51
|
Abstract
Aicardi-Goutières syndrome (AGS) is a hereditary neurodegenerative disorder characterized mainly by early onset progressive encephalopathy, concomitant with an increase in interferon-α levels in the cerebrospinal fluid. Although it was initially mistaken for intrauterine viral infections, AGS has now been genetically attributed to a lack of adequate processing of cellular nucleic acid debris, which culminates in the perpetual trigger of the innate and acquired immune responses. Although the exact mechanisms governing AGS are not fully understood, significant strides have been recently achieved in better characterizing the disorder and the molecular functions of the five known proteins found mutated in AGS. Studies have now uncovered that AGS is tightly linked with the predisposition to other autoimmune disorders such as familial chilblain lupus and systemic lupus erythematosus. Moreover, at least two of the proteins mutated in AGS, namely TREX1 and SAMHD1, also seem to have antagonistic roles in safeguarding humans from human immunodeficiency virus (HIV) infections. We hereby synthesize the current developments into the greater framework of AGS and suggest that a better understanding of AGS might help usher a better treatment not only for some autoimmune disorders but also possibly for patients suffering from HIV infections, too.
Collapse
Affiliation(s)
- C Chahwan
- Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
52
|
Pang Y, Zheng B, Kimberly SL, Cai Z, Rhodes PG, Lin RCS. Neuron-oligodendrocyte myelination co-culture derived from embryonic rat spinal cord and cerebral cortex. Brain Behav 2012; 2:53-67. [PMID: 22574274 PMCID: PMC3343299 DOI: 10.1002/brb3.33] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/13/2011] [Accepted: 12/18/2011] [Indexed: 02/07/2023] Open
Abstract
An in vitro myelination model derived from rat central nervous system (CNS) remains to be established. Here, we describe a simple and reproducible myelination culture method using dissociated neuron-oligodendrocyte (OL) co-cultures from either the embryonic day 16 (E16) rat spinal cord or cerebral cortex. The dissociated cells are plated directly on poly-L-lysine-coated cover slips and maintained in a modified myelination medium that supports both OL and neuron differentiation. The spinal cord derived OL progenitor cells develop quickly into myelin basic protein (MBP)+ mature OLs and start to myelinate axons around 17 days in vitro (DIV17). Myelination reaches its peak around six weeks (DIV40) and the typical nodes of Ranvier are revealed by paranodal proteins Caspr and juxaparanodal protein Kv1.2 immunoreactivity. Electron microscopy (EM) shows typical myelination cytoarchitecture and synaptic organization. In contrast, the cortical-derived co-culture requires triiodothyronine (T3) in the culture medium for myelination. Finally, either hypomyelination and/or demyelination can be induced by exposing proinflammatory cytokines or demyelinating agents to the co-culture, suggesting the feasibility of this modified in vitro myelination model for myelin-deficit investigation.
Collapse
Affiliation(s)
- Yi Pang
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Baoying Zheng
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Simpson L. Kimberly
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Zhengwei Cai
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Philip G. Rhodes
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Rick C. S. Lin
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
53
|
Childs EJ, Sobel EM, Palmer CGS, Sinsheimer JS. Detection of intergenerational genetic effects with application to HLA-B matching as a risk factor for schizophrenia. Hum Hered 2011; 72:161-72. [PMID: 22004985 DOI: 10.1159/000332051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/23/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND METHODS Association studies using unrelated individuals cannot detect intergenerational genetic effects contributing to disease. To detect these effects, we improve the extended maternal-fetal genotype (EMFG) incompatibility test to estimate any combination of maternal effects, offspring effects, and their interactions at polymorphic loci or multiple SNPs, using any size pedigrees. We explore the advantages of using extended pedigrees rather than nuclear families. We apply our methods to schizophrenia pedigrees to investigate whether the previously associated mother-daughter HLA-B matching is a genuine risk or the result of bias. RESULTS Simulations demonstrate that using the EMFG test with extended pedigrees increases power and precision, while partitioning extended pedigrees into nuclear families can underestimate intergenerational effects. Application to actual data demonstrates that mother-daughter HLA-B matching remains a schizophrenia risk factor. Furthermore, ascertainment and mate selection biases cannot by themselves explain the observed HLA-B matching and schizophrenia association. CONCLUSIONS Our results demonstrate the power of the EMFG test to examine intergenerational genetic effects, highlight the importance of pedigree rather than case/control or case-mother/control-mother designs, illustrate that pedigrees provide a means to examine alternative, non-causal mechanisms, and they strongly support the hypothesis that HLA-B matching is causally involved in the etiology of schizophrenia in females.
