicians of expected prognosis and offer the most beneficial treatment, while reducing unnecessary morbidity for the patient. The search for biomarkers in CRC has been of significant interest, with questions remaining on their impact and applicability. The study of biomarkers can be broadly divided into metabolic, molecular, microRNA, epithelial-to-mesenchymal-transition (EMT), and imaging classes. Although numerous molecules have claimed to impact prognosis and treatment, their clinical application has been limited. Furthermore, routine testing of prognostic markers with no demonstrable influence on response to treatment is a questionable practice, as it increases cost and can adversely affect expectations of treatment. In this review we focus on recent developments and emerging biomarkers with potential utility for clinical translation in CRC. We examine and critically appraise novel imaging and molecular-based approaches; evaluate the promising array of microRNAs, analyze metabolic profiles, and highlight key findings for biomarker potential in the EMT pathway.
Collapse
Affiliation(s)
- Manish Chand
- GENIE Centre, University College London, London W1W 7TS, United Kingdom
| | - Deborah S Keller
- Department of Surgery, Columbia University Medical Centre, New York, NY 10032, United States
| | - Reza Mirnezami
- Department of Surgery, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marc Bullock
- Department of Surgery, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Aneel Bhangu
- Department of Surgery, University of Birmingham, Birmingham B15 2QU, United Kingdom
| | - Brendan Moran
- Department of Colorectal Surgery, North Hampshire Hospital, Basingstoke RG24 7AL, United Kingdom
| | - Paris P Tekkis
- Department of Colorectal Surgery, Royal Marsden Hospital and Imperial College London, London SW3 6JJ, United Kingdom
| | - Gina Brown
- Department of Radiology, Royal Marsden Hospital and Imperial College London, London SW3 6JJ, United Kingdom
| | - Alexander Mirnezami
- Department of Surgical Oncology, University of Southampton and NIHR, Southampton SO17 1BJ, United Kingdom
| | - Mariana Berho
- Department of Pathology, Cleveland Clinic Florida, Weston, FL 33331, United States
| |
Collapse
|
78
|
Yuan Y, Yang Z, Zou Q. MiRNA-145 Induces Apoptosis in a Gallbladder Carcinoma Cell Line by Targeting DFF45. Open Life Sci 2018; 13:227-235. [PMID: 33817087 PMCID: PMC7874708 DOI: 10.1515/biol-2018-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/21/2018] [Indexed: 11/15/2022] Open
Abstract
Bakcground We measured expression of miRNA-145 in gallbladder carcinoma and its influence on propagation, invasion, and apoptosis of gallbladder carcinoma cells in vitro. Methods miRNA-145 expression was compared between normal gallbladder epithelial cells and GBS-SD (gallbladder series) cells using miRNA chip technology. Propagation, apoptosis, and invasion properties of each cell group were tested using MTT, a clone-formation assay, flow cytometry, Western blot, and Transwell assays. Results Expression of miRNA-145 was observed to be down-regulated and GBC-SD cell clones transiently transfected with hsa-miRNA-145 were substantially reduced compared with controls (p<0.01). We observed that GBC-SD cells transfected with hsa-miRNA-145 and double-positive (Annexin V and PI) for apoptosis were more numerous than controls. Moreover, GBC-SD cells over-expressing miRNA-145 had significantly greater expression of apoptosis-related protein, caspase-3. A Transwell assay confirmed that GBC-SD cells over-expressing miRNA-145 that migrated to the lower chamber were fewer compared with controls. Post-transcriptional regulation of gene expression was measured using dualluciferase reporter assays and data show that miRNA-145 facilitates the inhibition of GBC-SD cell growth and invasion while inducing apoptosis by targeting DFF45. Conclusion Thus, we speculate that miRNA-145 facilitates inhibition of GBC-SD cell growth and invasion while inducing apoptosis by targeting DFF45; however, miRNA-145 does not directly affect the GBC-SD cell cycle.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhulin Yang
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
79
|
Wu X, Wu Y, He L, Wu L, Wang X, Liu Z. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J Cancer 2018; 9:2510-2517. [PMID: 30026849 PMCID: PMC6036887 DOI: 10.7150/jca.25324] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the major health threats in developed countries. Changes in dietary components, such as more protein and lipid intake, can increase the risk of CRC. Diet affects CRC in many ways. They regulate the composition and function of gut microbiota, which have an amazing metabolic capacity and can produce short chain fatty acids (SCFAs), such as propionate, acetate, and butyrate. Butyrate is a principal energy source for colonic epithelial cells and plays an important role in maintaining the stability of gut microbiota and the integrity of intestinal epithelium. However, there are few studies reviewing the anti-CRC potentials of butyrate. This review summarizes the recent research progresses in the effect of gut microbiota imbalance and the decrease in intestinal microbial metabolite butyrate caused by unbalanced diet on CRC development, and discusses the mechanisms of butyrate-induced anti-CRC activities, which may guide people to prevent CRC by improving diet structures.
