51
|
In vivo assessment of increased oxidation of branched-chain amino acids in glioblastoma. Sci Rep 2019; 9:340. [PMID: 30674979 PMCID: PMC6344513 DOI: 10.1038/s41598-018-37390-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Altered branched-chain amino acids (BCAAs) metabolism is a distinctive feature of various cancers and plays an important role in sustaining tumor proliferation and aggressiveness. Despite the therapeutic and diagnostic potentials, the role of BCAA metabolism in cancer and the activities of associated enzymes remain unclear. Due to its pivotal role in BCAA metabolism and rapid cellular transport, hyperpolarized 13C-labeled α-ketoisocaproate (KIC), the α-keto acid corresponding to leucine, can assess both BCAA aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase complex (BCKDC) activities via production of [1-13C]leucine or 13CO2 (and thus H13CO3−), respectively. Here, we investigated BCAA metabolism of F98 rat glioma model in vivo using hyperpolarized 13C-KIC. In tumor regions, we observed a decrease in 13C-leucine production from injected hyperpolarized 13C-KIC via BCAT compared to the contralateral normal-appearing brain, and an increase in H13CO3−, a catabolic product of KIC through the mitochondrial BCKDC. A parallel ex vivo13C NMR isotopomer analysis following steady-state infusion of [U-13C]leucine to glioma-bearing rats verified the increased oxidation of leucine in glioma tissue. Both the in vivo hyperpolarized KIC imaging and the leucine infusion study indicate that KIC catabolism is upregulated through BCAT/BCKDC and further oxidized via the citric acid cycle in F98 glioma.
Collapse
|
52
|
Microarray-based measurement of microRNA-449c-5p levels in hepatocellular carcinoma and bioinformatic analysis of potential signaling pathways. Pathol Res Pract 2018; 215:68-81. [PMID: 30389318 DOI: 10.1016/j.prp.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
The clinical role and potential molecular mechanisms of microRNA-449c-5p (miR-449c-5p) in hepatocellular carcinoma (HCC) tissues remains unclear. Combining multiple bioinformatic tools, we studied the miR-449c-5p expression levels in HCC tissues and explored possible target genes and related signaling pathways. First, miR-449c-5p expression data from microarrays provided by publicly available sources were mined and analyzed using various meta-analysis methods. Next, genes that were downregulated after miR-449c-5p mimic transfection into HCC cells were identified, and in silico methods were used to predict potential target genes. Several bioinformatic assessments were also performed to evaluate the possible signaling pathways of miR-449c-5p in HCC. Five microarrays were included in the current study, including GSE98269, GSE64632, GSE74618, GSE40744 and GSE57555. The standard mean difference was 0.44 (0.07-0.80), and the area under the curve was 0.68 (0.63-0.72), as assessed by meta-analyses, which consistently indicated the upregulation of miR-449c-5p in HCC tissues. A total of 2244 genes were downregulated after miR-449c-5p mimic transfection into an HCC cell line, while 5217 target genes were predicted by in silico methods. The overlap of these two gene pools led to a final group of 428 potential target genes of miR-449c-5p. These 428 potential target genes were primarily enriched in the homologous recombination pathway, which includes DNA Polymerase Delta 3 (POLD3). Data mining with Oncomine and the Human Protein Atlas showed a decreasing trend in POLD3 mRNA and protein levels in HCC tissue samples. This evidence suggests that miR-449c-5p could play an essential role in HCC through various pathways and that POLD3 could be a potential miR-449c-5p target. However, these in silico findings should be validated with further experiments.
Collapse
|
53
|
Ananieva EA, Bostic JN, Torres AA, Glanz HR, McNitt SM, Brenner MK, Boyer MP, Addington AK, Hutson SM. Mice deficient in the mitochondrial branched-chain aminotransferase (BCATm) respond with delayed tumour growth to a challenge with EL-4 lymphoma. Br J Cancer 2018; 119:1009-1017. [PMID: 30318512 PMCID: PMC6203766 DOI: 10.1038/s41416-018-0283-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background The mitochondrial branched-chain aminotransferase (BCATm) is a recently discovered cancer marker with a poorly defined role in tumour progression. Methods To understand how a loss of function of BCATm affects cancer, the global knockout mouse BCATmKO was challenged with EL-4 lymphoma under different diet compositions with varying amounts of branched-chain amino acids (BCAAs). Next, the growth and metabolism of EL-4 cells were studied in the presence of different leucine concentrations in the growth medium. Results BCATmKO mice experienced delayed tumour growth when fed standard rodent chow or a normal BCAA diet. Tumour suppression correlated with 37.6- and 18.9-fold increases in plasma and tumour BCAAs, 37.5% and 30.4% decreases in tumour glutamine and alanine, and a 3.5-fold increase in the phosphorylation of tumour AMPK in BCATmKO mice on standard rodent chow. Similar results were obtained with a normal but not with a choice BCAA diet. Conclusions Global deletion of BCATm caused a dramatic build-up of BCAAs, which could not be utilised for energy or amino acid synthesis, ultimately delaying the growth of lymphoma tumours. Furthermore, physiological, but not high, leucine concentrations promoted the growth of EL-4 cells. BCATm and BCAA metabolism were identified as attractive targets for anti-lymphoma therapy.
