51
|
Uddin R, Jamil F. Prioritization of potential drug targets against P. aeruginosa by core proteomic analysis using computational subtractive genomics and Protein-Protein interaction network. Comput Biol Chem 2018; 74:115-122. [DOI: 10.1016/j.compbiolchem.2018.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/06/2018] [Accepted: 02/22/2018] [Indexed: 01/12/2023]
|
52
|
McCarthy K, Wailan A, Jennison A, Kidd T, Paterson D. P. aeruginosa blood stream infection isolates: A “full house” of virulence genes in isolates associated with rapid patient death and patient survival. Microb Pathog 2018; 119:81-85. [DOI: 10.1016/j.micpath.2018.03.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 02/18/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022]
|
53
|
Wyres KL, Holt KE. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol 2018; 45:131-139. [PMID: 29723841 DOI: 10.1016/j.mib.2018.04.004] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/15/2018] [Indexed: 11/18/2022]
Abstract
Klebsiella pneumoniae is an opportunistic bacterial pathogen known for its high frequency and diversity of antimicrobial resistance (AMR) genes. In addition to being a significant clinical problem in its own right, K. pneumoniae is the species within which several new AMR genes were first discovered before spreading to other pathogens (e.g. carbapenem-resistance genes KPC, OXA-48 and NDM-1). Whilst K. pneumoniae's contribution to the overall AMR crisis is impossible to quantify, current evidence suggests it has a wider ecological distribution, significantly more varied DNA composition, greater AMR gene diversity and a higher plasmid burden than other Gram negative opportunists. Hence we propose it plays a key role in disseminating AMR genes from environmental microbes to clinically important pathogens.
Collapse
Affiliation(s)
- Kelly L Wyres
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia.
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| |
Collapse
|
54
|
Jeukens J, Kukavica-Ibrulj I, Emond-Rheault JG, Freschi L, Levesque RC. Comparative genomics of a drug-resistant Pseudomonas aeruginosa panel and the challenges of antimicrobial resistance prediction from genomes. FEMS Microbiol Lett 2018; 364:4056142. [PMID: 28922838 DOI: 10.1093/femsle/fnx161] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/31/2017] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance (AMR) is now recognized as a global threat to human health. The accessibility of microbial whole-genome sequencing offers an invaluable opportunity for resistance surveillance via the resistome, i.e. the genes and mutations underlying AMR. Unfortunately, AMR prediction from genomic data remains extremely challenging, especially for species with a large pan-genome. One such organism, for which multidrug-resistant (MDR) isolates are frequently encountered in the clinic, is Pseudomonas aeruginosa. This study focuses on a commercially available panel of seven MDR P. aeruginosa strains. The main goals were to sequence and compare these strains' genomes, attempt to predict AMR from whole genomes using two different methods and determine whether this panel could be an informative complement to the international P. aeruginosa reference panel. As expected, the results highlight the complexity of associating genotype and AMR phenotype in P. aeruginosa, mainly due to the intricate regulation of resistance mechanisms. Our results also urge caution in the interpretation of predicted resistomes regarding the occurrence of gene identity discrepancies between strains. We envision that, in addition to accounting for the genomic diversity of P. aeruginosa, future development of predictive tools will need to incorporate a transcriptomic, proteomic and/or metabolomic component.
Collapse
Affiliation(s)
- J Jeukens
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 avenue de la Médecine, Québec G1V 0A6, Canada
| | - I Kukavica-Ibrulj
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 avenue de la Médecine, Québec G1V 0A6, Canada
| | - J G Emond-Rheault
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 avenue de la Médecine, Québec G1V 0A6, Canada
| | - L Freschi
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 avenue de la Médecine, Québec G1V 0A6, Canada
| | - R C Levesque
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 avenue de la Médecine, Québec G1V 0A6, Canada
| |
Collapse
|
55
|
Dias GM, Bidault A, Le Chevalier P, Choquet G, Der Sarkissian C, Orlando L, Medigue C, Barbe V, Mangenot S, Thompson CC, Thompson FL, Jacq A, Pichereau V, Paillard C. Vibrio tapetis Displays an Original Type IV Secretion System in Strains Pathogenic for Bivalve Molluscs. Front Microbiol 2018; 9:227. [PMID: 29515533 PMCID: PMC5825899 DOI: 10.3389/fmicb.2018.00227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/30/2018] [Indexed: 02/05/2023] Open
Abstract
The Brown Ring Disease (BRD) caused high mortality rates since 1986 in the Manila clam Venerupis philippinarum introduced and cultured in Western Europe from the 1970s. The causative agent of BRD is a Gram-Negative bacterium, Vibrio tapetis, which is also pathogenic to fish. Here we report the first assembly of the complete genome of V. tapetis CECT4600T, together with the genome sequences of 16 additional strains isolated across a broad host and geographic range. Our extensive genome dataset allowed us to describe the pathogen pan- and core genomes and to identify putative virulence factors. The V. tapetis core genome consists of 3,352 genes, including multiple potential virulence factors represented by haemolysins, transcriptional regulators, Type I restriction modification system, GGDEF domain proteins, several conjugative plasmids, and a Type IV secretion system. Future research on the coevolutionary arms race between V. tapetis virulence factors and host resistance mechanisms will improve our understanding of how pathogenicity develops in this emerging pathogen.