Collapse
Affiliation(s)
- Xinqiang Wu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuanbing Wu
- The First People's Hospital of Jiashan County, Jiaxing, Zhejiang, China
| | - Liangmei He
- The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiangcai Wang
- The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Cancer Precision Engineering Research Center, Ganzhou, Jiangxi, China
| |
Collapse
|
80
|
Pellino G, Gallo G, Pallante P, Capasso R, De Stefano A, Maretto I, Malapelle U, Qiu S, Nikolaou S, Barina A, Clerico G, Reginelli A, Giuliani A, Sciaudone G, Kontovounisios C, Brunese L, Trompetto M, Selvaggi F. Noninvasive Biomarkers of Colorectal Cancer: Role in Diagnosis and Personalised Treatment Perspectives. Gastroenterol Res Pract 2018; 2018:2397863. [PMID: 30008744 PMCID: PMC6020538 DOI: 10.1155/2018/2397863] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 04/03/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. It has been estimated that more than one-third of patients are diagnosed when CRC has already spread to the lymph nodes. One out of five patients is diagnosed with metastatic CRC. The stage of diagnosis influences treatment outcome and survival. Notwithstanding the recent advances in multidisciplinary management and treatment of CRC, patients are still reluctant to undergo screening tests because of the associated invasiveness and discomfort (e.g., colonoscopy with biopsies). Moreover, the serological markers currently used for diagnosis are not reliable and, even if they were useful to detect disease recurrence after treatment, they are not always detected in patients with CRC (e.g., CEA). Recently, translational research in CRC has produced a wide spectrum of potential biomarkers that could be useful for diagnosis, treatment, and follow-up of these patients. The aim of this review is to provide an overview of the newer noninvasive or minimally invasive biomarkers of CRC. Here, we discuss imaging and biomolecular diagnostics ranging from their potential usefulness to obtain early and less-invasive diagnosis to their potential implementation in the development of a bespoke treatment of CRC.
Collapse
Affiliation(s)
- Gianluca Pellino
- Unit of General Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
- Colorectal Surgery Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Gaetano Gallo
- Department of Medical and Surgical Sciences, OU of General Surgery, University of Catanzaro, Catanzaro, Italy
- Department of Colorectal Surgery, Clinic S. Rita, Vercelli, Italy
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, Naples, Italy
| | - Raffaella Capasso
- Department of Medicine and Health Sciences, University of Molise, Via Francesco de Sanctis 1, 86100 Campobasso, Italy
| | - Alfonso De Stefano
- Department of Abdominal Oncology, Division of Abdominal Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione G. Pascale, ” IRCCS, Naples, Italy
| | - Isacco Maretto
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Umberto Malapelle
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Shengyang Qiu
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
| | - Stella Nikolaou
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
| | - Andrea Barina
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Giuseppe Clerico
- Department of Colorectal Surgery, Clinic S. Rita, Vercelli, Italy
| | - Alfonso Reginelli
- Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of Radiology, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
| | - Antonio Giuliani
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Guido Sciaudone
- Unit of General Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
| | - Christos Kontovounisios
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
- Department of Surgery and Cancer, Chelsea and Westminster Hospital Campus, Imperial College London, London, UK
| | - Luca Brunese
- Department of Medicine and Health Sciences, University of Molise, Via Francesco de Sanctis 1, 86100 Campobasso, Italy
| | - Mario Trompetto
- Department of Colorectal Surgery, Clinic S. Rita, Vercelli, Italy
| | - Francesco Selvaggi
- Unit of General Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
81
|
You Q, Li H, Liu Y, Xu Y, Miao S, Yao G, Xue Y, Geng J, Jin X, Meng H. MicroRNA-650 targets inhibitor of growth 4 to promote colorectal cancer progression via mitogen activated protein kinase signaling. Oncol Lett 2018; 16:2326-2334. [PMID: 30008936 PMCID: PMC6036455 DOI: 10.3892/ol.2018.8910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant disease globally and causes numerous cancer-associated mortalities; however, the underlying molecular mechanisms remain unresolved. MicroRNAs (miRs) are endogenous noncoding RNAs that regulate post-transcriptional gene silencing by annealing to partially complementary sequences in the 3′-untranslated regions of target mRNAs. In the present study, expression of the tumor suppressor gene inhibitor of growth protein 4 (ING4) in cell lines was investigated using reverse transcription-quantitative polymerase chain reaction and western blotting. miR-650 overexpression promoted CRC cell proliferation and migration by targeting ING4 when the cells were transfected with the miR-650 mimics. Additionally, overexpression of miR-650 increased the epithelial-mesenchymal transition and activation of the Ras homolog gene family member A/Ras-related C3 botulinum toxin GTPase. Extracellular signal-regulated kinases and p38 mitogen-activated protein kinase signaling were markedly activated when miR-650 was increased in CRC cells. Combined, the results indicate the mechanism underlying the miR-650 promotion of CRC progression, and provide promising potential biomarkers for the prognosis and treatment of CRC.
Collapse
Affiliation(s)
- Qi You
- Department of Pathology, Basic Research College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Huining Li
- Department of Pathology, Basic Research College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150081, P.R. China
| | - Yao Liu
- Department of Otolaryngology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yangyang Xu
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Susheng Miao
- Department of Otolaryngology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Guodong Yao
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yingwei Xue
- Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoming Jin
- Department of Pathology, Basic Research College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongxue Meng
- Department of Pathology, Basic Research College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
82
|
Riaz Rajoka MS, Jin M, Haobin Z, Li Q, Shao D, Huang Q, Shi J. Impact of dietary compounds on cancer-related gut microbiota and microRNA. Appl Microbiol Biotechnol 2018; 102:4291-4303. [PMID: 29589094 DOI: 10.1007/s00253-018-8935-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most common causes of death worldwide. Extensive research has been conducted on cancer; regardless, the link between cancer and diet remains undetermined. Recent studies have emphasized the importance of miRNAs in cancer-associated pathways from the perspective of dietary modulation. We highlighted the recent data on dietary modulation of gut microbiota and miRNAs related to cancer on the basis of recently published results. The targets of miRNAs are oncogenes or tumor suppressors that mediate the progression and initiation of carcinogenesis. Different miRNAs display complex expression profiles in response to dietary manipulation. Various dietary components, such as fatty acids, resveratrol, isothiocyanate, and curcumin, have been effectively used in cancer prevention and treatment. This potency is attributed to the capability of these components to alter miRNA expression, thereby modulating the vital pathways involved in metastasis, invasion, apoptosis, tumor growth, and cell proliferation.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Mingliang Jin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Zhao Haobin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
83
|
Wang P, Qin X, Liu M, Wang X. The burgeoning role of cytochrome P450-mediated vitamin D metabolites against colorectal cancer. Pharmacol Res 2018; 133:9-20. [PMID: 29719203 DOI: 10.1016/j.phrs.2018.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The metabolites of vitamin D3 (VD3) mediated by different cytochrome P450 (CYP) enzymes, play fundamental roles in many physiological processes in relation to human health. These metabolites regulate a variety of cellular signal pathways through the direct binding of activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Thus, the polymorphisms of VDR and VD3 metabolizing enzymes lead to differentiated efficiency of VD3 and further affect serum VD3 levels. Moreover, VDR activation is demonstrated to inhibit the growth of various cancers, including colorectal cancer. However, excessive intake of vitamin D may lead to hypercalcemia, which limits the application of vitamin D tremendously. In this review, we have summarized the advances in VD3 research, especially the metabolism map of VD3 and the molecular mechanisms of inhibiting growth and inducing differentiation in colorectal cancer mediated by VDR-associated cellular signal pathways. The relationship between VDR polymorphism and the risk of colorectal cancer is also illustrated. In particular, novel pathways of the activation of VD3 started by CYP11A1 and CYP3A4 are highlighted, which produce several noncalcemic and antiproliferative metabolites. At last, the hypothesis is put forward that further research of CYP-mediated VD3 metabolites may develop therapeutic agents for colorectal cancer without resulting in hypercalcemia.
