51
|
Samayoa LF, Cao A, Santiago R, Malvar RA, Butrón A. Genome-wide association analysis for fumonisin content in maize kernels. BMC PLANT BIOLOGY 2019; 19:166. [PMID: 31029090 PMCID: PMC6486958 DOI: 10.1186/s12870-019-1759-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/04/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant breeding has been proposed as one of the most effective and environmentally safe methods to control fungal infection and to reduce fumonisin accumulation. However, conventional breeding can be hampered by the complex genetic architecture of resistance to fumonisin accumulation and marker-assisted selection is proposed as an efficient alternative. In the current study, GWAS has been performed for the first time for detecting high-resolution QTL for resistance to fumonisin accumulation in maize kernels complementing published GWAS results for Fusarium ear rot. RESULTS Thirty-nine SNPs significantly associated with resistance to fumonisin accumulation in maize kernels were found and clustered into 17 QTL. Novel QTLs for fumonisin content would be at bins 3.02, 5.02, 7.05 and 8.07. Genes with annotated functions probably implicated in resistance to pathogens based on previous studies have been highlighted. CONCLUSIONS Breeding approaches to fix favorable functional variants for genes implicated in maize immune response signaling may be especially useful to reduce kernel contamination with fumonisins without significantly interfering in mycelia development and growth and, consequently, in the beneficial endophytic behavior of Fusarium verticillioides.
Collapse
Affiliation(s)
- L. F. Samayoa
- Misión Biológica de Galicia (MBG - CSIC), Box 28, 36080 Pontevedra, Spain
- Present address at department of Crop Science, North Carolina State University, Raleigh, NC 27695 USA
| | - A. Cao
- Misión Biológica de Galicia (MBG - CSIC), Box 28, 36080 Pontevedra, Spain
- Facultad de Biología, Department Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, 36310 Vigo, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (BVE1-UVIGO), Unidad Asociada a la MBG – CSIC, 36143 Pontevedra, Spain
| | - R. Santiago
- Facultad de Biología, Department Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, 36310 Vigo, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (BVE1-UVIGO), Unidad Asociada a la MBG – CSIC, 36143 Pontevedra, Spain
| | - R. A. Malvar
- Misión Biológica de Galicia (MBG - CSIC), Box 28, 36080 Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (BVE1-UVIGO), Unidad Asociada a la MBG – CSIC, 36143 Pontevedra, Spain
| | - A. Butrón
- Misión Biológica de Galicia (MBG - CSIC), Box 28, 36080 Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (BVE1-UVIGO), Unidad Asociada a la MBG – CSIC, 36143 Pontevedra, Spain
| |
Collapse
|
52
|
Septiani P, Lanubile A, Stagnati L, Busconi M, Nelissen H, Pè ME, Dell'Acqua M, Marocco A. Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: novel targets for breeding. Sci Rep 2019; 9:5665. [PMID: 30952942 PMCID: PMC6451006 DOI: 10.1038/s41598-019-42248-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/26/2019] [Indexed: 12/16/2022] Open
Abstract
Fungal infection by Fusarium verticillioides is cause of prevalent maize disease leading to substantial reductions in yield and grain quality worldwide. Maize resistance to the fungus may occur at different developmental stages, from seedling to maturity. The breeding of resistant maize genotypes may take advantage of the identification of quantitative trait loci (QTL) responsible for disease resistance already commenced at seedling level. The Multi-parent Advance Generation Intercross (MAGIC) population was used to conduct high-definition QTL mapping for Fusarium seedling rot (FSR) resistance using rolled towel assay. Infection severity level, seedling weight and length were measured on 401 MAGIC maize recombinant inbred lines (RILs). QTL mapping was performed on reconstructed RIL haplotypes. One-fifth of the MAGIC RILs were resistant to FSR and 10 QTL were identified. For FSR, two QTL were detected at 2.8 Mb and 241.8 Mb on chromosome 4, and one QTL at 169.6 Mb on chromosome 5. Transcriptomic and sequencing information generated on the MAGIC founder lines was used to guide the identification of eight candidate genes within the identified FSR QTL. We conclude that the rolled towel assay applied to the MAGIC maize population provides a fast and cost-effective method to identify QTL and candidate genes for early resistance to F. verticillioides in maize.