Collapse
Affiliation(s)
- Graciela M. Dias
- Laboratoire des Sciences de l'Environnement Marin, Université de Bretagne Occidentale, UMR 6539 UBO/Centre National de la Recherche Scientifique/IRD/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adeline Bidault
- Laboratoire des Sciences de l'Environnement Marin, Université de Bretagne Occidentale, UMR 6539 UBO/Centre National de la Recherche Scientifique/IRD/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
| | - Patrick Le Chevalier
- Laboratoire de Biotechnologie et Chimie Marine, Université de Bretagne Occidentale, Quimper, France
| | - Gwenaëlle Choquet
- Laboratoire des Sciences de l'Environnement Marin, Université de Bretagne Occidentale, UMR 6539 UBO/Centre National de la Recherche Scientifique/IRD/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
| | - Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, Centre National de la Recherche Scientifique UMR 5288, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Claudine Medigue
- CEA, Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université d'Evry, Centre National de la Recherche Scientifique-UMR 8030, Evry, France
| | - Valerie Barbe
- CEA, Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université d'Evry, Centre National de la Recherche Scientifique-UMR 8030, Evry, France
| | - Sophie Mangenot
- CEA, Institut de biologie François-Jacob, Genoscope, Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, Evry, France
| | - Cristiane C. Thompson
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano L. Thompson
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Annick Jacq
- Institute for Integrative Biology of the Cell, CEA, Centre National de la Recherche Scientifique, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin, Université de Bretagne Occidentale, UMR 6539 UBO/Centre National de la Recherche Scientifique/IRD/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
| | - Christine Paillard
- Laboratoire des Sciences de l'Environnement Marin, Université de Bretagne Occidentale, UMR 6539 UBO/Centre National de la Recherche Scientifique/IRD/Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France
| |
Collapse
|
56
|
Abstract
Computational pan-genome analysis has emerged from the rapid increase of available genome sequencing data. Starting from a microbial pan-genome, the concept has spread to a variety of species, such as plants or viruses. Characterizing a pan-genome provides insights into intra-species evolution, functions, and diversity. However, researchers face challenges such as processing and maintaining large datasets while providing accurate and efficient analysis approaches. Comparative genomics methods are required for detecting conserved and unique regions between a set of genomes. This chapter gives an overview of tools available for indexing pan-genomes, identifying the sub-regions of a pan-genome and offering a variety of downstream analysis methods. These tools are categorized into two groups, gene-based and sequence-based, according to the pan-genome identification method. We highlight the differences, advantages, and disadvantages between the tools, and provide information about the general workflow, methodology of pan-genome identification, covered functionalities, usability and availability of the tools.
Collapse
Affiliation(s)
- Tina Zekic
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- International Research Training Group 1906, Bielefeld University, Bielefeld, Germany
| | - Guillaume Holley
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- International Research Training Group 1906, Bielefeld University, Bielefeld, Germany
| | - Jens Stoye
- Faculty of Technology, Bielefeld University, Bielefeld, Germany.
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
- International Research Training Group 1906, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
57
|
Vaccination with a recombinant OprL fragment induces a Th17 response and confers serotype-independent protection against Pseudomonas aeruginosa infection in mice. Clin Immunol 2017; 183:354-363. [PMID: 28970186 DOI: 10.1016/j.clim.2017.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/06/2017] [Accepted: 09/25/2017] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa (PA) is the major causative agent of nosocomial infection. Despite of adequate use of antibiotics, it still represents a major challenge in controlling PA infection. The local pulmonary Th17 response plays an important protective role against PA infection. And the Th17-mediated protection is antibody independent, so we hypothesized that it would be an optimal strategy of a vaccine for PA control to induce an effective Th17 response. Herein we report the successful production of a recombinant fragment of the OprL (reOprL) of PA. Purified reOprL forms homogeneous monomers in solution and vaccination with reOprL elicited a remarkable Th17 response. In addition, reOprL vaccination conferred effective serotype-independent protection against PA infection, which relied on the Th17 response. Our data suggest that reOprL is a good candidate for the future development of Th17 immunity based PA vaccines.