Collapse
Affiliation(s)
- Erica J Childs
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
54
|
Selections from the Current Literature. J Am Dent Assoc 2011. [DOI: 10.14219/jada.archive.2011.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
55
|
Michalowicz BS, Hodges JS, Lussky RC, Bada H, Rawson T, Buttross LS, Chiriboga C, DiAngelis AJ, Novak MJ, Buchanan W, Mitchell DA, Papapanou PN. Maternal periodontitis treatment and child neurodevelopment at 24 to 28 months of age. Pediatrics 2011; 127:e1212-20. [PMID: 21482606 PMCID: PMC3081189 DOI: 10.1542/peds.2010-3129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Some maternal infections are associated with impaired infant cognitive and motor performance. Periodontitis results in frequent bacteremia and elevated serum inflammatory mediators. OBJECTIVE The purpose of this study was to determine if periodontitis treatment in pregnant women affects infant cognitive, motor, or language development. METHODS Children born to women who had participated in a previous trial were assessed between 24 and 28 months of age by using the Bayley Scales of Infant and Toddler Development (Third Edition) and the Preschool Language Scale (Fourth Edition). Information about the pregnancy, neonatal period, and home environment was obtained through chart abstractions, laboratory test results, and questionnaires. We compared infants born to women treated for periodontitis before 21 weeks' gestation (treatment group) or after delivery (controls). In unadjusted and adjusted analyses, associations between change in maternal periodontal condition during pregnancy and neurodevelopment scores were tested by using Student's t tests and linear regression. RESULTS A total of 411 of 791 eligible mother/caregiver-child pairs participated. Thirty-seven participating children (9.0%) were born at <37 weeks' gestation. Infants in the treatment and control groups did not differ significantly for adjusted mean cognitive (90.7 vs 91.4), motor (96.8 vs 97.2), or language (92.2 vs 92.1) scores (all P > .5). Results were similar in adjusted analyses. Children of women who experienced greater improvements in periodontal health had significantly higher motor and cognitive scores (P = .01 and .02, respectively), although the effect was small (∼1-point increase for each SD increase in the periodontal measure). CONCLUSION Nonsurgical periodontitis treatment in pregnant women was not associated with cognitive, motor, or language development in these study children.
Collapse
Affiliation(s)
| | - James S. Hodges
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | | | | | - Twila Rawson
- Department of Pediatrics, School of Medicine, and
| | | | - Claudia Chiriboga
- Department of Pediatric Neurology, College of Physicians and Surgeons and Harlem Hospital Center, New York, New York; and
| | | | - M. John Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky
| | - William Buchanan
- Department of Periodontics, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - Dennis A. Mitchell
- Department of Periodontics and Preventive Sciences, College of Dental Medicine, Columbia University, New York, New York
| | - Panos N. Papapanou
- Department of Periodontics and Preventive Sciences, College of Dental Medicine, Columbia University, New York, New York
| |
Collapse
|
56
|
Parker-Athill EC, Tan J. Maternal immune activation and autism spectrum disorder: interleukin-6 signaling as a key mechanistic pathway. Neurosignals 2010; 18:113-28. [PMID: 20924155 DOI: 10.1159/000319828] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/30/2010] [Indexed: 12/29/2022] Open
Abstract
An emerging area of research in autism spectrum disorder (ASD) is the role of prenatal exposure to inflammatory mediators during critical developmental periods. Epidemiological data has highlighted this relationship showing significant correlations between prenatal exposure to pathogens, including influenza, and the occurrence of ASD. Although there has not been a definitive molecular mechanism established, researchers have begun to investigate this relationship as animal models of maternal infection have support- ed epidemiological findings. Several groups utilizing these animal models have found that activation of the maternal immune system, termed maternal immune activation (MIA), and more specifically the exposure of the developing fetus to maternal cytokines precipitate the neurological, immunological and behavioral abnormalities observed in the offspring of these animals. These abnormalities have correlated with clinical findings of immune dysregulation, neurological and behavioral abnormalities in some autistic individuals. Additionally, researchers have observed genetic variations in these models in genes which regulate neurological and immunological development, similar to what is observed clinically in ASD. Altogether, the role of MIA and cytokine dysregulation, as a key mediator in the neuropathological, behavioral and possibly genetic irregularities observed clinically in autism are important factors that warrant further investigation.