Collapse
Affiliation(s)
- Peili Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuan Qin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Sciences Center, Houston, TX, USA
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
84
|
Uddin A, Chakraborty S. Role of miRNAs in lung cancer. J Cell Physiol 2018. [PMID: 29676470 DOI: 10.1002/jcp.26607] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths all over the world, among both men and women, with an incidence of over 200,000 new cases per year coupled with a very high mortality rate. LC comprises of two major clinicopathological categories: small-cell (SCLC) and nonsmall-cell lung carcinoma (NSCLC). The microRNAs (miRNAs) are small noncoding RNAs, usually 18-25 nucleotides long, which repress protein translation through binding to complementary target mRNAs. The miRNAs regulate many biological processes including cell cycle regulation, cellular growth, proliferation, differentiation, apoptosis, metabolism, neuronal patterning, and aging. This review summarizes the role of miRNAs expression in LC. It also provides information about the miRNAs as biomarker and therapeutic target for lung cancer. Understanding the role of miRNAs in LC may provide insights into the diagnosis and treatment strategy for LC.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam, India
| | | |
Collapse
|
85
|
Down-regulation of miR-10a-5p promotes proliferation and restricts apoptosis via targeting T-box transcription factor 5 in inflamed synoviocytes. Biosci Rep 2018; 38:BSR20180003. [PMID: 29545315 PMCID: PMC5897746 DOI: 10.1042/bsr20180003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/01/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Synoviocytes from rheumatoid arthritis (RA) patients share certain features with tumor cells, such as over proliferation and invasion. Anomalous microRNA (miRNA) expression may participate in the pathogenesis of RA in different ways. The objective of the present study was to observe the role of miR-10a-5p targeting T-box transcription factor 5 (TBX5) gene on synoviocyte proliferation and apoptosis in RA. Human synovial sarcoma cell line, SW982 cells stimulating with interleukin-1β (IL-1β) were transfected with miR-10a-5p mimic and siRNA of TBX5. The real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting analysis were used to evaluate the expression level of miR-10a-5p and TBX5 in SW982 cells respectively. Further, the proliferation and apoptosis of SW982 cells after treatment were determined by cell counting kit (CCK-8) and flow cytometry analysis respectively. We found that the miR-10a-5p showed down-regulated while TBX5 showed up-regulated expression in synoviocytes after stimulation with IL-1β. The miR-10a-5p mimic treatment showed a decline in cell proliferation while the increased rate of cell apoptosis as compared with control. Moreover, knockdown of TBX5 favored the apoptosis and reduced the cell proliferation as compared with control group. We conclude that down-regulation of miR-10a-5p promotes proliferation and restricts apoptosis via targeting TBX5 in inflamed synoviocytes.
Collapse
|
86
|
miR-15a-5p, A Novel Prognostic Biomarker, Predicting Recurrent Colorectal Adenocarcinoma. Mol Diagn Ther 2018; 21:453-464. [PMID: 28405803 DOI: 10.1007/s40291-017-0270-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Colorectal cancer is one of the most common gastrointestinal diseases and the second leading cause of cancer-associated deaths among adults. miR-15a-5p is a post-transcriptional regulator of the proto-oncogene MYB, a transcription factor essential for prolonged cancer cell proliferation and survival. In the current study, we assessed the potential diagnostic and prognostic utility of miR-15a-5p expression in colorectal adenocarcinoma. METHODS To accomplish this goal, total RNA was extracted from 182 colorectal adenocarcinoma specimens and 86 non-cancerous colorectal mucosae. After polyadenylation by poly(A) polymerase and subsequent reverse transcription with an oligo-dT adapter primer, miR-15a-5p expression was analyzed using an in-house developed reverse transcription quantitative real-time PCR method, based on SYBR Green chemistry. SNORD43 (RNU43) was used as an internal control gene. RESULTS miR-15a-5p was significantly upregulated in colorectal tumors compared to non-cancerous colorectal mucosae, while ROC analysis suggested its potential use for diagnostic purposes. Moreover, miR-15a-5p overexpression predicts poor disease-free survival (DFS) and overall survival (OS). Multivariate Cox regression analysis confirmed that miR-15a-5p overexpression is a significant unfavorable prognosticator of DFS in colorectal adenocarcinoma, independent of other established prognostic factors plus treatment of patients. Importantly, miR-15a-5p overexpression retains its unfavorable prognostic value in patients with T3 colorectal adenocarcinoma and in those without distant metastasis (M0). More importantly, the cumulative DFS probability of patients with early stage disease was significantly lower for those with colorectal adenocarcinoma overexpressing miR-15a-5p. DISCUSSION In conclusion, elevated expression of the cancer-associated miR-15a-5p predicts poor DFS and OS of colorectal adenocarcinoma patients. The prognostic value of miR-15a-5p expression regarding DFS is independent of clinicopathological factors currently used for colorectal adenocarcinoma prognosis.