Collapse
Affiliation(s)
- Elitsa A Ananieva
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA.
| | - Joshua N Bostic
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Integrated Life Sciences Building 0913, 1981 Kraft Drive Blacksburg, Blacksburg, VA, 24060, USA.,Centre for Earth Evolution and Dynamics, University of Oslo, N-0315, Oslo, Norway
| | - Ashley A Torres
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Hannah R Glanz
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Sean M McNitt
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Michelle K Brenner
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Michael P Boyer
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Adele K Addington
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Integrated Life Sciences Building 0913, 1981 Kraft Drive Blacksburg, Blacksburg, VA, 24060, USA
| | - Susan M Hutson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Integrated Life Sciences Building 0913, 1981 Kraft Drive Blacksburg, Blacksburg, VA, 24060, USA
| |
Collapse
|
54
|
Yeon A, You S, Kim M, Gupta A, Park MH, Weisenberger DJ, Liang G, Kim J. Rewiring of cisplatin-resistant bladder cancer cells through epigenetic regulation of genes involved in amino acid metabolism. Theranostics 2018; 8:4520-4534. [PMID: 30214636 PMCID: PMC6134931 DOI: 10.7150/thno.25130] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/23/2018] [Indexed: 12/26/2022] Open
Abstract
Alterations in DNA methylation are important epigenetic markers in bladder cancer (BC). These epigenome modifications may drive the mechanisms of aggressive chemo-resistant BC. Clinicopathological biomarkers that indicate chemotherapeutic resistance are critical for better assessing treatment strategies for individual patients. Thus, in this study, we aimed to determine whether DNA methylation of certain metabolic enzymes is significantly altered in cisplatin-resistant BC cells. Methods: To characterize CpG methylation and nucleosome accessibility in cisplatin-resistant BC cells, the Illumina Infinium HM450 DNA methylation assay was performed. Perturbed gene expression was found to be associated with cisplatin resistance, and the biological roles of spermidine/spermine N1-acetyltransferase (SAT1) and argininosuccinate synthase 1 (ASS1) were further studied using qRT-PCR analysis and various cell biology assays, including western blot. Results:ASS1 and SAT1, genes for amino acid and polyamine metabolism catalysts, respectively, were found to be vastly hypermethylated, resulting in greatly downregulated expression. ASS1 expression is of particular interest because prior studies have demonstrated its potential association with BC stage and recurrence. In regard to chemoresistance, we found that aberrant expression or induced stimulation of SAT1 restored cisplatin sensitivity in the cell culture system. We also found that the addition of exogenous arginine deiminase through administration of ADI-PEG 20 (pegylated arginine deiminase) increased ASS1 expression and enhanced cisplatin's apoptotic effects. Conclusions: Our study demonstrates a novel mechanistic link between the epigenetic perturbation of SAT1 and ASS1 and cancer metabolism in cisplatin-resistant bladder cancer cells. These findings suggest potential utility of SAT1 and ASS1 as predictive biomarkers in re-sensitizing bladder cancer to chemotherapy and personalizing therapy.
Collapse
Affiliation(s)
- Austin Yeon
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Minhyung Kim
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amit Gupta
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Myung Hee Park
- National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD, USA
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jayoung Kim
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California Los Angeles, CA, USA
- Department of Urology, Ga Cheon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
55
|
Cappelletti P, Tallarita E, Rabattoni V, Campomenosi P, Sacchi S, Pollegioni L. Proline oxidase controls proline, glutamate, and glutamine cellular concentrations in a U87 glioblastoma cell line. PLoS One 2018; 13:e0196283. [PMID: 29694413 PMCID: PMC5918996 DOI: 10.1371/journal.pone.0196283] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
L-Proline is a multifunctional amino acid that plays an essential role in primary metabolism and physiological functions. Proline is oxidized to glutamate in the mitochondria and the FAD-containing enzyme proline oxidase (PO) catalyzes the first step in L-proline degradation pathway. Alterations in proline metabolism have been described in various human diseases, such as hyperprolinemia type I, velo-cardio-facial syndrome/Di George syndrome, schizophrenia and cancer. In particular, the mutation giving rise to the substitution Leu441Pro was identified in patients suffering of schizophrenia and hyperprolinemia type I. Here, we report on the expression of wild-type and L441P variants of human PO in a U87 glioblastoma human cell line in an attempt to assess their effect on glutamate metabolism. The subcellular localization of the flavoenzyme is not altered in the L441P variant, for which specific activity is halved compared to the wild-type PO. While this decrease in activity is significantly less than that previously proposed, an effect of the substitution on the enzyme stability is also apparent in our studies. At 24 hours of growth from transient transfection, the intracellular level of proline, glutamate, and glutamine is decreased in cells expressing the PO variants as compared to control U87 cells, reaching a similar figure at 72 h. On the other hand, the extracellular levels of the three selected amino acids show a similar time course for all clones. Furthermore, PO overexpression does not modify to a significant extent the expression of GLAST and GLT-1 glutamate transporters. Altogether, these results demonstrate that the proline pathway links cellular proline levels with those of glutamate and glutamine. On this side, PO might play a regulatory role in glutamatergic neurotransmission by affecting the cellular concentration of glutamate.