Collapse
Affiliation(s)
- Popi Septiani
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Lorenzo Stagnati
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Matteo Busconi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Centre for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy.
| |
Collapse
|
53
|
Mu C, Gao J, Zhou Z, Wang Z, Sun X, Zhang X, Dong H, Han Y, Li X, Wu Y, Song Y, Ma P, Dong C, Chen J, Wu J. Genetic analysis of cob resistance to F. verticillioides: another step towards the protection of maize from ear rot. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1049-1059. [PMID: 30535634 DOI: 10.1007/s00122-018-3258-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
We lay the foundation for further research on maize resistance to Fusarium verticillioides cob rot by identifying a candidate resistance gene. Fusarium verticillioides ear rot is the most common type of maize ear rot in the Huanghuaihai Plain of China. Ear rot resistance includes cob and kernel resistance. Most of the current literature concentrates on kernel resistance, and genetic studies on cob resistance are scarce. We aimed on identifying the QTLs responsible for F. verticillioides cob rot (FCR) resistance. Twenty-eight genes associated with 48 single nucleotide polymorphisms (SNPs) were identified (P < 10-4) to correlate with FCR resistance using a whole-genome association study. The major quantitative trait locus, qRcfv2, for FCR resistance was identified on chromosome 2 through linkage mapping and was validated in near-isogenic line populations. Two candidate genes associated with two SNPs were detected in the qRcfv2 region with a lower threshold (P < 10-3). Through real-time fluorescence quantitative PCR, one candidate gene was found to have no expression in the cob but the other was expressed in response to F. verticillioides. These results lay a foundation for research on the resistance mechanisms of cob and provide resources for marker-assisted selection.
Collapse
Affiliation(s)
- Cong Mu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jingyang Gao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zijian Zhou
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaodong Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuecai Zhang
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo 6-641, 06600, Mexico, DF, Mexico
| | - Huafang Dong
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanan Han
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaopeng Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yabin Wu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yunxia Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Peipei Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chaopei Dong
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiafa Chen
- College of Life Sciences, Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jianyu Wu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
54
|
Czembor E, Waśkiewicz A, Piechota U, Puchta M, Czembor JH, Stȩpień Ł. Differences in Ear Rot Resistance and Fusarium verticillioides-Produced Fumonisin Contamination Between Polish Currently and Historically Used Maize Inbred Lines. Front Microbiol 2019; 10:449. [PMID: 30936854 PMCID: PMC6431649 DOI: 10.3389/fmicb.2019.00449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/20/2019] [Indexed: 11/24/2022] Open
Abstract
Poland is the fifth largest European country, in terms of maize production. Ear rots caused by Fusarium spp. are significant diseases affecting yield and causing grain mycotoxin contamination. Inbred lines, which are commonly used in Polish breeding programs, belong, mostly, to two distinct genetic categories: flint and dent. However, historically used lines belonging to the heterotic Lancaster, IDT and SSS groups were also present in previous Polish breeding programs. In the current study, 98 inbred lines were evaluated across a 2-year-long experiment, after inoculation with F. verticillioides and under natural infection conditions. Lancaster, IDT, SSS and SSS/IDT groups were characterized as the most susceptible ones and flint as the more resistant. Based on the results obtained, the moderately resistant and most susceptible genotypes were defined to determine the content of fumonisins (FBs) in kernel and cob fractions using the HPLC method. Fumonisin's content was higher in the grain samples collected from inoculated plants than in cobs. The association of visible Fusarium symptoms with fumonisin concentration in grain samples was significant. Conversely, the cobs contained more FB1 under natural infection, which may be related to a pathogen's type of growth, infection time or presence of competitive species. Using ddRADseq genome sampling method it was possible to distinguish a basal relationship between moderately resistant and susceptible genotypes. Genetic distance between maize genotypes was high. Moderately resistant inbreed lines, which belong to IDT and IDT/SSS belong to one haplotype. Genotypes which belong to the flint, dent or Lancaster group, and were characterized as moderately resistant were classified separately as the same susceptible one. This research has demonstrated that currently grown Polish inbred lines, as well the ones used in the past are a valid source of resistance to Fusarium ear rot. A strong association was observed between visible Fusarium symptoms with fumonisin concentration in grain samples, suggesting that selection in maize for reduced visible molds should reduce the risk of mycotoxin contamination. NGS techniques provide new tools for overcoming the long selection process and increase the breeding efficiency.