Collapse
|
87
|
Yan S, Liu G, Jin C, Wang Z, Duan Q, Xu J, Xu D. MicroRNA-6869-5p acts as a tumor suppressor via targeting TLR4/NF-κB signaling pathway in colorectal cancer. J Cell Physiol 2018; 233:6660-6668. [PMID: 29206292 DOI: 10.1002/jcp.26316] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/04/2017] [Indexed: 12/18/2022]
Abstract
Many studies have implicated that microRNAs (miRNAs), as non-coding RNAs, play important roles in the development and progression of colorectal cancer (CRC). However, little is known about the role of a newly identified miRNA, miR-6869-5p, in CRC. We aim to investigate the modifying effects and underlying mechanisms of miR-6869-5 in colorectal carcinogenesis and progression. Significantly reduced levels of miR-6869-5p were observed in both serum exosomes tumor tissue samples from patients with CRC. The prediction of targets of miR-6869-5p in databases of targetscan, microRNA. ORG and miRDBA revealed that toll-like receptor 4 (TLR4) is a potential target for this miRNA. MiR-6869-5p could inhibit cell proliferation and the production of inflammatory cytokines (TNF-α and IL-6) in CRC cells via directly targeting TLR4. The protective effect of miR-6869-5p from colorectal carcinogenesis was dependent on TLR4/NF-κB signaling pathway. In addition, the 3-year survival was poor among CRC patients with decreased levels of miR-6869-5p in serum exosomes. Thus, miR-6869-5p may serve as a tumor suppressor in CRC, and serum exosomal miR-6869-5p is a promising circulating biomarker for the prediction of CRC prognosis.
Collapse
Affiliation(s)
- Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guoyan Liu
- Department of Dermatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengwen Jin
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Zengfang Wang
- Department of Gynecology and Obstetrics, Weifang Hospital of Maternal and Child Health, Weifang, China
| | - Quanhong Duan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jiang Xu
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Hospital of Xuzhou Medical University, Huai'an, China
| | - Donghua Xu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Medicine College, Weifang Medical University, Weifang, China
| |
Collapse
|
88
|
Si X, Zhang X, Hao X, Li Y, Chen Z, Ding Y, Shi H, Bai J, Gao Y, Cheng T, Yang FC, Zhou Y. Upregulation of miR-99a is associated with poor prognosis of acute myeloid leukemia and promotes myeloid leukemia cell expansion. Oncotarget 2018; 7:78095-78109. [PMID: 27801668 PMCID: PMC5363646 DOI: 10.18632/oncotarget.12947] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023] Open
Abstract
Leukemia stem cells (LSCs) can resist available treatments that results in disease progression and/or relapse. To dissect the microRNA (miRNA) expression signature of relapse in acute myeloid leukemia (AML), miRNA array analysis was performed using enriched LSCs from paired bone marrow samples of an AML patient at different disease stages. We identified that miR-99a was significantly upregulated in the LSCs obtained at relapse compared to the LSCs collected at the time of initial diagnosis. We also found that miR-99a was upregulated in LSCs compared to non-LSCs in a larger cohort of AML patients, and higher expression levels of miR-99a were significantly correlated with worse overall survival and event-free survival in these AML patients. Ectopic expression of miR-99a led to increased colony forming ability and expansion in myeloid leukemia cells after exposure to chemotherapeutic drugs in vitro and in vivo, partially due to overcoming of chemotherapeutic agent-mediated cell cycle arrest. Gene profiling and bioinformatic analyses indicated that ectopic expression of miR-99a significantly upregulated genes that are critical for LSC maintenance, cell cycle, and downstream targets of E2F and MYC. This study suggests that miR-99a has a novel role and potential use as a biomarker in myeloid leukemia progression.
Collapse
Affiliation(s)
- Xiaohui Si
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoyun Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xing Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yunan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yahui Ding
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hui Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Bai
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Collaborative Innovation Center for Cancer Medicine, Tianjin, China
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
89
|
Kang ST, Hsieh YS, Feng CT, Chen YT, Yang PE, Chen WM. miPrimer: an empirical-based qPCR primer design method for small noncoding microRNA. RNA (NEW YORK, N.Y.) 2018; 24:304-312. [PMID: 29208706 PMCID: PMC5824350 DOI: 10.1261/rna.061150.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/29/2017] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) are 18-25 nucleotides (nt) of highly conserved, noncoding RNAs involved in gene regulation. Because of miRNAs' short length, the design of miRNA primers for PCR amplification remains a significant challenge. Adding to the challenge are miRNAs similar in sequence and miRNA family members that often only differ in sequences by 1 nt. Here, we describe a novel empirical-based method, miPrimer, which greatly reduces primer dimerization and increases primer specificity by factoring various intrinsic primer properties and employing four primer design strategies. The resulting primer pairs displayed an acceptable qPCR efficiency of between 90% and 110%. When tested on miRNA families, miPrimer-designed primers are capable of discriminating among members of miRNA families, as validated by qPCR assays using Quark Biosciences' platform. Of the 120 miRNA primer pairs tested, 95.6% and 93.3% were successful in amplifying specifically non-family and family miRNA members, respectively, after only one design trial. In summary, miPrimer provides a cost-effective and valuable tool for designing miRNA primers.
