51
|
Penny MA, Camponovo F, Chitnis N, Smith TA, Tanner M. Future use-cases of vaccines in malaria control and elimination. Parasite Epidemiol Control 2020; 10:e00145. [PMID: 32435704 PMCID: PMC7229487 DOI: 10.1016/j.parepi.2020.e00145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 02/18/2020] [Accepted: 03/29/2020] [Indexed: 11/29/2022] Open
Abstract
Malaria burden has significantly changed or decreased over the last 20 years, however, it remains an important health problem requiring the rigorous application of existing tools and approaches, as well as the development and use of new interventions. A malaria vaccine has long been considered a possible new intervention to aid malaria burden reduction. However, after decades of development, only one vaccine to protect children has completed phase 3 studies. Before being widely recommended for use, it must further demonstrate safety, impact and feasibility in ongoing pilot implementation studies. Now is an appropriate time to consider the use-cases and health targets of future malaria vaccines. These must be considered in the context of likely innovations in other malaria tools such as vector control, as well as the significant knowledge gaps on the appropriate target antigens, and the immunology of vaccine-induced protection. Here we discuss the history of malaria vaccines and suggest some future use-cases for future malaria vaccines that will support achieving malaria health goals in different settings.
Collapse
Affiliation(s)
| | - Flavia Camponovo
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Thomas A. Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
52
|
Sanchez L, Vidal M, Jairoce C, Aguilar R, Ubillos I, Cuamba I, Nhabomba AJ, Williams NA, Díez-Padrisa N, Cavanagh D, Angov E, Coppel RL, Gaur D, Beeson JG, Dutta S, Aide P, Campo JJ, Moncunill G, Dobaño C. Antibody responses to the RTS,S/AS01 E vaccine and Plasmodium falciparum antigens after a booster dose within the phase 3 trial in Mozambique. NPJ Vaccines 2020; 5:46. [PMID: 32550014 PMCID: PMC7272643 DOI: 10.1038/s41541-020-0192-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/07/2020] [Indexed: 01/08/2023] Open
Abstract
The RTS,S/AS01E vaccine has shown consistent but partial vaccine efficacy in a pediatric phase 3 clinical trial using a 3-dose immunization schedule. A fourth-dose 18 months after the primary vaccination was shown to restore the waning efficacy. However, only total IgG against the immunodominant malaria vaccine epitope has been analyzed following the booster. To better characterize the magnitude, nature, and longevity of the immune response to the booster, we measured levels of total IgM, IgG, and IgG1-4 subclasses against three constructs of the circumsporozoite protein (CSP) and the hepatitis B surface antigen (HBsAg, also present in RTS,S) by quantitative suspension array technology in 50 subjects in the phase 3 trial in Manhiça, Mozambique. To explore the impact of vaccination on naturally acquired immune responses, we measured antibodies to P. falciparum antigens not included in RTS,S. We found increased IgG, IgG1, IgG3 and IgG4, but not IgG2 nor IgM, levels against vaccine antigens 1 month after the fourth dose. Overall, antibody responses to the booster dose were lower than the initial peak response to primary immunization and children had higher IgG and IgG1 levels than infants. Higher anti-Rh5 IgG and IgG1-4 levels were detected after the booster dose, suggesting that RTS,S partial protection could increase some blood stage antibody responses. Our work shows that the response to the RTS,S/AS01E booster dose is different from the primary vaccine immune response and highlights the dynamic changes in subclass antibody patterns upon the vaccine booster and with acquisition of adaptive immunity to malaria.
Collapse
Affiliation(s)
- Lina Sanchez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain.,UnivLyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Marta Vidal
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Chenjerai Jairoce
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Itziar Ubillos
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Inocencia Cuamba
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Nana Aba Williams
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Núria Díez-Padrisa
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD USA
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC Australia
| | - Deepak Gaur
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD USA
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Joseph J Campo
- UnivLyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
53
|
Pritam M, Singh G, Swaroop S, Singh AK, Pandey B, Singh SP. A cutting-edge immunoinformatics approach for design of multi-epitope oral vaccine against dreadful human malaria. Int J Biol Macromol 2020; 158:159-179. [PMID: 32360460 PMCID: PMC7189201 DOI: 10.1016/j.ijbiomac.2020.04.191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/28/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Human malaria is a pathogenic disease mainly caused by Plasmodium falciparum, which was responsible for about 405,000 deaths globally in the year 2018. To date, several vaccine candidates have been evaluated for prevention, which failed to produce optimal output at various preclinical/clinical stages. This study is based on designing of polypeptide vaccines (PVs) against human malaria that cover almost all stages of life-cycle of Plasmodium and for the same 5 genome derived predicted antigenic proteins (GDPAP) have been used. For the development of a multi-immune inducer, 15 PVs were initially designed using T-cell epitope ensemble, which covered >99% human population as well as linear B-cell epitopes with or without adjuvants. The immune simulation of PVs showed higher levels of T-cell and B-cell activities compared to positive and negative vaccine controls. Furthermore, in silico cloning of PVs and codon optimization followed by enhanced expression within Lactococcus lactis host system was also explored. Although, the study has sound theoretical and in silico findings, the in vitro/in vivo evaluation seems imperative to warrant the immunogenicity and safety of PVs towards management of P. falciparum infection in the future.
