51
|
Genetic Basis of Melanin Pigmentation in Butterfly Wings. Genetics 2017; 205:1537-1550. [PMID: 28193726 DOI: 10.1534/genetics.116.196451] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 11/18/2022] Open
Abstract
Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale, Ddc, and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d, ebony, and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway.
Collapse
|
52
|
Abstract
Identifying the genomic changes that control morphological variation and understanding how they generate diversity is a major goal of evolutionary biology. In Heliconius butterflies, a small number of genes control the development of diverse wing color patterns. Here, we used full genome sequencing of individuals across the Heliconius erato radiation and closely related species to characterize genomic variation associated with wing pattern diversity. We show that variation around color pattern genes is highly modular, with narrow genomic intervals associated with specific differences in color and pattern. This modular architecture explains the diversity of color patterns and provides a flexible mechanism for rapid morphological diversification.
Collapse
|
53
|
Pham T, Day SM, Glassford WJ, Williams TM, Rebeiz M. The evolutionary origination of a novel expression pattern through an extreme heterochronic shift. Evol Dev 2017; 19:43-55. [PMID: 28116844 DOI: 10.1111/ede.12215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The evolutionary origins of morphological structures are thought to often depend upon the redeployment of old genes into new developmental settings. Although many examples of cis-regulatory divergence have shown how pre-existing patterns of gene expression have been altered, only a small number of case studies have traced the origins of cis-regulatory elements that drive new expression domains. Here, we elucidate the evolutionary history of a novel expression pattern of the yellow gene within the Zaprionus genus of fruit flies. We observed a unique pattern of yellow transcript accumulation in the wing disc during the third larval instar, a stage that precedes its typical expression pattern associated with cuticular melanization by about a week. The region of the Zaprionus wing disc that expresses yellow subsequently develops into a portion of the thorax, a tissue for which yellow expression has been reported for several fruit fly species. Tests of GFP reporter transgenes containing the Zaprionus yellow regulatory region revealed that the wing disc pattern arose by changes in the cis-regulatory region of yellow. Moreover, the wing disc enhancer activity of yellow depends upon a short conserved sequence with ancestral thoracic functions, suggesting that the pupal thorax regulatory sequence was genetically reprogrammed to drive expression that commences much earlier during development. These results highlight how novel domains of gene expression may arise by extreme shifts in timing during the origins of novel traits.
Collapse
Affiliation(s)
- Thomas Pham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie M Day
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Glassford
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
54
|
Buffry AD, Mendes CC, McGregor AP. The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. ADVANCES IN GENETICS 2016; 96:143-206. [PMID: 27968730 DOI: 10.1016/bs.adgen.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhancers regulate precise spatial and temporal patterns of gene expression in eukaryotes and, moreover, evolutionary changes in these modular cis-regulatory elements may represent the predominant genetic basis for phenotypic evolution. Here, we review approaches to identify and functionally analyze enhancers and their transcription factor binding sites, including assay for transposable-accessible chromatin-sequencing (ATAC-Seq) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, respectively. We also explore enhancer functionality, including how transcription factor binding sites combine to regulate transcription, as well as research on shadow and super enhancers, and how enhancers can act over great distances and even in trans. Finally, we discuss recent theoretical and empirical data on how transcription factor binding sites and enhancers evolve. This includes how the function of enhancers is maintained despite the turnover of transcription factor binding sites as well as reviewing studies where mutations in enhancers have been shown to underlie morphological change.
Collapse
Affiliation(s)
- A D Buffry
- Oxford Brookes University, Oxford, United Kingdom
| | - C C Mendes
- Oxford Brookes University, Oxford, United Kingdom
| | - A P McGregor
- Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
55
|
Nadeau NJ. Genes controlling mimetic colour pattern variation in butterflies. CURRENT OPINION IN INSECT SCIENCE 2016; 17:24-31. [PMID: 27720070 DOI: 10.1016/j.cois.2016.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
Butterfly wing patterns are made up of arrays of coloured scales. There are two genera in which within-species variation in wing patterning is common and has been investigated at the molecular level, Heliconius and Papilio. Both of these species have mimetic relationships with other butterfly species that increase their protection from predators. Heliconius have a 'tool-kit' of five genetic loci that control colour pattern, three of which have been identified at the gene level, and which have been repeatedly used to modify colour pattern by different species in the genus. By contrast, the three Papilio species that have been investigated each have different genetic mechanisms controlling their polymorphic wing patterns.
