51
|
Tinling MA, West JJ, Cascio WE, Kilaru V, Rappold AG. Repeating cardiopulmonary health effects in rural North Carolina population during a second large peat wildfire. Environ Health 2016; 15:12. [PMID: 26818940 PMCID: PMC4728755 DOI: 10.1186/s12940-016-0093-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/10/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Cardiovascular health effects of fine particulate matter (PM2.5) exposure from wildfire smoke are neither definitive nor consistent with PM2.5 from other air pollution sources. Non-comparability among wildfire health studies limits research conclusions. METHODS We examined cardiovascular and respiratory health outcomes related to peat wildfire smoke exposure in a population where strong associations were previously reported for the 2008 Evans Road peat wildfire. We conducted a population-based epidemiologic investigation of associations between daily county-level modeled wildfire PM2.5 and cardiopulmonary emergency department (ED) visits during the 2011 Pains Bay wildfire in eastern North Carolina. We estimated changes in the relative risk cumulative over 0-2 lagged days of wildfire PM2.5 exposure using a quasi-Poisson regression model adjusted for weather, weekends, and poverty. RESULTS Relative risk associated with a 10 μg/m(3) increase in 24-h PM2.5 was significantly elevated in adults for respiratory/other chest symptoms 1.06 (1.00-1.13), upper respiratory infections 1.13 (1.05-1.22), hypertension 1.05 (1.00-1.09) and 'all-cause' cardiac outcomes 1.06 (1.00-1.13) and in youth for respiratory/other chest symptoms 1.18 (1.06-1.33), upper respiratory infections 1.14 (1.04-1.24) and 'all-cause' respiratory conditions 1.09 (1.01-1.17). CONCLUSIONS Our results replicate evidence for increased risk of cardiovascular outcomes from wildfire PM2.5 and suggest that cardiovascular health should be considered when evaluating the public health burden of wildfire smoke.
Collapse
Affiliation(s)
- Melissa A Tinling
- Department of Horticulture, North Carolina State University, Raleigh, NC, 27695, USA.
| | - J Jason West
- Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Wayne E Cascio
- United States Environmental Protection Agency/National Health and Environmental Effects Research Laboratory/Environmental Public Health Division, 109 T.W. Alexander Drive, US EPA, Research Triangle Park, Durham, NC, 27707, USA.
| | - Vasu Kilaru
- United States Environmental Protection Agency/National Exposure Research Laboratory/Environmental Sciences Division, Research Triangle Park, Durham, NC, USA.
| | - Ana G Rappold
- United States Environmental Protection Agency/National Health and Environmental Effects Research Laboratory/Environmental Public Health Division, 109 T.W. Alexander Drive, US EPA, Research Triangle Park, Durham, NC, 27707, USA.
| |
Collapse
|
52
|
Kim YH, Wyrzykowska-Ceradini B, Touati A, Krantz QT, Dye JA, Linak WP, Gullett B, Gilmour MI. Characterization of Size-Fractionated Airborne Particles Inside an Electronic Waste Recycling Facility and Acute Toxicity Testing in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11543-11550. [PMID: 26332991 DOI: 10.1021/acs.est.5b03263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 μg/m(3). In general, the coarse PM (2.5-10 μm) was 3-4 times more abundant than fine/ultrafine PM (<2.5 μm). The coarse PM contained higher levels of Ni, Pb, and Zn (up to 6.8 times) compared to the fine (0.1-2.5 μm) and ultrafine (<0.1 μm) PM. Compared to coarse PM measurements from a regional near-roadway study, Pb and Ni were enriched 170 and 20 times, respectively, in the indoor PM, with other significant enrichments (>10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the mouse lung and enrichment of these metals compared to levels normally present in the ambient PM could be of potential health concern.