Collapse
|
58
|
Graves JL, Thomas M, Ewunkem JA. Antimicrobial Nanomaterials: Why Evolution Matters. NANOMATERIALS 2017; 7:nano7100283. [PMID: 28934114 PMCID: PMC5666448 DOI: 10.3390/nano7100283] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/25/2023]
Abstract
Due to the widespread occurrence of multidrug resistant microbes there is increasing interest in the use of novel nanostructured materials as antimicrobials. Specifically, metallic nanoparticles such as silver, copper, and gold have been deployed due to the multiple impacts they have on bacterial physiology. From this, many have concluded that such nanomaterials represent steep obstacles against the evolution of resistance. However, we have already shown that this view is fallacious. For this reason, the significance of our initial experiments are beginning to be recognized in the antimicrobial effects of nanomaterials literature. This recognition is not yet fully understood and here we further explain why nanomaterials research requires a more nuanced understanding of core microbial evolution principles.
Collapse
Affiliation(s)
- Joseph L Graves
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina A&T State University and UNC Greensboro, Greensboro, NC 27401, USA.
| | - Misty Thomas
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Jude Akamu Ewunkem
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina A&T State University and UNC Greensboro, Greensboro, NC 27401, USA.
| |
Collapse
|
59
|
Protective Efficacy of the Trivalent Pseudomonas aeruginosa Vaccine Candidate PcrV-OprI-Hcp1 in Murine Pneumonia and Burn Models. Sci Rep 2017. [PMID: 28638106 PMCID: PMC5479855 DOI: 10.1038/s41598-017-04029-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas aeruginosa is a formidable pathogen that is responsible for a diverse spectrum of human infectious diseases, resulting in considerable annual mortality rates. Because of biofilm formation and its ability of rapidly acquires of resistance to many antibiotics, P. aeruginosa related infections are difficult to treat, and therefore, developing an effective vaccine is the most promising method for combating infection. In the present study, we designed a novel trivalent vaccine, PcrV28-294-OprI25-83-Hcp11-162 (POH), and evaluated its protective efficacy in murine pneumonia and burn models. POH existed as a dimer in solution, it induced better protection efficacy in P. aeruginosa lethal pneumonia and murine burn models than single components alone when formulated with Al(OH)3 adjuvant, and it showed broad immune protection against several clinical isolates of P. aeruginosa. Immunization with POH induced strong immune responses and resulted in reduced bacterial loads, decreased pathology, inflammatory cytokine expression and inflammatory cell infiltration. Furthermore, in vitro opsonophagocytic killing assay and passive immunization studies indicated that the protective efficacy mediated by POH vaccination was largely attributed to POH-specific antibodies. Taken together, these data provided evidence that POH is a potentially promising vaccine candidate for combating P. aeruginosa infection in pneumonia and burn infections.
Collapse
|
60
|
Amgarten D, Martins LF, Lombardi KC, Antunes LP, de Souza APS, Nicastro GG, Kitajima EW, Quaggio RB, Upton C, Setubal JC, da Silva AM. Three novel Pseudomonas phages isolated from composting provide insights into the evolution and diversity of tailed phages. BMC Genomics 2017; 18:346. [PMID: 28472930 PMCID: PMC5418858 DOI: 10.1186/s12864-017-3729-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/26/2017] [Indexed: 12/18/2022] Open
Abstract
Background Among viruses, bacteriophages are a group of special interest due to their capacity of infecting bacteria that are important for biotechnology and human health. Composting is a microbial-driven process in which complex organic matter is converted into humus-like substances. In thermophilic composting, the degradation activity is carried out primarily by bacteria and little is known about the presence and role of bacteriophages in this process. Results Using Pseudomonas aeruginosa as host, we isolated three new phages from a composting operation at the Sao Paulo Zoo Park (Brazil). One of the isolated phages is similar to Pseudomonas phage Ab18 and belongs to the Siphoviridae YuA-like viral genus. The other two isolated phages are similar to each other and present genomes sharing low similarity with phage genomes in public databases; we therefore hypothesize that they belong to a new genus in the Podoviridae family. Detailed genomic descriptions and comparisons of the three phages are presented, as well as two new clusters of phage genomes in the Viral Orthologous Clusters database of large DNA viruses. We found sequences encoding homing endonucleases that disrupt a putative ribonucleotide reductase gene and an RNA polymerase subunit 2 gene in two of the phages. These findings provide insights about the evolution of two-subunits RNA polymerases and the possible role of homing endonucleases in this process. Infection tests on 30 different strains of bacteria reveal a narrow host range for the three phages, restricted to P. aeruginosa PA14 and three other P. aeruginosa clinical isolates. Biofilm dissolution assays suggest that these phages could be promising antimicrobial agents against P. aeruginosa PA14 infections. Analyses on composting metagenomic and metatranscriptomic data indicate association between abundance variations in both phage and host populations in the environment. Conclusion The results about the newly discovered and described phages contribute to the understanding of tailed bacteriophage diversity, evolution, and role in the complex composting environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3729-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deyvid Amgarten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brazil
| | - Layla Farage Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Karen Cristina Lombardi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Elliott Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Ronaldo Bento Quaggio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Chris Upton
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil. .,Biocomplexity Institute of Virginia Tech, Blacksburg, VA, USA.
| | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
61
|
Lin CK, Kazmierczak BI. Inflammation: A Double-Edged Sword in the Response to Pseudomonas aeruginosa Infection. J Innate Immun 2017; 9:250-261. [PMID: 28222444 DOI: 10.1159/000455857] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/05/2017] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa exploits failures of barrier defense and innate immunity to cause acute infections at a range of anatomic sites. We review the defense mechanisms that normally protect against P. aeruginosa pulmonary infection, as well as the bacterial products and activities that trigger their activation. Innate immune recognition of P. aeruginosa is critical for pathogen clearance; nonetheless, inflammation is also associated with pathogen persistence and poor host outcomes. We describe P. aeruginosa adaptations that improve this pathogen's fitness in the inflamed airway, and briefly discuss strategies to manipulate inflammation to benefit the host. Such adjunct therapies may become increasingly important in the treatment of acute and chronic infections caused by this multi-drug-resistant pathogen.
Collapse
|
62
|
Koehorst JJ, van Dam JCJ, van Heck RGA, Saccenti E, dos Santos VAPM, Suarez-Diez M, Schaap PJ. Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data. Sci Rep 2016; 6:38699. [PMID: 27922098 PMCID: PMC5138606 DOI: 10.1038/srep38699] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/14/2016] [Indexed: 11/08/2022] Open
Abstract
Pseudomonas is a highly versatile genus containing species that can be harmful to humans and plants while others are widely used for bioengineering and bioremediation. We analysed 432 sequenced Pseudomonas strains by integrating results from a large scale functional comparison using protein domains with data from six metabolic models, nearly a thousand transcriptome measurements and four large scale transposon mutagenesis experiments. Through heterogeneous data integration we linked gene essentiality, persistence and expression variability. The pan-genome of Pseudomonas is closed indicating a limited role of horizontal gene transfer in the evolutionary history of this genus. A large fraction of essential genes are highly persistent, still non essential genes represent a considerable fraction of the core-genome. Our results emphasize the power of integrating large scale comparative functional genomics with heterogeneous data for exploring bacterial diversity and versatility.
Collapse
Affiliation(s)
- Jasper J. Koehorst
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
| | - Jesse C. J. van Dam
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
| | - Ruben G. A. van Heck
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
| | - Edoardo Saccenti
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
| | - Vitor A. P. Martins dos Santos
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Maria Suarez-Diez
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
| | - Peter J. Schaap
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
63
|
Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H, Hasman H, Holden MTG, Hopkins KL, Iredell J, Kahlmeter G, Köser CU, MacGowan A, Mevius D, Mulvey M, Naas T, Peto T, Rolain JM, Samuelsen Ø, Woodford N. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect 2016; 23:2-22. [PMID: 27890457 DOI: 10.1016/j.cmi.2016.11.012] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
Whole genome sequencing (WGS) offers the potential to predict antimicrobial susceptibility from a single assay. The European Committee on Antimicrobial Susceptibility Testing established a subcommittee to review the current development status of WGS for bacterial antimicrobial susceptibility testing (AST). The published evidence for using WGS as a tool to infer antimicrobial susceptibility accurately is currently either poor or non-existent and the evidence / knowledge base requires significant expansion. The primary comparators for assessing genotypic-phenotypic concordance from WGS data should be changed to epidemiological cut-off values in order to improve differentiation of wild-type from non-wild-type isolates (harbouring an acquired resistance). Clinical breakpoints should be a secondary comparator. This assessment will reveal whether genetic predictions could also be used to guide clinical decision making. Internationally agreed principles and quality control (QC) metrics will facilitate early harmonization of analytical approaches and interpretive criteria for WGS-based predictive AST. Only data sets that pass agreed QC metrics should be used in AST predictions. Minimum performance standards should exist and comparative accuracies across different WGS laboratories and processes should be measured. To facilitate comparisons, a single public database of all known resistance loci should be established, regularly updated and strictly curated using minimum standards for the inclusion of resistance loci. For most bacterial species the major limitations to widespread adoption for WGS-based AST in clinical laboratories remain the current high-cost and limited speed of inferring antimicrobial susceptibility from WGS data as well as the dependency on previous culture because analysis directly on specimens remains challenging. For most bacterial species there is currently insufficient evidence to support the use of WGS-inferred AST to guide clinical decision making. WGS-AST should be a funding priority if it is to become a rival to phenotypic AST. This report will be updated as the available evidence increases.