Collapse
Affiliation(s)
- Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
56
|
Byers KJRP, Xu S, Schlüter PM. Molecular mechanisms of adaptation and speciation: why do we need an integrative approach? Mol Ecol 2016; 26:277-290. [DOI: 10.1111/mec.13678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of Systematic and Evolutionary Botany; University of Zurich; Zollikerstrasse 107 CH-8008 Zurich Switzerland
| | - Shuqing Xu
- Max Planck Institute for Chemical Ecology; Hans-Knöll-Straße 8 D-07745 Jena Germany
| | - Philipp M. Schlüter
- Department of Systematic and Evolutionary Botany; University of Zurich; Zollikerstrasse 107 CH-8008 Zurich Switzerland
| |
Collapse
|
57
|
The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics 2016; 200:1-19. [PMID: 25953905 DOI: 10.1534/genetics.114.172387] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Wing-pattern mimicry in butterflies has provided an important example of adaptation since Charles Darwin and Alfred Russell Wallace proposed evolution by natural selection >150 years ago. The neotropical butterfly genus Heliconius played a central role in the development of mimicry theory and has since been studied extensively in the context of ecology and population biology, behavior, and mimicry genetics. Heliconius species are notable for their diverse color patterns, and previous crossing experiments revealed that much of this variation is controlled by a small number of large-effect, Mendelian switch loci. Recent comparative analyses have shown that the same switch loci control wing-pattern diversity throughout the genus, and a number of these have now been positionally cloned. Using a combination of comparative genetic mapping, association tests, and gene expression analyses, variation in red wing patterning throughout Heliconius has been traced back to the action of the transcription factor optix. Similarly, the signaling ligand WntA has been shown to control variation in melanin patterning across Heliconius and other butterflies. Our understanding of the molecular basis of Heliconius mimicry is now providing important insights into a variety of additional evolutionary phenomena, including the origin of supergenes, the interplay between constraint and evolvability, the genetic basis of convergence, the potential for introgression to facilitate adaptation, the mechanisms of hybrid speciation in animals, and the process of ecological speciation.
Collapse
|
58
|
Lesoway MP. The future of Evo-Devo: the inaugural meeting of the Pan American Society for evolutionary developmental biology. Evol Dev 2016; 18:71-7. [PMID: 26773456 DOI: 10.1111/ede.12181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
What is the future of evolutionary developmental biology? This question and more were discussed at the inaugural meeting for the Pan American Society for Evolutionary Developmental Biology, held August 5-9, 2015, in Berkeley, California, USA. More than 300 participants attended the first meeting of the new society, representing the current diversity of Evo-Devo. Speakers came from throughout the Americas, presenting work using an impressive range of study systems, techniques, and approaches. Current research draws from themes including the role of gene regulatory networks, plasticity and the role of the environment, novelty, population genetics, and regeneration, using new and emerging techniques as well as traditional tools. Multiple workshops and a discussion session covered subjects both practical and theoretical, providing an opportunity for members to discuss the current challenges and future directions for Evo-Devo. The excitement and discussion generated over the course of the meeting demonstrates the current dynamism of the field, suggesting that the future of Evo-Devo is bright indeed.
Collapse
Affiliation(s)
- Maryna P Lesoway
- Department of Biology, McGill University, 1205 Avenue Dr Penfield, Montreal, QC, Canada, H3A-1B1.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
59
|
Wallbank RWR, Baxter SW, Pardo-Diaz C, Hanly JJ, Martin SH, Mallet J, Dasmahapatra KK, Salazar C, Joron M, Nadeau N, McMillan WO, Jiggins CD. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling. PLoS Biol 2016; 14:e1002353. [PMID: 26771987 PMCID: PMC4714872 DOI: 10.1371/journal.pbio.1002353] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/08/2015] [Indexed: 11/26/2022] Open
Abstract
An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.