Collapse
Affiliation(s)
- Elżbieta Czembor
- Department of Grasses, Legumes and Energy Plants, Plant Breeding and Acclimatization Institute - NRI, Radzikow, Blonie, Poland
| | | | - Urszula Piechota
- National Centre for Genetic Resources, Plant Breeding and Acclimatization Institute - NRI, Radzikow, Blonie, Poland
| | - Marta Puchta
- National Centre for Genetic Resources, Plant Breeding and Acclimatization Institute - NRI, Radzikow, Blonie, Poland
| | - Jerzy H Czembor
- National Centre for Genetic Resources, Plant Breeding and Acclimatization Institute - NRI, Radzikow, Blonie, Poland
| | - Łukasz Stȩpień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
55
|
Stagnati L, Lanubile A, Samayoa LF, Bragalanti M, Giorni P, Busconi M, Holland JB, Marocco A. A Genome Wide Association Study Reveals Markers and Genes Associated with Resistance to Fusarium verticillioides Infection of Seedlings in a Maize Diversity Panel. G3 (BETHESDA, MD.) 2019; 9:571-579. [PMID: 30567831 PMCID: PMC6385986 DOI: 10.1534/g3.118.200916] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Fusarium verticillioides infects maize, causing ear rot, yield loss and contamination by fumonisin mycotoxins. The fungus can be transmitted via kernels and cause systemic infection in maize. Maize resistance to the fungus may occur at different developmental stages, from seedling to maturity. Resistance during kernel germination is part of the plant-pathogen interaction and so far this aspect has not been investigated. In the present study, a genome wide association study (GWAS) of resistance to Fusarium during the seedling developmental stage was conducted in a maize diversity panel using 226,446 SNP markers. Seedling germination and disease phenotypes were scored on artificially inoculated kernels using the rolled towel assay. GWAS identified 164 SNPs significantly associated with the traits examined. Four SNPs were associated with disease severity score after inoculation, 153 were associated with severity in asymptomatic kernels and 7 with the difference between the severity ratings in inoculated and non-inoculated seeds. A set of genes containing or physically near the significant SNPs were identified as candidates for Fusarium resistance at the seedling stage. Functional analysis revealed that many of these genes are directly involved in plant defense against pathogens and stress responses, including transcription factors, chitinase, cytochrome P450, and ubiquitination proteins. In addition, 25 genes were found in high linkage disequilibrium with the associated SNPs identified by GWAS and four of them directly involved in disease resistance. These findings contribute to understanding the complex system of maize-F. verticillioides and may improve genomic selection for Fusarium resistance at the seedling stage.
Collapse
Affiliation(s)
- Lorenzo Stagnati
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza (Italy)
| | - Alessandra Lanubile
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza (Italy)
| | - Luis F Samayoa
- Department of Crop & Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Mario Bragalanti
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza (Italy)
| | - Paola Giorni
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza (Italy)
| | - Matteo Busconi
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza (Italy)
| | - James B Holland
- Department of Crop & Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina 27695
| | - Adriano Marocco
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza (Italy)
| |
Collapse
|
56
|
Morales L, Zila CT, Moreta Mejía DE, Montoya Arbelaez M, Balint-Kurti PJ, Holland JB, Nelson RJ. Diverse Components of Resistance to Fusarium verticillioides Infection and Fumonisin Contamination in Four Maize Recombinant Inbred Families. Toxins (Basel) 2019; 11:E86. [PMID: 30717228 PMCID: PMC6410224 DOI: 10.3390/toxins11020086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 11/16/2022] Open
Abstract
The fungus Fusarium verticillioides can infect maize ears, causing Fusarium ear rot (FER) and contaminating the grain with fumonisins (FUM), which are harmful to humans and animals. Breeding for resistance to FER and FUM and post-harvest sorting of grain are two strategies for reducing FUM in the food system. Kernel and cob tissues have been previously associated with differential FER and FUM. Four recombinant inbred line families from the maize nested associated mapping population were grown and inoculated with F. verticillioides across four environments, and we evaluated the kernels for external and internal infection severity as well as FUM contamination. We also employed publicly available phenotypes on innate ear morphology to explore genetic relationships between ear architecture and resistance to FER and FUM. The four families revealed wide variation in external symptomatology at the phenotypic level. Kernel bulk density under inoculation was an accurate indicator of FUM levels. Genotypes with lower kernel density-under both inoculated and uninoculated conditions-and larger cobs were more susceptible to infection and FUM contamination. Quantitative trait locus (QTL) intervals could be classified as putatively resistance-specific and putatively shared for ear and resistance traits. Both types of QTL mapped in this study had substantial overlap with previously reported loci for resistance to FER and FUM. Ear morphology may be a component of resistance to F. verticillioides infection and FUM accumulation.