Collapse
Affiliation(s)
- Pamela Cappelletti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy
- * E-mail:
| | - Elena Tallarita
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy
| |
Collapse
|
56
|
Shen J, Song R, Hodges TR, Heimberger AB, Zhao H. Identification of metabolites in plasma for predicting survival in glioblastoma. Mol Carcinog 2018; 57:1078-1084. [PMID: 29603794 DOI: 10.1002/mc.22815] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022]
Abstract
Circulating metabolomics profiling holds prognostic potential. However, such efforts have not been extensively carried out in glioblastoma. In this study, two-step (training and testing) metabolomics profiling was conducted from the plasma samples of 159 glioblastoma patients. Metabolomics profiling was tested for correlation with 2-year overall and disease-free survivals. Arginine, methionine, and kynurenate levels were significantly associated with 2-year overall survival in both the training and testing sets. In the combined sets, elevated levels of arginine and methionine were associated with a 34% and 37% increased probability whereas kynurenate was associated with a 55% decreased probability of 2-year overall survival. These three metabolites were also significantly associated with 2-year disease-free survival. Risk scores were generated using the linear combination of levels of these significant metabolites. Glioblastoma patients with a high-risk score exhibited a 2.41-fold decreased probability of 2-year overall survival (hazard ratio (HR) = 2.41; 95% Confidence Interval (CI) = 1.20-4.93) and a 3.17-fold decreased probability of 2-year disease free survival (HR = 3.17, 95%CI = 1.42-7.54) relative to those with a low-risk score. In conclusion, we identified a unique plasma metabolite profile that is predictive of glioblastoma prognosis.
Collapse
Affiliation(s)
- Jie Shen
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Renduo Song
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tiffany R Hodges
- Department of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy B Heimberger
- Department of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hua Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
57
|
Mochizuki AY, Frost IM, Mastrodimos MB, Plant AS, Wang AC, Moore TB, Prins RM, Weiss PS, Jonas SJ. Precision Medicine in Pediatric Neurooncology: A Review. ACS Chem Neurosci 2018; 9:11-28. [PMID: 29199818 PMCID: PMC6656379 DOI: 10.1021/acschemneuro.7b00388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Central nervous system tumors are the leading cause of cancer related death in children. Despite much progress in the field of pediatric neurooncology, modern combination treatment regimens often result in significant late effects, such as neurocognitive deficits, endocrine dysfunction, secondary malignancies, and a host of other chronic health problems. Precision medicine strategies applied to pediatric neurooncology target specific characteristics of individual patients' tumors to achieve maximal killing of neoplastic cells while minimizing unwanted adverse effects. Here, we review emerging trends and the current literature that have guided the development of new molecularly based classification schemas, promising diagnostic techniques, targeted therapies, and delivery platforms for the treatment of pediatric central nervous system tumors.
Collapse
Affiliation(s)
- Aaron Y. Mochizuki
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Isaura M. Frost
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Melina B. Mastrodimos
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ashley S. Plant
- Division
of Pediatric Oncology, Children’s Hospital of Orange County, Orange, California 92868, United States
| | - Anthony C. Wang
- Department
of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Theodore B. Moore
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Robert M. Prins
- Department
of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University of California, Los Angeles, Los
Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Steven J. Jonas
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
- Children’s
Discovery and Innovation Institute, University of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
58
|
Xie Y, Wang L, Xie Z, Zeng C, Shu K. Transcriptomics Evidence for Common Pathways in Human Major Depressive Disorder and Glioblastoma. Int J Mol Sci 2018; 19:234. [PMID: 29329273 PMCID: PMC5796182 DOI: 10.3390/ijms19010234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Depression as a common complication of brain tumors. Is there a possible common pathogenesis for depression and glioma? The most serious major depressive disorder (MDD) and glioblastoma (GBM) in both diseases are studied, to explore the common pathogenesis between the two diseases. In this article, we first rely on transcriptome data to obtain reliable and useful differentially expressed genes (DEGs) by differential expression analysis. Then, we used the transcriptomics of DEGs to find out and analyze the common pathway of MDD and GBM from three directions. Finally, we determine the important biological pathways that are common to MDD and GBM by statistical knowledge. Our findings provide the first direct transcriptomic evidence that common pathway in two diseases for the common pathogenesis of the human MDD and GBM. Our results provide a new reference methods and values for the study of the pathogenesis of depression and glioblastoma.