Collapse
Affiliation(s)
- Richard W. R. Wallbank
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
| | - Simon W. Baxter
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Carolina Pardo-Diaz
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, D.C., Colombia
| | - Joseph J. Hanly
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
| | - Simon H. Martin
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - James Mallet
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
- Organismic and Evolutionary Biology, Harvard University, Harvard, Massachusetts, United States of America
| | - Kanchon K. Dasmahapatra
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
- Department of Biology, University of York, York, United Kingdom
| | - Camilo Salazar
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, D.C., Colombia
| | - Mathieu Joron
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
- Institut de Systématique Evolution et Biodiversité, UMR 7205, CNRS MNHN UPMC EPHE, Muséum National d'Histoire Naturelle, CP50, Paris, France
- Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry–EPHE, Montpellier, France
| | - Nicola Nadeau
- Dept. of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - W. Owen McMillan
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
| |
Collapse
|
60
|
Hoyal Cuthill JF, Charleston M. Wing patterning genes and coevolution of Müllerian mimicry inHeliconiusbutterflies: Support from phylogeography, cophylogeny, and divergence times. Evolution 2015; 69:3082-96. [DOI: 10.1111/evo.12812] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 10/09/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022]
|
61
|
Sajuthi A, Carrillo-Zazueta B, Hu B, Wang A, Brodnansky L, Mayberry J, Rivera AS. Sexually dimorphic gene expression in the lateral eyes of Euphilomedes carcharodonta (Ostracoda, Pancrustacea). EvoDevo 2015; 6:34. [PMID: 26561519 PMCID: PMC4641368 DOI: 10.1186/s13227-015-0026-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022] Open
Abstract
Background The evolution and development of sexual dimorphism illuminates a central question in biology: How do similar genomes produce different phenotypes? In an XX/XO system especially the state of a sexually dimorphic trait is determined by differences in gene expression, as there are no additional genetic loci in either sex. Here, we examine the XX/XO ostracod crustacean species Euphilomedes carcharodonta. This species exhibits radical sexual dimorphism of their lateral eyes, females have only a tiny simple lateral eye while males have elaborate ommatidial eyes. Results We find that males express three of nine eye-development gene homologs at significantly higher levels during juvenile eye development, compared to females. We also find that most eye-development genes examined are pleiotropic, with high expression levels during embryonic development as well as during juvenile eye development. Later, in adults, we find that phototransduction genes are expressed at higher levels in males than in females, as we might expect when comparing ommatidial to simple eyes. Conclusions We show here that expression changes of a handful of developmental genes may underlie the radical difference in a dimorphic character. This work gives an important point of comparison for studying eye evolution and development in the Pancrustacea. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0026-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Sajuthi
- Department of Biological Sciences, University of the Pacific, Stockton, CA USA ; Stritch School of Medicine, Loyola University, Chicago, IL USA
| | - Brenna Carrillo-Zazueta
- Department of Biological Sciences, University of the Pacific, Stockton, CA USA ; Dugoni School of Dentistry, University of the Pacific, San Francisco, CA USA
| | - Briana Hu
- Department of Biological Sciences, University of the Pacific, Stockton, CA USA
| | - Anita Wang
- Department of Biological Sciences, University of the Pacific, Stockton, CA USA ; Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA USA
| | - Logan Brodnansky
- Department of Biological Sciences, University of the Pacific, Stockton, CA USA ; Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA USA
| | - John Mayberry
- Department of Biological Sciences, University of the Pacific, Stockton, CA USA
| | - Ajna S Rivera
- Department of Biological Sciences, University of the Pacific, Stockton, CA USA
| |
Collapse
|
62
|
Ng WC, Chin JSR, Tan KJ, Yew JY. The fatty acid elongase Bond is essential for Drosophila sex pheromone synthesis and male fertility. Nat Commun 2015; 6:8263. [PMID: 26369287 PMCID: PMC4579836 DOI: 10.1038/ncomms9263] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022] Open
Abstract
Insects use a spectacular variety of chemical signals to guide their social behaviours. How such chemical diversity arises is a long-standing problem in evolutionary biology. Here we describe the contribution of the fatty acid elongase Bond to both pheromone diversity and male fertility in Drosophila. Genetic manipulation and mass spectrometry analysis reveal that the loss of bond eliminates the male sex pheromone (3R,11Z,19Z)-3-acetoxy-11,19-octacosadien-1-ol (CH503). Unexpectedly, silencing bond expression severely suppresses male fertility and the fertility of conspecific rivals. These deficits are rescued on ectopic expression of bond in the male reproductive system. A comparative analysis across six Drosophila species shows that the gain of a novel transcription initiation site is correlated with bond expression in the ejaculatory bulb, a primary site of male pheromone production. Taken together, these results indicate that modification of cis-regulatory elements and subsequent changes in gene expression pattern is one mechanism by which pheromone diversity arises. Insect behaviours are often guided by chemical signals, but little is known about how pheromone diversity evolves. Here the authors show that loss of the gene bond in Drosophila eliminates the sex pheromone CH503, while silencing it reduces the fertility of males and their conspecific rivals.