Collapse
Affiliation(s)
- Yong Ho Kim
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
- National Research Council , Washington, District of Columbia 20001, United States
| | | | | | - Q Todd Krantz
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Janice A Dye
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - William P Linak
- Air Pollution Prevention and Control Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Brian Gullett
- Air Pollution Prevention and Control Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - M Ian Gilmour
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
53
|
Gilmour MI, Kim YH, Hays MD. Comparative chemistry and toxicity of diesel and biomass combustion emissions. Anal Bioanal Chem 2015; 407:5869-75. [DOI: 10.1007/s00216-015-8797-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/12/2023]
|
54
|
Farraj AK, Walsh L, Haykal-Coates N, Malik F, McGee J, Winsett D, Duvall R, Kovalcik K, Cascio WE, Higuchi M, Hazari MS. Cardiac effects of seasonal ambient particulate matter and ozone co-exposure in rats. Part Fibre Toxicol 2015; 12:12. [PMID: 25944145 PMCID: PMC4419498 DOI: 10.1186/s12989-015-0087-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/26/2015] [Indexed: 12/28/2022] Open
Abstract
Background The potential for seasonal differences in the physicochemical characteristics of ambient particulate matter (PM) to modify interactive effects with gaseous pollutants has not been thoroughly examined. The purpose of this study was to compare cardiac responses in conscious hypertensive rats co-exposed to concentrated ambient particulates (CAPs) and ozone (O3) in Durham, NC during the summer and winter, and to analyze responses based on particle mass and chemistry. Methods Rats were exposed once for 4 hrs by whole-body inhalation to fine CAPs alone (target concentration: 150 μg/m3), O3 (0.2 ppm) alone, CAPs plus O3, or filtered air during summer 2011 and winter 2012. Telemetered electrocardiographic (ECG) data from implanted biosensors were analyzed for heart rate (HR), ECG parameters, heart rate variability (HRV), and spontaneous arrhythmia. The sensitivity to triggering of arrhythmia was measured in a separate cohort one day after exposure using intravenously administered aconitine. PM elemental composition and organic and elemental carbon fractions were analyzed by high-resolution inductively coupled plasma–mass spectrometry and thermo-optical pyrolytic vaporization, respectively. Particulate sources were inferred from elemental analysis using a chemical mass balance model. Results Seasonal differences in CAPs composition were most evident in particle mass concentrations (summer, 171 μg/m3; winter, 85 μg/m3), size (summer, 324 nm; winter, 125 nm), organic:elemental carbon ratios (summer, 16.6; winter, 9.7), and sulfate levels (summer, 49.1 μg/m3; winter, 16.8 μg/m3). Enrichment of metals in winter PM resulted in equivalent summer and winter metal exposure concentrations. Source apportionment analysis showed enrichment for anthropogenic and marine salt sources during winter exposures compared to summer exposures, although only 4% of the total PM mass was attributed to marine salt sources. Single pollutant cardiovascular effects with CAPs and O3 were present during both summer and winter exposures, with evidence for unique effects of co-exposures and associated changes in autonomic tone. Conclusions These findings provide evidence for a pronounced effect of season on PM mass, size, composition, and contributing sources, and exposure-induced cardiovascular responses. Although there was inconsistency in biological responses, some cardiovascular responses were evident only in the co-exposure group during both seasons despite variability in PM physicochemical composition. These findings suggest that a single ambient PM metric alone is not sufficient to predict potential for interactive health effects with other air pollutants. Electronic supplementary material The online version of this article (doi:10.1186/s12989-015-0087-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aimen K Farraj
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Leon Walsh
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Najwa Haykal-Coates
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Fatiha Malik
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - John McGee
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Darrell Winsett
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Rachelle Duvall
- Human Exposure and Atmospheric Sciences Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Kasey Kovalcik
- Human Exposure and Atmospheric Sciences Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Wayne E Cascio
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Mark Higuchi
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Mehdi S Hazari
- Environmental Public Health Division, US EPA, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| |
Collapse
|
55
|
McGee MA, Kamal AS, McGee JK, Wood CE, Dye JA, Krantz QT, Landis MS, Gilmour MI, Gavett SH. Differential effects of particulate matter upwind and downwind of an urban freeway in an allergic mouse model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3930-3939. [PMID: 25710269 DOI: 10.1021/es506048k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Near-road exposure to air pollutants has been associated with decreased lung function and other adverse health effects in susceptible populations. This study was designed to investigate whether different types of near-road particulate matter (PM) contribute to exacerbation of allergic asthma. Samples of upwind and downwind coarse, fine, and ultrafine PM were collected using a wind direction-actuated ChemVol sampler at a single site 100 m from Interstate-96 in Detroit, MI during winter 2010/2011. Upwind PM was enriched in crustal and wood combustion sources while downwind PM was dominated by traffic sources. Control and ovalbumin (OVA)-sensitized BALB/cJ mice were exposed via oropharyngeal (OP) aspiration to 20 or 100 μg of each PM sample 2 h prior to OP challenge with OVA. In OVA-allergic mice, 100 μg of downwind coarse PM caused greater increases than downwind fine/ultrafine PM in bronchoalveolar lavage neutrophils, eosinophils, and lactate dehydrogenase. Upwind fine PM (100 μg) produced greater increases in neutrophils and eosinophils compared to other upwind size fractions. Cytokine (IL-5) levels in BAL fluid also increased markedly following 100 μg downwind coarse and downwind ultrafine PM exposures. These findings indicate coarse PM downwind and fine PM upwind of an interstate highway promote inflammation in allergic mice.