Collapse
Affiliation(s)
| | | | | | - Yu-Ting Chen
- Quark Biosciences, Zhubei, Hsinchu, 30261, Taiwan
| | | | | |
Collapse
|
90
|
Wang J, Meng F, Dai E, Yang F, Wang S, Chen X, Yang L, Wang Y, Jiang W. Identification of associations between small molecule drugs and miRNAs based on functional similarity. Oncotarget 2018; 7:38658-38669. [PMID: 27232942 PMCID: PMC5122418 DOI: 10.18632/oncotarget.9577] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/08/2016] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate gene expression at post-transcriptional level. Increasing evidences show aberrant expression of miRNAs in varieties of diseases. Targeting the dysregulated miRNAs with small molecule drugs has become a novel therapy for many human diseases, especially cancer. Here, we proposed a novel computational approach to identify associations between small molecules and miRNAs based on functional similarity of differentially expressed genes. At the significance level of p < 0.01, we constructed the small molecule and miRNA functional similarity network involving 111 small molecules and 20 miRNAs. Moreover, we also predicted associations between drugs and diseases through integrating our identified small molecule-miRNA associations with experimentally validated disease related miRNAs. As a result, we identified 2265 associations between FDA approved drugs and diseases, in which ~35% associations have been validated by comprehensive literature reviews. For breast cancer, we identified 19 potential drugs, in which 12 drugs were supported by previous studies. In addition, we performed survival analysis for the patients from TCGA and GEO database, which indicated that the associated miRNAs of 4 drugs might be good prognosis markers in breast cancer. Collectively, this study proposed a novel approach to predict small molecule and miRNA associations based on functional similarity, which may pave a new way for miRNA-targeted therapy and drug repositioning.
Collapse
Affiliation(s)
- Jing Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P. R. China
| | - Fanlin Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P. R. China
| | - EnYu Dai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P. R. China
| | - Feng Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P. R. China
| | - Shuyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P. R. China
| | - Xiaowen Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P. R. China
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P. R. China
| | - Yuwen Wang
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150081, P. R. China
| | - Wei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P. R. China
| |
Collapse
|
91
|
Site-specific associations between miRNA expression and survival in colorectal cancer cases. Oncotarget 2018; 7:60193-60205. [PMID: 27517623 PMCID: PMC5312378 DOI: 10.18632/oncotarget.11173] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNAs (miRNA) are small non-coding RNA involved in cellular processes, including cell proliferation and angiogenesis. Thus, miRNA expression may alter survival after diagnosis with colorectal cancer (CRC). Results Individuals diagnosed with stage 1 or stage 2 rectal cancer had worse survival than colon cancer cases diagnosed at stage 1 or stage 2. After adjustment for multiple comparisons, no miRNAs were significantly associated with disease stage. Two miRNAs infrequently expressed in the population and not previously reported were associated with survival after diagnosis with colon cancer (miR-1 HR 2.17 95% CI 1.41, 3.36; and miR-101-3p HR 3.51 95% CI 1.72, 7.15). Among those diagnosed with rectal cancer, 201 miRNAs were associated with survival when the FDR q value was < 0.05. Assessment of 105 previously reported miRNAs associated with prognosis showed that four miRNAs influenced colon cancer survival and 17 influenced survival after a diagnosis with rectal cancer when raw p values were considered. Patients and Methods This study includes data from population-based studies of CRC conducted in Utah and the Kaiser Permanente Medical Care Program. A total of 1893 carcinoma and normal paired colorectal mucosa tissue samples were run using the Agilent Human miRNA Microarray V19.0. We assessed miRNA differential expression between paired carcinoma and normal colonic mucosa tissue with CRC- specific survival evaluating stage and site-specific associations after adjusting for age, sex, microsatellite instability tumor status, and AJCC stage. Conclusions MiRNAs dysregulated for both colon and rectal cancer had a greater impact on survival after a diagnosis with rectal cancer.
Collapse
|
92
|
Yan S, Jiang Y, Liang C, Cheng M, Jin C, Duan Q, Xu D, Yang L, Zhang X, Ren B, Jin P. Exosomal miR-6803-5p as potential diagnostic and prognostic marker in colorectal cancer. J Cell Biochem 2018; 119:4113-4119. [PMID: 29240249 DOI: 10.1002/jcb.26609] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Accumulating data have suggested exosome-delivered microRNAs (miRNAs) play critical role in carcinogenesis and cancer progression. However, little is known about the influence of exosomal miR-6803-5p on the development and prognosis of colorectal cancer (CRC). Levels of serum exosomal miR-6803-5p were determined by microarray analysis and verified by quantitative real-time PCR (qRT-PCR). Outcomes of overall survival (OS) and disease-free survival (DFS) of CRC patients were estimated by Kaplan-Meier analysis. We used cox regression analysis to investigate the association between exosomes-encapsulated miR-6803-5p and the clinicopathological factors of CRC patients. The exosomal miR-6803-5p was significantly increased in serum samples from patients with CRC in contrast to healthy controls. Significantly higher levels of serum exosomal miR-6803-5p were observed in CRC patients at later TNM stage or with lymph node metastasis as well as liver metastasis. Patients with elevated levels of serum exosomal miR-6803-5p had much poorer OS and DFS. Cox regression analysis revealed high levels of exosomal miR-6803-5p was associated with poor prognosis in CRC independent of other confounding factors. Thus, exosomal miR-6803-5p is a potential diagnostic and prognostic biomarker for patients with CRC.