Collapse
Affiliation(s)
- Wan Chin Ng
- Biological Mass Spectrometry, Temasek Life Sciences Laboratory, 1 Research Link NUS, 117604 Singapore, Singapore
| | - Jacqueline S R Chin
- Biological Mass Spectrometry, Temasek Life Sciences Laboratory, 1 Research Link NUS, 117604 Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore, Singapore
| | - Kah Junn Tan
- Biological Mass Spectrometry, Temasek Life Sciences Laboratory, 1 Research Link NUS, 117604 Singapore, Singapore
| | - Joanne Y Yew
- Biological Mass Spectrometry, Temasek Life Sciences Laboratory, 1 Research Link NUS, 117604 Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore, Singapore
| |
Collapse
|
63
|
Merrill RM, Dasmahapatra KK, Davey JW, Dell'Aglio DD, Hanly JJ, Huber B, Jiggins CD, Joron M, Kozak KM, Llaurens V, Martin SH, Montgomery SH, Morris J, Nadeau NJ, Pinharanda AL, Rosser N, Thompson MJ, Vanjari S, Wallbank RWR, Yu Q. The diversification of Heliconius butterflies: what have we learned in 150 years? J Evol Biol 2015; 28:1417-38. [PMID: 26079599 DOI: 10.1111/jeb.12672] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 11/27/2022]
Abstract
Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation.
Collapse
Affiliation(s)
- R M Merrill
- Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | | | - J W Davey
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - D D Dell'Aglio
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - J J Hanly
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - B Huber
- Department of Biology, University of York, York, UK.,Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France
| | - C D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - M Joron
- Smithsonian Tropical Research Institute, Panama City, Panama.,Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France.,Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier 5, France
| | - K M Kozak
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - V Llaurens
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France
| | - S H Martin
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - S H Montgomery
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - J Morris
- Department of Biology, University of York, York, UK
| | - N J Nadeau
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - A L Pinharanda
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - N Rosser
- Department of Biology, University of York, York, UK
| | - M J Thompson
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Life Sciences, Natural History Museum, London, UK
| | - S Vanjari
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - R W R Wallbank
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Q Yu
- Department of Zoology, University of Cambridge, Cambridge, UK.,School of Life Sciences, Chongqing University, Shapingba District, Chongqing, China
| |
Collapse
|
64
|
Rebeiz M, Patel NH, Hinman VF. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development. Annu Rev Genomics Hum Genet 2015; 16:103-31. [PMID: 26079281 DOI: 10.1146/annurev-genom-091212-153423] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.
Collapse
Affiliation(s)
- Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;
| | | | | |
Collapse
|
65
|
Pardo-Diaz C, Salazar C, Jiggins CD. Towards the identification of the loci of adaptive evolution. Methods Ecol Evol 2015; 6:445-464. [PMID: 25937885 PMCID: PMC4409029 DOI: 10.1111/2041-210x.12324] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022]
Abstract
1. Establishing the genetic and molecular basis underlying adaptive traits is one of the major goals of evolutionary geneticists in order to understand the connection between genotype and phenotype and elucidate the mechanisms of evolutionary change. Despite considerable effort to address this question, there remain relatively few systems in which the genes shaping adaptations have been identified. 2. Here, we review the experimental tools that have been applied to document the molecular basis underlying evolution in several natural systems, in order to highlight their benefits, limitations and suitability. In most cases, a combination of DNA, RNA and functional methodologies with field experiments will be needed to uncover the genes and mechanisms shaping adaptation in nature.
Collapse
Affiliation(s)
- Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del RosarioCarrera 24 No 63C-69, Bogotá 111221, Colombia
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del RosarioCarrera 24 No 63C-69, Bogotá 111221, Colombia
| | - Chris D Jiggins
- Department of Zoology, University of CambridgeDowning Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
66
|
Huber B, Whibley A, Poul YL, Navarro N, Martin A, Baxter S, Shah A, Gilles B, Wirth T, McMillan WO, Joron M. Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies. Heredity (Edinb) 2015; 114:515-24. [PMID: 25806542 PMCID: PMC4815517 DOI: 10.1038/hdy.2015.22] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 02/01/2015] [Accepted: 02/04/2015] [Indexed: 12/26/2022] Open
Abstract
Understanding the genetic architecture of adaptive traits has been at the centre of modern evolutionary biology since Fisher; however, evaluating how the genetic architecture of ecologically important traits influences their diversification has been hampered by the scarcity of empirical data. Now, high-throughput genomics facilitates the detailed exploration of variation in the genome-to-phenotype map among closely related taxa. Here, we investigate the evolution of wing pattern diversity in Heliconius, a clade of neotropical butterflies that have undergone an adaptive radiation for wing-pattern mimicry and are influenced by distinct selection regimes. Using crosses between natural wing-pattern variants, we used genome-wide restriction site-associated DNA (RAD) genotyping, traditional linkage mapping and multivariate image analysis to study the evolution of the architecture of adaptive variation in two closely related species: Heliconius hecale and H. ismenius. We implemented a new morphometric procedure for the analysis of whole-wing pattern variation, which allows visualising spatial heatmaps of genotype-to-phenotype association for each quantitative trait locus separately. We used the H. melpomene reference genome to fine-map variation for each major wing-patterning region uncovered, evaluated the role of candidate genes and compared genetic architectures across the genus. Our results show that, although the loci responding to mimicry selection are highly conserved between species, their effect size and phenotypic action vary throughout the clade. Multilocus architecture is ancestral and maintained across species under directional selection, whereas the single-locus (supergene) inheritance controlling polymorphism in H. numata appears to have evolved only once. Nevertheless, the conservatism in the wing-patterning toolkit found throughout the genus does not appear to constrain phenotypic evolution towards local adaptive optima.