Collapse
Affiliation(s)
- E Carla Parker-Athill
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, University of South Florida, Tampa, FL 33613, USA
| | | |
Collapse
|
57
|
FAN LW, TIEN LT, ZHENG B, PANG Y, RHODES P, CAI Z. Interleukin-1beta-induced brain injury and neurobehavioral dysfunctions in juvenile rats can be attenuated by alpha-phenyl-n-tert-butyl-nitrone. Neuroscience 2010; 168:240-52. [PMID: 20346393 PMCID: PMC2873102 DOI: 10.1016/j.neuroscience.2010.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/23/2010] [Accepted: 03/12/2010] [Indexed: 02/02/2023]
Abstract
Our previous study showed that perinatal exposure to interleukin-1beta (IL-1beta), an inflammatory cytokine, induces acute injury to developing white matter in the neonatal rat brain, and alpha-phenyl-n-tert-butyl-nitrone (PBN), a free radical scavenger and antioxidant, protects against IL-1beta-induced acute brain injury. The objective of the present study was to further examine whether perinatal exposure to IL-1beta resulted in persistent brain damage and neurological disabilities, and whether PBN offers lasting protection. Intracerebral injection of IL-1beta (1 microg/kg) was performed in postnatal day 5 (P5) Sprague-Dawley rat pups and PBN (100 mg/kg) or saline was administered intraperitoneally 5 min after IL-1beta injection. Perinatal IL-1beta exposure significantly affected neurobehavioral functions in juvenile rats. Although some neurobehavioral deficits such as performance in negative geotaxis, cliff avoidance, beam walking, and locomotion were spontaneously reversible, sustained deficits such as poor performance in the vibrissa-elicited forelimb-placing test, the pole test, the passive avoidance task, and the elevated plus-maze task were still observable at P21. Perinatal IL-1beta exposure resulted in persistent brain damage including enlargement of ventricles, loss of mature oligodendrocytes, impaired myelination as indicated by the decrease in myelin basic protein immunostaining, axonal and dendritic injury, and loss of hippocampal CA1 neurons and tyrosine hydroxylase positive neurons in the substantia nigra and ventral tegmental areas of the rat brain. Treatments with PBN provided lasting protection against the IL-1beta-induced brain injury and improved the associated neurological dysfunctions in juvenile rats, suggesting that prompt treatments for brain injury induced by perinatal infection/inflammation might have important long-term consequences.
Collapse
Affiliation(s)
- L.-W. FAN
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - L.-T. TIEN
- School of Medicine, Fu-Jen Catholic University, Hsin-Chuang, Taipei County, Taiwan
| | - B. ZHENG
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Y. PANG
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - P.G. RHODES
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Z. CAI
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
58
|
Evidence for maternal-fetal genotype incompatibility as a risk factor for schizophrenia. J Biomed Biotechnol 2010; 2010:576318. [PMID: 20379378 PMCID: PMC2850511 DOI: 10.1155/2010/576318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 02/09/2010] [Accepted: 02/20/2010] [Indexed: 12/22/2022] Open
Abstract
Prenatal/obstetric complications are implicated in schizophrenia susceptibility. Some complications may arise from maternal-fetal genotype incompatibility, a term used to describe maternal-fetal genotype combinations that produce an adverse prenatal environment. A review of maternal-fetal genotype incompatibility studies suggests that schizophrenia susceptibility is increased by maternal-fetal genotype combinations at the RHD and HLA-B loci. Maternal-fetal genotype combinations at these loci are hypothesized to have an effect on the maternal immune system during pregnancy which can affect fetal neurodevelopment and increase schizophrenia susceptibility. This article reviews maternal-fetal genotype incompatibility studies and schizophrenia and discusses the hypothesized biological role of these ‘‘incompatibility genes”. It concludes that research is needed to further elucidate the role of RHD and HLA-B maternal-fetal genotype incompatibility in schizophrenia and to identify other genes that produce an adverse prenatal environment through a maternal-fetal genotype incompatibility mechanism. Efforts to develop more sophisticated study designs and data analysis techniques for modeling maternal-fetal genotype incompatibility effects are warranted.