Collapse
Affiliation(s)
- Marie A McGee
- †Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ali S Kamal
- ‡Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina 27711, United States
| | - John K McGee
- §National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Charles E Wood
- §National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Janice A Dye
- §National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Q Todd Krantz
- §National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Matthew S Landis
- §National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - M Ian Gilmour
- §National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Stephen H Gavett
- §National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
56
|
Mergel I. The Long Way From Government Open Data to Mobile Health Apps: Overcoming Institutional Barriers in the US Federal Government. JMIR Mhealth Uhealth 2014; 2:e58. [PMID: 25537314 PMCID: PMC4376139 DOI: 10.2196/mhealth.3694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/31/2014] [Accepted: 10/10/2014] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Government agencies in the United States are creating mobile health (mHealth) apps as part of recent policy changes initiated by the White House's Digital Government Strategy. OBJECTIVE The objective of the study was to understand the institutional and managerial barriers for the implementation of mHealth, as well as the resulting adoption pathways of mHealth. METHODS This article is based on insights derived from qualitative interview data with 35 public managers in charge of promoting the reuse of open data through Challenge.gov, the platform created to run prizes, challenges, and the vetting and implementation of the winning and vendor-created apps. RESULTS The process of designing apps follows three different pathways: (1) entrepreneurs start to see opportunities for mobile apps, and develop either in-house or contract out to already vetted Web design vendors; (2) a top-down policy mandates agencies to adopt at least two customer-facing mobile apps; and (3) the federal government uses a policy instrument called "Prizes and Challenges", encouraging civic hackers to design health-related mobile apps using open government data from HealthData.gov, in combination with citizen needs. All pathways of the development process incur a set of major obstacles that have to be actively managed before agencies can promote mobile apps on their websites and app stores. CONCLUSIONS Beyond the cultural paradigm shift to design interactive apps and to open health-related data to the public, the managerial challenges include accessibility, interoperability, security, privacy, and legal concerns using interactive apps tracking citizen.
Collapse
Affiliation(s)
- Ines Mergel
- Maxwell School of Citizenship and Public Affairs, Department of Public Administration and International Affairs, Syracuse University, Syracuse, NY, United States.
| |
Collapse
|
57
|
Kim YH, Boykin E, Stevens T, Lavrich K, Gilmour MI. Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches. J Nanobiotechnology 2014; 12:47. [PMID: 25424549 PMCID: PMC4262188 DOI: 10.1186/s12951-014-0047-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/23/2014] [Indexed: 12/27/2022] Open
Abstract
Background Although engineered nanomaterials (ENM) are currently regulated either in the context of a new chemical, or as a new use of an existing chemical, hazard assessment is still to a large extent reliant on information from historical toxicity studies of the parent compound, and may not take into account special properties related to the small size and high surface area of ENM. While it is important to properly screen and predict the potential toxicity of ENM, there is also concern that current toxicity tests will require even heavier use of experimental animals, and reliable alternatives should be developed and validated. Here we assessed the comparative respiratory toxicity of ENM in three different methods which employed in vivo, in vitro and ex vivo toxicity testing approaches. Methods Toxicity of five ENM (SiO2 (10), CeO2 (23), CeO2 (88), TiO2 (10), and TiO2 (200); parentheses indicate average ENM diameter in nm) were tested in this study. CD-1 mice were exposed to the ENM by oropharyngeal aspiration at a dose of 100 μg. Mouse lung tissue slices and alveolar macrophages were also exposed to the ENM at concentrations of 22–132 and 3.1-100 μg/mL, respectively. Biomarkers of lung injury and inflammation were assessed at 4 and/or 24 hr post-exposure. Results Small-sized ENM (SiO2 (10), CeO2 (23), but not TiO2 (10)) significantly elicited pro-inflammatory responses in mice (in vivo), suggesting that the observed toxicity in the lungs was dependent on size and chemical composition. Similarly, SiO2 (10) and/or CeO2 (23) were also more toxic in the lung tissue slices (ex vivo) and alveolar macrophages (in vitro) compared to other ENM. A similar pattern of inflammatory response (e.g., interleukin-6) was observed in both ex vivo and in vitro when a dose metric based on cell surface area (μg/cm2), but not culture medium volume (μg/mL) was employed. Conclusion Exposure to ENM induced acute lung inflammatory effects in a size- and chemical composition-dependent manner. The cell culture and lung slice techniques provided similar profiles of effect and help bridge the gap in our understanding of in vivo, ex vivo, and in vitro toxicity outcomes. Electronic supplementary material The online version of this article (doi:10.1186/s12951-014-0047-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Ho Kim
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Elizabeth Boykin
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Tina Stevens
- Research Triangle Park Division, National Center for Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Katelyn Lavrich
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - M Ian Gilmour
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|