Collapse
Affiliation(s)
- Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ye Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Caihong Liang
- Department of Cardiovascular, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Chengwen Jin
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Quanhong Duan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Donghua Xu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Lu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Bin Ren
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Peng Jin
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
93
|
Liu Y, Chen X, Cheng R, Yang F, Yu M, Wang C, Cui S, Hong Y, Liang H, Liu M, Zhao C, Ding M, Sun W, Liu Z, Sun F, Zhang C, Zhou Z, Jiang X, Chen X. The Jun/miR-22/HuR regulatory axis contributes to tumourigenesis in colorectal cancer. Mol Cancer 2018; 17:11. [PMID: 29351796 PMCID: PMC5775639 DOI: 10.1186/s12943-017-0751-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a severe health problem worldwide. Clarifying the mechanisms for the deregulation of oncogenes and tumour suppressors in CRC is vital for its diagnosis, treatment, prognosis and prevention. Hu antigen R (HuR), which is highly upregulated in CRC, functions as a pivotal oncogene to promote CRC progression. However, the underlying cause of its dysregulation is poorly understood. METHODS In CRC tissue sample pairs, HuR protein levels were measured by Western blot and immunohistochemical (IHC) staining, respectively. HuR mRNA levels were also monitored by qRT-PCR. Combining meta-analysis and microRNA (miRNA) target prediction software, we predicted miRNAs that targeted HuR. Pull-down assay, Western blot and luciferase assay were utilized to demonstrate the direct binding of miR-22 on HuR's 3'-UTR. The biological effects of HuR and miR-22 were investigated both in vitro by CCK-8, EdU and Transwell assays and in vivo by a xenograft mice model. JASPAR and SABiosciences were used to predict transcriptional factors that could affect miR-22. Luciferase assay was used to explore the validity of putative Jun binding sites for miR-22 regulation. ChIP assay was performed to test the Jun's occupancy on the C17orf91 promoter. RESULTS We observed a significant upregulation of HuR in CRC tissue pairs and confirmed the oncogenic function of HuR both in vitro and in vivo. We found that an important tumour-suppressive miRNA, miR-22, was significantly downregulated in CRC tissues and inversely correlated with HuR in both CRC tissues and CRC cell lines. We demonstrated that miR-22 directly bound to the 3'-UTR of HuR and led to inhibition of HuR protein, which repressed CRC proliferation and migration in vitro and decelerated CRC xenografted tumour growth in vivo. Furthermore, we found that the onco-transcription factor Jun could inhibit the transcription of miR-22. CONCLUSIONS Our findings highlight the critical roles of the Jun/miR-22/HuR regulatory axis in CRC progression and may provide attractive potential targets for CRC prevention and treatment.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Xiaorui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Rongjie Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Fei Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Chen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Shufang Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Yeting Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Minghui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Chihao Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Meng Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Wu Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Zhijian Liu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Feng Sun
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Chenyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China.
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China.
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China.
| |
Collapse
|
94
|
Polyphenols in Colorectal Cancer: Current State of Knowledge including Clinical Trials and Molecular Mechanism of Action. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4154185. [PMID: 29568751 PMCID: PMC5820674 DOI: 10.1155/2018/4154185] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 12/17/2017] [Indexed: 02/08/2023]
Abstract
Polyphenols have been reported to have wide spectrum of biological activities including major impact on initiation, promotion, and progression of cancer by modulating different signalling pathways. Colorectal cancer is the second most major cause of mortality and morbidity among females and the third among males. The objective of this review is to describe the activity of a variety of polyphenols in colorectal cancer in clinical trials, preclinical studies, and primary research. The molecular mechanisms of major polyphenols related to their beneficial effects on colorectal cancer are also addressed. Synthetic modifications and other future directions towards exploiting of natural polyphenols against colorectal cancer are discussed in the last section.
Collapse
|
95
|
Vychytilova-Faltejskova P, Merhautova J, Machackova T, Gutierrez-Garcia I, Garcia-Solano J, Radova L, Brchnelova D, Slaba K, Svoboda M, Halamkova J, Demlova R, Kiss I, Vyzula R, Conesa-Zamora P, Slaby O. MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis 2017; 6:399. [PMID: 29199273 PMCID: PMC5868056 DOI: 10.1038/s41389-017-0006-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022] Open
Abstract
Growing evidence suggests that microRNAs are involved in the development and progression of colorectal cancer (CRC). In the present study, deregulation and functioning of tumor-suppressive miR-215-5p was evaluated in CRC. In total, 448 tumor tissues and 325 paired adjacent healthy tissues collected from Czech and Spain cohorts of CRC patients have been used for miR-215-5p expression analyses. A series of in vitro experiments have been performed using transient transfection of miR-215-5p mimics into four CRC cell lines to identify specific cellular processes affected by miR-215-5p. Further, the effects of miR-215-5p on tumor growth were evaluated in vivo using NSG mice and stable cell line overexpressing miR-215-5p. Target mRNAs of miR-215-5p were tested using luciferase assay and western blot analyses. We found that miR-215-5p is significantly downregulated in tumor tissues compared with non-tumor adjacent tissues and its decreased levels correlate with the presence of lymph node metastases, tumor stage, and shorter overall survival in CRC patients. Overexpression of miR-215-5p significantly reduced proliferation, clonogenicity, and migration of CRC cells, lead to cell cycle arrest in G2/M phase and p53-dependent induction of apoptosis. The ability of miR-215-5p to inhibit tumor growth was confirmed in vivo. Finally, we confirmed epiregulin and HOXB9 to be the direct targets of miR-215-5p. As epiregulin is EGFR ligand and HOXB9 is its transcriptional inducer, we suggest that the main molecular link between miR-215-5p and CRC cells phenotypes presents the EGFR signaling pathway, which is one of the canonical pathogenic pathways in CRC.