Collapse
Affiliation(s)
- Yongfang Xie
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Ling Wang
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Zengyan Xie
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Chuisheng Zeng
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Kunxian Shu
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW The current review aims to provide an update on the recent biomedical interest in oncogenic branched-chain amino acid (BCAA) metabolism, and discusses the advantages of using BCAAs and expression of BCAA-related enzymes in the treatment and diagnosis of cancers. RECENT FINDINGS An accumulating body of evidence demonstrates that BCAAs are essential nutrients for cancer growth and are used by tumors in various biosynthetic pathways and as a source of energy. In addition, BCAA metabolic enzymes, such as the cytosolic branched-chain aminotransferase 1 (BCAT1) and mitochondrial branched-chain aminotransferase 2, have emerged as useful prognostic cancer markers. BCAT1 expression commonly correlates with more aggressive cancer growth and progression, and has attracted substantial scientific attention in the past few years. These studies have found the consequences of BCAT1 disruption to be heterogeneous; not all cancers share the same requirements for BCAA metabolites and the function of BCAT1 appears to vary between cancer types. SUMMARY Both oncogenic mutations and cancer tissue-of-origin influence BCAA metabolism and expression of BCAA-associated metabolic enzymes. These new discoveries need to be taken into consideration during the development of new cancer therapies that target BCAA metabolism.
Collapse
Affiliation(s)
- Elitsa A. Ananieva
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, Iowa
| | - Adam C. Wilkinson
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, Stanford, California, USA
| |
Collapse
|
60
|
BCAT1 is a New MR Imaging-related Biomarker for Prognosis Prediction in IDH1-wildtype Glioblastoma Patients. Sci Rep 2017; 7:17740. [PMID: 29255149 PMCID: PMC5735129 DOI: 10.1038/s41598-017-17062-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1)-wildtype glioblastoma (GBM) has found to be accompanied with increased expression of branched-chain amino acid trasaminase1 (BCAT1), which is associated with tumor growth and disease progression. In this retrospective study, quantitative RT-PCR, immunohistochemistry, and western blot were performed with GBM patient tissues to evaluate the BCAT1 level. Quantitative MR imaging parameters were evaluated from DSC perfusion imaging, DWI, contrast-enhanced T1WI and FLAIR imaging using a 3T MR scanner. The level of BCAT1 was significantly higher in IDH1-wildtype patients than in IDH1-mutant patients obtained in immunohistochemistry and western blot. The BCAT1 level was significantly correlated with the mean and 95th percentile-normalized CBV as well as the mean ADC based on FLAIR images. In addition, the 95th percentile-normalized CBV from CE T1WI also had a significant correlation with the BCAT1 level. Moreover, the median PFS in patients with BCAT1 expression <100 was longer than in those with BCAT1 expression ≥100. Taken together, we found that a high BCAT1 level is correlated with high CBV and a low ADC value as well as the poor prognosis of BCAT1 expression is related to the aggressive nature of GBM.
Collapse
|
61
|
Multi-focal sequencing of a diffuse intrinsic pontine glioma establishes PTEN loss as an early event. NPJ Precis Oncol 2017; 1:32. [PMID: 29872713 PMCID: PMC5871904 DOI: 10.1038/s41698-017-0033-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022] Open
Abstract
Improved molecular understanding is needed for rational treatment of diffuse intrinsic pontine gliomas (DIPG). Here, using multi-focal paired tumor and germline exome DNA and RNA sequencing, we uncovered phosphatase and tensin homolog (PTEN) loss as a clonal mutation in the case of a 6-year-old boy with a diffuse intrinsic pontine glioma, and incorporated copy number alteration analyses to provide a more detailed understanding of clonal evolution in diffuse intrinsic pontine gliomas. As well, using the PedcBioPortal, we found alterations in PTEN in 16 of 326 (4.9%) cases of pediatric high-grade glioma (3 of 154 (1.9%) brainstem) for which full sequencing data was available. Our data strengthens the association with PTEN loss in diffuse intrinsic pontine gliomas and provides further argument for the inclusion of PTEN in future targeted sequencing panels for pediatric diffuse intrinsic pontine gliomas and for the development and optimization of mTOR/PI3K inhibitors with optimal central nervous system penetration.
Collapse
|