Collapse
Affiliation(s)
- Laura Morales
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Charles T Zila
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695 USA.
| | | | | | - Peter J Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
- Plant Science Research Unit, United States Department of Agriculture⁻Agricultural Research Service, Raleigh, NC 27695, USA.
| | - James B Holland
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695 USA.
- Plant Science Research Unit, United States Department of Agriculture⁻Agricultural Research Service, Raleigh, NC 27695, USA.
| | - Rebecca J Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
57
|
Aguado A, Savoie JM, Chéreau S, Ducos C, Aguilar M, Ferrer N, Aguilar M, Pinson-Gadais L, Richard-Forget F. Priming to protect maize from Fusarium verticillioides and its fumonisin accumulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:64-72. [PMID: 29797333 DOI: 10.1002/jsfa.9142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/26/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Systemic infection through the seed is one of the routes used by the mycotoxinogenic pathogen Fusarium verticillioides for colonizing maize plants. The prohibition of the use of most chemical fungicides by the EU has promoted research on plant resistance inducers as an effective and sustainable alternative. Induction of a priming state in maize seeds might affect their susceptibility to contamination and accumulation of fumonisins. This state by application of a natural fertilizer called Chamae on maize seeds, was investigated in two varieties to control the colonization by the fungus and the accumulation of fumonisins B1 , B2 and B3 , germinating seeds, dead plants and yield. RESULTS After inoculation of F. verticillioides on germinating seeds, the colonization by the fungus and the accumulation of fumonisins were significantly lower in seedlings coming from treated seeds, but a significant number of plants stopped their development by necrosis. In a field trial, the 0.01% (v/v) application dilution showed a lower plant density, although the level of biomass at harvest was not affected. CONCLUSION The priming state contributed to the control of F. verticillioides development from seed infection and fumonisin accumulation in the early stage of plant growth, without affecting the final crop yield, and could reduce fungicide use and environmental contamination. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Aguado
- IFAPA Las Torres Tomejil, Protección Vegetal Sostenible, Carretera Sevilla-Cazalla Km 12.2, Alcalá del Río, Seville, Spain
| | - Jean-Michel Savoie
- MycSA, UR1264, INRA, Villenave d'Ornon Cedex, Bordeaux-Aquitaine, France
| | - Sylvain Chéreau
- MycSA, UR1264, INRA, Villenave d'Ornon Cedex, Bordeaux-Aquitaine, France
| | - Christine Ducos
- MycSA, UR1264, INRA, Villenave d'Ornon Cedex, Bordeaux-Aquitaine, France
| | - María Aguilar
- IFAPA Las Torres Tomejil, Protección Vegetal Sostenible, Carretera Sevilla-Cazalla Km 12.2, Alcalá del Río, Seville, Spain
| | - Nathalie Ferrer
- MycSA, UR1264, INRA, Villenave d'Ornon Cedex, Bordeaux-Aquitaine, France
| | - Manuel Aguilar
- IFAPA Las Torres Tomejil, Protección Vegetal Sostenible, Carretera Sevilla-Cazalla Km 12.2, Alcalá del Río, Seville, Spain
| | | | | |
Collapse
|
58
|
Bernardi J, Stagnati L, Lucini L, Rocchetti G, Lanubile A, Cortellini C, De Poli G, Busconi M, Marocco A. Phenolic Profile and Susceptibility to Fusarium Infection of Pigmented Maize Cultivars. FRONTIERS IN PLANT SCIENCE 2018; 9:1189. [PMID: 30154815 PMCID: PMC6102558 DOI: 10.3389/fpls.2018.01189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/25/2018] [Indexed: 06/02/2023]