Collapse
Affiliation(s)
- Petra Vychytilova-Faltejskova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Merhautova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tana Machackova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - José Garcia-Solano
- Department of Pathology, Santa Lucia University Hospital, Cartagena, Spain
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Dominika Brchnelova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Katerina Slaba
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marek Svoboda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Halamkova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Regina Demlova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Rostislav Vyzula
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pablo Conesa-Zamora
- Department of Clinical Analysis, Santa Lucia University Hospital, Cartagena, Spain
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic. .,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
96
|
Cummins G, Yung DE, Cox BF, Koulaouzidis A, Desmulliez MPY, Cochran S. Luminally expressed gastrointestinal biomarkers. Expert Rev Gastroenterol Hepatol 2017; 11:1119-1134. [PMID: 28849686 DOI: 10.1080/17474124.2017.1373017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A biomarker is a measurable indicator of normal biologic processes, pathogenic processes or pharmacological responses. The identification of a useful biomarker is challenging, with several hurdles to overcome before clinical adoption. This review gives a general overview of a range of biomarkers associated with inflammatory bowel disease or colorectal cancer along the gastrointestinal tract. Areas covered: These markers include those that are already clinically accepted, such as inflammatory markers such as faecal calprotectin, S100A12 (Calgranulin C), Fatty Acid Binding Proteins (FABP), malignancy markers such as Faecal Occult Blood, Mucins, Stool DNA, Faecal microRNA (miRNA), other markers such as Faecal Elastase, Faecal alpha-1-antitrypsin, Alpha2-macroglobulin and possible future markers such as microbiota, volatile organic compounds and pH. Expert commentary: There are currently a few biomarkers that have been sufficiently validated for routine clinical use at present such as FC. However, many of these biomarkers continue to be limited in sensitivity and specificity for various GI diseases. Emerging biomarkers have the potential to improve diagnosis and monitoring but further study is required to determine efficacy and validate clinical utility.
Collapse
Affiliation(s)
- Gerard Cummins
- a Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh , UK
| | - Diana E Yung
- b The Royal Infirmary of Edinburgh , Endoscopy Unit , Edinburgh , UK
| | - Ben F Cox
- c School of Medicine , University of Dundee , Dundee , UK
| | | | - Marc P Y Desmulliez
- a Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh , UK
| | - Sandy Cochran
- d Medical and Industrial Ultrasonics, School of Engineering , University of Glasgow , Glasgow , UK
| |
Collapse
|
97
|
Flum M, Kleemann M, Schneider H, Weis B, Fischer S, Handrick R, Otte K. miR-217-5p induces apoptosis by directly targeting PRKCI, BAG3, ITGAV and MAPK1 in colorectal cancer cells. J Cell Commun Signal 2017; 12:451-466. [PMID: 28905214 DOI: 10.1007/s12079-017-0410-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a genetically directed process of programmed cell death. A variety of microRNAs (miRNAs), endogenous single-stranded non-coding RNAs of about 22 nucleotides in length have been shown to be involved in the regulation of the intrinsic or extrinsic apoptotic pathways. There is increasing evidence that the aberrant expression of miRNAs plays a causal role in the development of diseases such as cancer. This makes miRNAs promising candidate molecules as therapeutic targets or agents. MicroRNA (miR)-217-5p has been implicated in carcinogenesis of various cancer entities, including colorectal cancer. Here, we analyzed the pro-apoptotic potential of miR-217-5p in a variety of colorecatal cancer cell lines showing that miR-217-5p mimic transfection led to the induction of apoptosis causing the breakdown of mitochondrial membrane potential, externalization of phosphatidylserine, activation of caspases and fragmentation of DNA. Furthermore, elevated miR-217-5p levels downregulated mRNA and protein expression of atypical protein kinase c iota type I (PRKCI), BAG family molecular chaperone regulator 3 (BAG3), integrin subunit alpha v (ITGAV) and mitogen-activated protein kinase 1 (MAPK1). A direct miR-217-5p mediated regulation to those targets was shown by repressed luciferase activity of reporter constructs containing the miR-217-5p binding sites in the 3' untranslated region. Taken together, our observations have uncovered the apoptosis-inducing potential of miR-217-5p through its regulation of multiple target genes involved in the ERK-MAPK signaling pathway by regulation of PRKCI, BAG3, ITGAV and MAPK1.
Collapse
Affiliation(s)
- Marion Flum
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
- Faculty of Medicine, University of Ulm, Albert-Einstein-Allee 11, 89079, Ulm, Germany
| | - Michael Kleemann
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany.
| | - Helga Schneider
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| | - Benjamin Weis
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| | - Simon Fischer
- Boehringer Ingelheim Pharma GmbH & Co KG, Cell Culture Development CMB, Birkendorfer Straße 65, 88397, Biberach, Germany
| | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| |
Collapse
|
98
|
Huang JY, Kang ST, Chen IT, Chang LK, Lin SS, Kou GH, Chu CY, Lo CF. Shrimp miR-10a Is Co-opted by White Spot Syndrome Virus to Increase Viral Gene Expression and Viral Replication. Front Immunol 2017; 8:1084. [PMID: 28932224 PMCID: PMC5592198 DOI: 10.3389/fimmu.2017.01084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022] Open
Abstract
Members of the microRNA miR-10 family are highly conserved and play many important roles in diverse biological mechanisms, including immune-related responses and cancer-related processes in certain types of cancer. In this study, we found the most highly upregulated shrimp microRNA from Penaeus vannamei during white spot syndrome virus (WSSV) infection was miR-10a. After confirming the expression level of miR-10a by northern blot and quantitative RT-PCR, an in vivo experiment showed that the viral copy number was decreased in miR-10a-inhibited shrimp. We found that miR-10a targeted the 5′ untranslated region (UTR) of at least three viral genes (vp26, vp28, and wssv102), and plasmids that were controlled by the 5′ UTR of these genes produced enhanced luciferase signals in transfected SF9 cells. These results suggest a previously unreported role for shrimp miR-10a and even a new type of host–virus interaction, whereby a co-opts the key cellular regulator miR-10a to globally enhance the translation of viral proteins.