Collapse
|
59
|
Pang Y, Campbell L, Zheng B, Fan L, Cai Z, Rhodes P. Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience 2009; 166:464-75. [PMID: 20035837 DOI: 10.1016/j.neuroscience.2009.12.040] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/14/2009] [Accepted: 12/16/2009] [Indexed: 12/30/2022]
Abstract
Damage to oligodendrocyte (OL) progenitor cells (OPCs) and hypomyelination are two hallmark features of periventricular leukomalacia (PVL), the most common form of brain damage in premature infants. Clinical and animal studies have linked the incidence of PVL to maternal infection/inflammation, and activated microglia have been proposed to play a central role. However, the precise mechanism of how activated microglia adversely affects the survival and development of OPCs is still not clear. Here we demonstrate that lipopolysaccharide (LPS)-activated microglia are deleterious to OPCs, that is, impeding OL lineage progression, reducing the production of myelin basic protein (MBP), and mediating OPC death. We further demonstrate that LPS-activated microglia mediate OPC death by two distinct mechanisms in a time-dependent manner. The early phase of cell damage occurs within 24 h after LPS treatment, which is mediated by nitric oxide (NO)-dependent oxidative damage and is prevented by N(G)-nitro-l-arginine methyl ester (l-NAME), a general inhibitor of nitric oxide synthase. The delayed cell death is evident at 48 h after LPS treatment, is mediated by cytokines, and is prevented by blocking the activity of tumor necrosis factor-alpha (TNF-alpha) and pro-nerve growth factor (proNGF), but not by l-NAME. Furthermore, microglia-derived insulin-like growth factor-1 (IGF-1) and ciliary neurotrophic factor (CNTF) were significantly suppressed by LPS, and exogenous IGF-1 and CNTF synergistically protected OLs from death induced by LPS-treated microglia conditioned medium, indicating that a deficiency in trophic support may also be involved in OL death. Our finding that LPS-activated microglia not only induce two waves of cell death but also greatly impair OL development may shed some light on the mechanisms underlying selective white matter damage and hypomyelination in PVL.
Collapse
Affiliation(s)
- Y Pang
- Department of Pediatrics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | | | |
Collapse
|
60
|
Bilbo SD, Schwarz JM. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 2009; 3:14. [PMID: 19738918 PMCID: PMC2737431 DOI: 10.3389/neuro.08.014.2009] [Citation(s) in RCA: 467] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/22/2009] [Indexed: 12/12/2022] Open
Abstract
The immune system is well characterized for its critical role in host defense. Far beyond this limited role however, there is mounting evidence for the vital role the immune system plays within the brain, in both normal, “homeostatic” processes (e.g., sleep, metabolism, memory), as well as in pathology, when the dysregulation of immune molecules may occur. This recognition is especially critical in the area of brain development. Microglia and astrocytes, the primary immunocompetent cells of the CNS, are involved in every major aspect of brain development and function, including synaptogenesis, apoptosis, and angiogenesis. Cytokines such as tumor necrosis factor (TNF)α, interleukin [IL]-1β, and IL-6 are produced by glia within the CNS, and are implicated in synaptic formation and scaling, long-term potentiation, and neurogenesis. Importantly, cytokines are involved in both injury and repair, and the conditions underlying these distinct outcomes are under intense investigation and debate. Evidence from both animal and human studies implicates the immune system in a number of disorders with known or suspected developmental origins, including schizophrenia, anxiety/depression, and cognitive dysfunction. We review the evidence that infection during the perinatal period of life acts as a vulnerability factor for later-life alterations in cytokine production, and marked changes in cognitive and affective behaviors throughout the remainder of the lifespan. We also discuss the hypothesis that long-term changes in brain glial cell function underlie this vulnerability.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology & Neuroscience, Duke University Durham, NC, USA.