Collapse
Affiliation(s)
- B Huber
- 1] Institut de Systématique, Evolution, et Biodiversité, UMR 7205 CNRS, Muséum National d'Histoire Naturelle, Paris, France [2] Laboratoire Biologie Intégrative des Populations, Ecole Pratique des Hautes Etudes (EPHE), Paris, France [3] The Smithsonian Tropical Research Institute, Balboa, República de Panamá
| | - A Whibley
- Institut de Systématique, Evolution, et Biodiversité, UMR 7205 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Y L Poul
- Institut de Systématique, Evolution, et Biodiversité, UMR 7205 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - N Navarro
- 1] Laboratoire PALEVO, Ecole Pratique des Hautes Etudes, Dijon, France [2] UMR uB/CNRS 6282-Biogéosciences, Université de Bourgogne, Dijon, France
| | - A Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - S Baxter
- 1] School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia [2] Department of Zoology, University of Cambridge, Cambridge, UK
| | - A Shah
- 1] Institut de Systématique, Evolution, et Biodiversité, UMR 7205 CNRS, Muséum National d'Histoire Naturelle, Paris, France [2] Department of Animal Behaviour, Universität Bielefeld, Bielefeld, Germany
| | - B Gilles
- 1] Institut de Systématique, Evolution, et Biodiversité, UMR 7205 CNRS, Muséum National d'Histoire Naturelle, Paris, France [2] The Smithsonian Tropical Research Institute, Balboa, República de Panamá
| | - T Wirth
- 1] Institut de Systématique, Evolution, et Biodiversité, UMR 7205 CNRS, Muséum National d'Histoire Naturelle, Paris, France [2] Laboratoire Biologie Intégrative des Populations, Ecole Pratique des Hautes Etudes (EPHE), Paris, France
| | - W O McMillan
- The Smithsonian Tropical Research Institute, Balboa, República de Panamá
| | - M Joron
- 1] Institut de Systématique, Evolution, et Biodiversité, UMR 7205 CNRS, Muséum National d'Histoire Naturelle, Paris, France [2] The Smithsonian Tropical Research Institute, Balboa, República de Panamá
| |
Collapse
|
67
|
Do candidate genes mediating conspecific sperm precedence affect sperm competitive ability within species? A test case in Drosophila. G3-GENES GENOMES GENETICS 2014; 4:1701-7. [PMID: 25031180 PMCID: PMC4169163 DOI: 10.1534/g3.114.012476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
When females mate to multiple males, the last male to mate fathers the majority of progeny. When males of different species inseminate a female, the sperm of the male conspecific to the female is favored in fertilization in a process known as conspecific sperm precedence (CSP). A large number of studies in Drosophila have assayed the genetic basis of sperm competition, with a main focus on D. melanogaster and accessory gland protein genes. Only a few studies have attempted to disentangle the genetic basis of CSP between related species of Drosophila. Although there is no a priori reason to believe that genes influencing intraspecific sperm competitive ability might also mediate conspecific sperm precedence, no study has addressed the question. Here, we test a group of candidate CSP genes between D. simulans and D. mauritiana for their effect on sperm competition in D. melanogaster. The use of P-element insertion lines identified CG14891 gene disruption as the only one causing a significant decrease in second male paternity success relative to wild-type and ebony tester males. The gene disruption affected both sperm displacement and the sperm fertilizing ability. Out of five genes tested using RNA interference, only gene knockdown of CG6864(Mst89B) [corrected] significantly reduced the male's ability to father progeny when second to mate. Our results suggest that CG14891 and CG6468 might have been co-opted from an intraspecies gene function (i.e., sperm competition) into an interspecies avoidance phenotype (i.e., CSP). Alternatively, the dual role of these genes could be a consequence of their pleiotropic roles.
Collapse
|