Collapse
Affiliation(s)
- Jiun-Yan Huang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Center for Shrimp Disease Control and Genetic Improvement, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Ting Kang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - I-Tung Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Center for Shrimp Disease Control and Genetic Improvement, National Cheng Kung University, Tainan, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Guang-Hsiung Kou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| | - Chu-Fang Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Center for Shrimp Disease Control and Genetic Improvement, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
99
|
Carvalho TID, Novais PC, Lizarte FS, Sicchieri RD, Rosa MST, Carvalho CAMD, Tirapelli DPDC, Peria FM, Rocha JJRD, Féres O. Analysis of gene expression EGFR and KRAS, microRNA-21 and microRNA-203 in patients with colon and rectal cancer and correlation with clinical outcome and prognostic factors. Acta Cir Bras 2017; 32:243-250. [PMID: 28403349 DOI: 10.1590/s0102-865020170030000009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/21/2017] [Indexed: 12/18/2022] Open
Abstract
Purpose: To evaluate the expression of EGFR, KRAS genes, microRNAs-21 and 203 in colon and rectal cancer samples, correlated with their age at diagnosis, histological subtype, value of pretreatment CEA, TNM staging and clinical outcome. Methods: Expression of genes and microRNAs by real time PCR in tumor and non-tumor samples obtained from surgical treatment of 50 patients. Results: An increased expression of microRNAs-21 and 203 in tumor samples in relation to non-tumor samples was found. There was no statistically significant difference between the expression of these genes and microRNAs when compared to age at diagnosis and histological subtype. The EGFR gene showed higher expression in relation to the value of CEA diagnosis. The expression of microRNA-203 was progressively lower in relation to the TNM staging and was higher in the patient group in clinical remission. Conclusions: The therapy of colon and rectum tumors based on microRNAs remains under investigation reserving huge potential for future applications and clinical interventions in conjunction with existing therapies. We expect, based on the exposed data, to stimulate the development of new therapeutic possibilities, making the treatment of these tumors more effective.
Collapse
Affiliation(s)
- Thais Inácio de Carvalho
- PhD, Postgraduate Program in Clinical Surgery, Department of Surgery and Anatomy, School of Medicine of Ribeirao Preto, Universidade de São Paulo (USP), Brazil. Acquisition and interpretation of data, manuscript writing
| | - Paulo Cezar Novais
- PhD, Department of Health Sciences, Universidade de Marília (UNIMAR), Pos-doctoral Fellow, Postgraduate Program in Clinical Surgery, Department of Surgery and Anatomy, School of Medicine of Ribeirao Preto, USP, Brazil. Technical procedures, manuscript writing
| | - Fermino Sanches Lizarte
- Pos-doctoral Fellow, Postgraduate Program in Clinical Surgery, Department of Surgery and Anatomy, School of Medicine of Ribeirao Preto, USP, Brazil. Technical procedures, manuscript writing
| | - Renata Danielle Sicchieri
- Fellow PhD degree, Postgraduate Program in Clinical Surgery, Department of Surgery and Anatomy, School of Medicine of Ribeirao Preto, USP, Brazil. Manuscript writing
| | - Marcella Suelma Torrecillas Rosa
- Fellow Master degree, Postgraduate Program in Clinical Surgery, Department of Surgery and Anatomy, School of Medicine of Ribeirao Preto, USP, Brazil. Manuscript writing
| | - Camila Albuquerque Mello de Carvalho
- Fellow PhD degree, Postgraduate Program in Clinical Surgery, Department of Surgery and Anatomy, School of Medicine of Ribeirao Preto, USP, Brazil. Manuscript writing
| | - Daniela Pretti da Cunha Tirapelli
- PhD, Department of Surgery and Anatomy, Postgraduate Program in Clinical Surgery, School of Medicine of Ribeirao Preto, USP, Brazil. Scientific and intellectual content of the study
| | - Fernanda Maris Peria
- PhD, Department of Medical Clinical, Oncology Program, School of Medicine of Ribeirão Preto, USP, Brazil. Scientific and intellectual content of the study
| | - José Joaquim Ribeiro da Rocha
- Associate Professor, Coloproctology Division, Department of Surgery and Anatomy, School of Medicine of Ribeirao Preto, USP, Brazil. Scientific and intellectual content of the study
| | - Omar Féres
- Associate Professor, Coloproctology Division, Department of Surgery and Anatomy, School of Medicine of Ribeirao Preto, USP, Brazil. Concept, design, intellectual and scientific content of the study; supervision of all phases of the study, critical revision
| |
Collapse
|
100
|
Dacosta C, Bao Y. The Role of MicroRNAs in the Chemopreventive Activity of Sulforaphane from Cruciferous Vegetables. Nutrients 2017; 9:nu9080902. [PMID: 28825609 PMCID: PMC5579695 DOI: 10.3390/nu9080902] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer is an increasingly significant cause of mortality whose risk is linked to diet and inversely correlated with cruciferous vegetable consumption. This is likely to be partly attributable to the isothiocyanates derived from eating these vegetables, such as sulforaphane, which is extensively characterised for cytoprotective and tumour-suppressing activities. However, its bioactivities are likely to extend in complexity beyond those currently known; further insight into these bioactivities could aid the development of sulforaphane-based chemopreventive or chemotherapeutic strategies. Evidence suggests that sulforaphane modulates the expression of microRNAs, many of which are known to regulate genes involved at various stages of colorectal carcinogenesis. Based upon existing knowledge, there exist many plausible mechanisms by which sulforaphane may regulate microRNAs. Thus, there is a strong case for the further investigation of the roles of microRNAs in the anti-cancer effects of sulforaphane. There are several different types of approach to the wide-scale profiling of microRNA differential expression. Array-based methods may involve the use of RT-qPCR or complementary hybridisation probe chips, and tend to be relatively fast and economical. Cloning and deep sequencing approaches are more expensive and labour-intensive, but are worth considering where viable, for their greater sensitivity and ability to detect novel microRNAs.
Collapse
Affiliation(s)
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK. .
| |
Collapse
|