| | | |
Collapse
|
61
|
Lanté F, Meunier J, Guiramand J, De Jesus Ferreira MC, Cambonie G, Aimar R, Cohen-Solal C, Maurice T, Vignes M, Barbanel G. LateN-acetylcysteine treatment prevents the deficits induced in the offspring of dams exposed to an immune stress during gestation. Hippocampus 2008; 18:602-9. [DOI: 10.1002/hipo.20421] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
62
|
Garcia-Lopez G, Vadillo-Ortega F, Merchant-Larios H, Maida-Claros R, Osorio M, Soriano-Becerril D, Flores-Herrera H, Beltran-Montoya J, Garfias-Becerra Y, Zaga-Clavellina V. Evidence of in vitro differential secretion of 72 and 92 kDa type IV collagenases after selective exposure to lipopolysaccharide in human fetal membranes. Mol Hum Reprod 2007; 13:409-18. [PMID: 17449536 DOI: 10.1093/molehr/gam025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Premature rupture of chorioamniotic membranes complicated with intrauterine infection has been associated to degradation of extracellular matrix (ECM), which could explain local morphological changes. We used a culture system in which the chorioamniotic membranes form two independent chambers, allowing for the selective stimulation of either the amnion (AMN) and/or the choriodecidua (CHD) regions. Lipopolysaccharide (500 ng/ml) was added to the AMN and/or the CHD; secretions and gelatinolytic activity of matrix metalloproteinase (MMP)-2 and MMP-9 were measured in both compartments by enzyme-linked immunosorbent assay (ELISA) and zymography. Secretions of TIMP-1, TIMP-2 and TIMP-4 were measured by ELISA. Both metalloproteinases were immunolocalized in tissue sections. All stimulation modalities induced a similar proMMP-2 and proMMP-9 secretion pattern in the CHD with concentrations of 2.49 ng/ml and 90.91 pg/ml, respectively; the AMN showed no significant changes. The active forms of both enzymes did not change with any stimulation modality. TIMP-1, TIMP-2 and TIMP-4 secretions remained without significant changes (P = 0.41). ECM degradation and structural disarrangement were evident after stimulation. Secretion of proMMP-2 and proMMP-9 mainly in the CHD, presence of active forms associated to the tissue and minor changes in TIMPs secretion could favor ECM degradation and explain the weakening and thinning associated with the pathological rupture of chorioamniotic membranes.
Collapse
Affiliation(s)
- Guadalupe Garcia-Lopez
- Direction of Research, Instituto Nacional de Perinatologia Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Leem JH, Kaplan BM, Shim YK, Pohl HR, Gotway CA, Bullard SM, Rogers JF, Smith MM, Tylenda CA. Exposures to air pollutants during pregnancy and preterm delivery. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:905-10. [PMID: 16759993 PMCID: PMC1480490 DOI: 10.1289/ehp.8733] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The association between preterm delivery (PTD) and exposure to air pollutants has recently become a major concern. We investigated this relationship in Incheon, Republic of Korea, using spatial and temporal modeling to better infer individual exposures. The birth cohort consisted of 52,113 singleton births in 2001-2002, and data included residential address, gestational age, sex, birth date and order, and parental age and education. We used a geographic information system and kriging methods to construct spatial and temporal exposure models. Associations between exposure and PTD were evaluated using univariate and multivariate log-binomial regressions. Given the gestational age, birth date, and the mother's residential address, we estimated each mother's potential exposure to air pollutants during critical periods of the pregnancy. The adjusted risk ratios for PTD in the highest quartiles of the first trimester exposure were 1.26 [95% confidence interval (CI), 1.11-1.44] for carbon monoxide, 1.27 (95% CI, 1.04-1.56) for particulate matter with aerodynamic diameter < or = 10 microm, 1.24 (95% CI, 1.09-1.41) for nitrogen dioxide, and 1.21 (95% CI, 1.04-1.42) for sulfur dioxide. The relationships between PTD and exposures to CO, NO2, and SO2 were dose dependent (p < 0.001, p < 0.02, p < 0.02, respectively) . In addition, the results of our study indicated a significant association between air pollution and PTD during the third trimester of pregnancy. In conclusion, our study showed that relatively low concentrations of air pollution under current air quality standards during pregnancy may contribute to an increased risk of PTD. A biologic mechanism through increased prostaglandin levels that are triggered by inflammatory mediators during exposure periods is discussed.