Abstract
Maize is a staple food source in the world, whose ancient varieties or landraces are receiving a growing attention. In this work, two Italian maize cultivars with pigmented kernels and one inbred line were investigated for untargeted phenolic profile, in vitro antioxidant capacity and resistance to Fusariumverticillioides infection. "Rostrato Rosso" was the richest in anthocyanins whilst phenolic acids were the second class in abundance, with comparable values detected between cultivars. Tyrosol equivalents were also the highest in "Rostrato Rosso" (822.4 mg kg-1). Coherently, "Rostrato Rosso" was highly resistant to fungal penetration and diffusion. These preliminary findings might help in breeding programs, aiming to develop maize lines more resistant to infections and with improved nutraceutical value.
Collapse
Affiliation(s)
- Jamila Bernardi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Lorenzo Stagnati
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Centre for Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | | | - Matteo Busconi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Centre for Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Centre for Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
59
|
Torello Marinoni D, Valentini N, Portis E, Acquadro A, Beltramo C, Mehlenbacher SA, Mockler TC, Rowley ER, Botta R. High density SNP mapping and QTL analysis for time of leaf budburst in Corylus avellana L. PLoS One 2018; 13:e0195408. [PMID: 29608620 PMCID: PMC5880404 DOI: 10.1371/journal.pone.0195408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/21/2018] [Indexed: 01/25/2023] Open
Abstract
The growing area of European hazelnut (Corylus avellana L.) is increasing, as well as the number of producing countries, and there is a pressing need for new improved cultivars. Hazelnut conventional breeding process is slow, due to the length of juvenile phase and the high heterozygosity level. The development of genetic linkage maps and the identification of molecular markers tightly linked to QTL (quantitative trait loci) of agronomic interest are essential tools for speeding up the selection of seedlings carrying desired traits through marker-assisted selection. The objectives of this study were to enrich a previous linkage map and confirm QTL related to time of leaf budburst, using an F1 population obtained by crossing Tonda Gentile delle Langhe with Merveille de Bollwiller. Genotyping-by-Sequencing was used to identify a total of 9,999 single nucleotide polymorphism markers. Well saturated linkage maps were constructed for each parent using the double pseudo-testcross mapping strategy. A reciprocal translocation was detected in Tonda Gentile delle Langhe between two non-homologous chromosomes. Applying a bioinformatic approach, we were able to disentangle ‘pseudo-linkage’ between markers, removing markers around the translocation breakpoints and obtain a linear order of the markers for the two chromosomes arms, for each linkage group involved in the translocation. Twenty-nine QTL for time of leaf budburst were identified, including a stably expressed region on LG_02 of the Tonda Gentile delle Langhe map. The stability of these QTL and their coding sequence content indicates promise for the identification of specific chromosomal regions carrying key genes involved in leaf budburst.