Collapse
Affiliation(s)
- M J Ellington
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - O Ekelund
- Department of Clinical Microbiology and the EUCAST Development Laboratory, Kronoberg Region, Central Hospital, Växjö, Sweden
| | - F M Aarestrup
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - R Canton
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - M Doumith
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - C Giske
- Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - H Grundman
- University Medical Centre Freiburg, Infection Prevention and Hospital Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - H Hasman
- Statens Serum Institute, Department of Microbiology and Infection Control, Copenhagen, Denmark
| | - M T G Holden
- School of Medicine, Medical & Biological Sciences, North Haugh, University of St Andrews, UK
| | - K L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - J Iredell
- Westmead Institute for Medical Research, University of Sydney and Marie Bashir Institute, Sydney, NSW, Australia
| | - G Kahlmeter
- Department of Clinical Microbiology and the EUCAST Development Laboratory, Kronoberg Region, Central Hospital, Växjö, Sweden
| | - C U Köser
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - A MacGowan
- Department of Medical Microbiology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - D Mevius
- Central Veterinary Institute (CVI) part of Wageningen University and Research Centre (WUR), Lelystad, The Netherlands; Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - M Mulvey
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - T Naas
- French National Reference Centre for Antibiotic Resistance, Bacteriology-Hygiene unit, Hôpital Bicêtre, APHP, LabEx LERMIT, University Paris Sud, Le Kremlin-Bicêtre, France
| | - T Peto
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - J-M Rolain
- PU-PH des Disciplines Pharmaceutiques, 1-URMITE CNRS IRD UMR 6236, IHU Méditerranée Infection, Valorization and Transfer, Aix Marseille Université, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Ø Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Department of Microbiology and Infection Control, Tromsø, Norway
| | - N Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK.
| |
Collapse
|
64
|
Bean HD, Rees CA, Hill JE. Comparative analysis of the volatile metabolomes of Pseudomonas aeruginosa clinical isolates. J Breath Res 2016; 10:047102. [PMID: 27869104 PMCID: PMC5266606 DOI: 10.1088/1752-7155/10/4/047102] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pseudomonas aeruginosa is a nearly ubiquitous Gram-negative organism, well known to occupy a multitude of environmental niches and cause human infections at a variety of bodily sites, due to its metabolic flexibility, secondary to extensive genetic heterogeneity at the species level. Because of its dynamic metabolism and clinical importance, we sought to perform a comparative analysis on the volatile metabolome (the 'volatilome') produced by P. aeruginosa clinical isolates. In this study, we analyzed the headspace volatile molecules of 24 P. aeruginosa clinical isolates grown in vitro, using 2D gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS). We identified 391 non-redundant compounds that we associate with the growth and metabolism of P. aeruginosa (the 'pan-volatilome'). Of these, 70 were produced by all 24 isolates (the 'core volatilome'), 52 by only a single isolate, and the remaining 269 volatile molecules by a subset. Sixty-five of the detected compounds could be assigned putative compound identifications, of which 43 had not previously been associated with P. aeruginosa. Using the accessory volatile molecules, we determined the inter-strain variation in the metabolomes of these isolates, clustering strains by their metabotypes. Assessing the extent of metabolomic diversity in P. aeruginosa through an analysis of the volatile molecules that it produces is a critical next step in the identification of novel diagnostic or prognostic biomarkers.
Collapse
Affiliation(s)
- Heather D Bean
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA. These authors made equal contributions to this work
| | | | | |
Collapse
|