Collapse
Affiliation(s)
- Jong-Han Leem
- Department of Occupational and Environmental Medicine, Inha University, Jung gu, Incheon, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Prayer D, Brugger PC, Kasprian G, Witzani L, Helmer H, Dietrich W, Eppel W, Langer M. MRI of fetal acquired brain lesions. Eur J Radiol 2006; 57:233-49. [PMID: 16413156 DOI: 10.1016/j.ejrad.2005.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 11/14/2005] [Accepted: 11/16/2005] [Indexed: 12/27/2022]
Abstract
Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.
Collapse
Affiliation(s)
- Daniela Prayer
- Department of Radiodiagnostics, Medical University of Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Yuan TM, Yu HM, Gu WZ, Li JP. White matter damage and chemokine induction in developing rat brain after intrauterine infection. J Perinat Med 2005; 33:415-22. [PMID: 16238536 DOI: 10.1515/jpm.2005.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In order to investigate the neuropathological effects on the developing rat brain after intrauterine infection, identification of glail fibrillary acidic protein (GFAP), 2', 3'-cyclic nucleotide phosphodiesterase (CNPase), and neurofilament (NF) was observed. Escherichia coli (E. coli) was inoculated into uterine horn of pregnant rats when gestation was 70% complete (15 days) and the control group was inoculated with normal saline. Immunohistochemistry was used for evaluation of GFAP, CNPase, and NF expression in pup brains at postnatal day 7 (P7) and reverse transcriptase-PCR (RT-PCR) to analyze macrophage inflammatory protein-1 alpha mRNA (MIP-1 alpha mRNA), macrophage inflammatory protein-1 beta mRNA (MIP-1beta mRNA), the regulated upon activation normal T expressed and secreted chemokine mRNA (RANTES mRNA) and Eotaxin mRNA expression in pup brains at P1, P3 and P7. The numbers of GFAP-positive cells of the E. coli-treated group pups were marked increased in periventricular white matter and hippocampus at P7 compared with the control group but no significant different levels of GFAP expression in corpus callosum were found between two groups. The integrate density (ID) of CNPase-positive staining of the Escherichia coli-treated group pups were marked decreased in periventricular white matter and corpus callosum at P7 compared with the control group. The ID of NF-positive staining of the Escherichia coli-treated group pups were marked decreased in periventricular white matter at P7 compared with the control group and no significant different levels of NF expression in corpus callosum were found between two groups. The expression of MIP-1 alpha mRNA and MIP-1 beta mRNA in brain of the E. coli-treated pup rat were higher than the control at P1, but the expression of MIP-1 alpha mRNA and MIP-1 beta mRNA in brain of the pup rat at P3 and P7 had no significant difference between two groups. The alteration of expression of GFAP, CNPase, and NF in the brain of neonatal rats after intrauterine infection suggested that intrauterine infection could cause neonatal white matter damage. Moreover, the transient increase in expression of chemokine such as MIP-1 alpha, MIP-1 beta in neonatal brain after intrauterine infection indicated that MIP-1 alpha, MIP-1 beta may be a mechanism mediating between the neonatal white matter damage and the intrauterine infection.
Collapse
Affiliation(s)
- Tian-Ming Yuan
- Department of Neonatology, Laboratory, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | | | | | | |
Collapse
|
66
|
Hanson DR, Gottesman II. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC MEDICAL GENETICS 2005; 6:7. [PMID: 15707482 PMCID: PMC554096 DOI: 10.1186/1471-2350-6-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 02/11/2005] [Indexed: 12/13/2022]
Abstract
BACKGROUND Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. DISCUSSION A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. SUMMARY A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons.
Collapse
Affiliation(s)
- Daniel R Hanson
- Department of Psychiatry, VA Medical Center (116A), One Veterans Drive, Minneapolis, MN, 55417 and Departments of Psychiatry & Psychology, University of Minnesota, USA
| | - Irving I Gottesman
- Departments of Psychiatry & Psychology, University of Minnesota, Minneapolis, MN 55454, USA
| |
Collapse
|