Collapse
Affiliation(s)
- Daniela Torello Marinoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Nadia Valentini
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Torino, Italy
- * E-mail:
| | - Alberto Acquadro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Chiara Beltramo
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Shawn A. Mehlenbacher
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Todd C. Mockler
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Erik R. Rowley
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Roberto Botta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Torino, Italy
| |
Collapse
|
60
|
Lanubile A, Maschietto V, Borrelli VM, Stagnati L, Logrieco AF, Marocco A. Molecular Basis of Resistance to Fusarium Ear Rot in Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:1774. [PMID: 29075283 PMCID: PMC5644281 DOI: 10.3389/fpls.2017.01774] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/28/2017] [Indexed: 05/30/2023]
Abstract
The impact of climate change has been identified as an emerging issue for food security and safety, and the increased incidence of mycotoxin contamination in maize over the last two decades is considered a potential emerging hazard. Disease control by chemical and agronomic approaches is often ineffective and increases the cost of production; for this reason the exploitation of genetic resistance is the most sustainable method for reducing contamination. The review focuses on the significant advances that have been made in the development of transcriptomic, genetic and genomic information for maize, Fusarium verticillioides molds, and their interactions, over recent years. Findings from transcriptomic studies have been used to outline a specific model for the intracellular signaling cascade occurring in maize cells against F. verticillioides infection. Several recognition receptors, such as receptor-like kinases and R genes, are involved in pathogen perception, and trigger down-stream signaling networks mediated by mitogen-associated protein kinases. These signals could be orchestrated primarily by hormones, including salicylic acid, auxin, abscisic acid, ethylene, and jasmonic acid, in association with calcium signaling, targeting multiple transcription factors that in turn promote the down-stream activation of defensive response genes, such as those related to detoxification processes, phenylpropanoid, and oxylipin metabolic pathways. At the genetic and genomic levels, several quantitative trait loci (QTL) and single-nucleotide polymorphism markers for resistance to Fusarium ear rot deriving from QTL mapping and genome-wide association studies are described, indicating the complexity of this polygenic trait. All these findings will contribute to identifying candidate genes for resistance and to applying genomic technologies for selecting resistant maize genotypes and speeding up a strategy of breeding to contrast disease, through plants resistant to mycotoxin-producing pathogens.
Collapse
Affiliation(s)
- Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Valentina Maschietto
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Virginia M. Borrelli
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Lorenzo Stagnati
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
61
|
Li L, Zhao S, Su J, Fan S, Pang C, Wei H, Wang H, Gu L, Zhang C, Liu G, Yu D, Liu Q, Zhang X, Yu S. High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton (Gossypium hirsutum L.). PLoS One 2017; 12:e0182918. [PMID: 28809947 PMCID: PMC5557542 DOI: 10.1371/journal.pone.0182918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 11/26/2022] Open
Abstract
Due to China’s rapidly increasing population, the total arable land area has dramatically decreased; as a consequence, the competition for farming land allocated for grain and cotton production has become fierce. Therefore, to overcome the existing contradiction between cotton grain and fiber production and the limited farming land, development of early-maturing cultivars is necessary. In this research, a high-density linkage map of upland cotton was constructed using genotyping by sequencing (GBS) to discover single nucleotide polymorphism (SNP) markers associated with early maturity in 170 F2 individuals derived from a cross between LU28 and ZHONG213. The high-density genetic map, which was composed of 3978 SNP markers across the 26 cotton chromosomes, spanned 2480 cM with an average genetic distance of 0.62 cM. Collinearity analysis showed that the genetic map was of high quality and accurate and agreed well with the Gossypium hirsutum reference genome. Based on this high-density linkage map, QTL analysis was performed on cotton early-maturity traits, including FT, FBP, WGP, NFFB, HNFFB and PH. A total 47 QTLs for the six traits were detected; each of these QTLs explained between 2.61% and 32.57% of the observed phenotypic variation. A major region controlling early-maturity traits in Gossypium hirsutum was identified for FT, FBP, WGP, NFFB and HNFFB on chromosome D03. QTL analyses revealed that phenotypic variation explained (PVE) ranged from 10.42% to 32.57%. Two potential candidate genes, Gh_D03G0885 and Gh_D03G0922, were predicted in a stable QTL region and had higher expression levels in the early-maturity variety ZHONG213 than in the late-maturity variety LU28. However, further evidence is required for functional validation. This study could provide useful information for the dissection of early-maturity traits and guide valuable genetic loci for molecular-assisted selection (MAS) in cotton breeding.
Collapse
Affiliation(s)
- Libei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuqi Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- Huanggang Academy of Agricultural Sciences, Huanggang, Hubei, China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Chi Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Guoyuan Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Dingwei Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Qibao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- College of Agronomy, Northwest A&F University, Yangling, China
- * E-mail:
| |
Collapse
|