Collapse
Affiliation(s)
- Manisha Pritam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, India
| | - Garima Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, India
| | - Suchit Swaroop
- Experimental & Public Health Lab, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Bihar 845401, India
| | - Brijesh Pandey
- Department of Biotechnology, Mahatma Gandhi Central University, Bihar 845401, India
| | | |
Collapse
|
54
|
Kurtovic L, Atre T, Feng G, Wines BD, Chan JA, Boyle MJ, Drew DR, Hogarth PM, Fowkes FJI, Bergmann-Leitner ES, Beeson JG. Multi-functional antibodies are induced by the RTS,S malaria vaccine and associated with protection in a phase I/IIa trial. J Infect Dis 2020; 224:1128-1138. [PMID: 32236404 PMCID: PMC8514181 DOI: 10.1093/infdis/jiaa144] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/30/2020] [Indexed: 01/24/2023] Open
Abstract
Background RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium falciparum sporozoite surface antigen, circumsporozoite protein (CSP). The induction of anti-CSP antibodies is important for protection; however, it is unclear how these protective antibodies function. Methods We quantified the induction of functional anti-CSP antibody responses in healthy malaria-naive adults (N = 45) vaccinated with RTS,S/AS01. This included the ability to mediate effector functions via the fragment crystallizable (Fc) region, such as interacting with human complement proteins and Fcγ-receptors (FcγRs) that are expressed on immune cells, which promote various immunological functions. Results Our major findings were (1) RTS,S-induced antibodies mediated Fc-dependent effector functions, (2) functional antibodies were generally highest after the second vaccine dose, (3) functional antibodies targeted multiple regions of CSP, (4) participants with higher levels of functional antibodies had a reduced probability of developing parasitemia following homologous challenge (P < .05), and (5) nonprotected subjects had higher levels of anti-CSP IgM. Conclusions Our data suggest a role for Fc-dependent antibody effector functions in RTS,S-induced immunity. Enhancing the induction of these functional activities may be a strategy to improve the protective efficacy of RTS,S or other malaria vaccines. Clinical Trials Registration NCT00075049
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Tanmaya Atre
- Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, United States
| | | | - Bruce D Wines
- Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Jo-Anne Chan
- Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Michelle J Boyle
- Burnet Institute, Melbourne, Australia.,QIMR Berghofer, Herston, Australia
| | | | - P Mark Hogarth
- Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine and Department of Infectious Diseases, Monash University, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Elke S Bergmann-Leitner
- Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, United States
| | - James G Beeson
- Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia.,Department of Medicine, The University of Melbourne, Parkville, Australia
| |
Collapse
|
55
|
Aves KL, Goksøyr L, Sander AF. Advantages and Prospects of Tag/Catcher Mediated Antigen Display on Capsid-Like Particle-Based Vaccines. Viruses 2020; 12:v12020185. [PMID: 32041299 PMCID: PMC7077247 DOI: 10.3390/v12020185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Capsid-like particles (CLPs) are multimeric, repetitive assemblies of recombinant viral capsid proteins, which are highly immunogenic due to their structural similarity to wild-type viruses. CLPs can be used as molecular scaffolds to enable the presentation of soluble vaccine antigens in a similar structural format, which can significantly increase the immunogenicity of the antigen. CLP-based antigen display can be obtained by various genetic and modular conjugation methods. However, these vary in their versatility as well as efficiency in achieving an immunogenic antigen display. Here, we make a comparative review of the major CLP-based antigen display technologies. The Tag/Catcher-AP205 platform is highlighted as a particularly versatile and efficient technology that offers new qualitative and practical advantages in designing modular CLP vaccines. Finally, we discuss how split-protein Tag/Catcher conjugation systems can help to further propagate and enhance modular CLP vaccine designs.
Collapse
Affiliation(s)
- Kara-Lee Aves
- Faculty of Health Science, Institute for Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; (K.-L.A.); (L.G.)
| | - Louise Goksøyr
- Faculty of Health Science, Institute for Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; (K.-L.A.); (L.G.)
- AdaptVac Aps, Agern Alle 1, 2970 Hørsholm, Denmark
| | - Adam F. Sander
- Faculty of Health Science, Institute for Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; (K.-L.A.); (L.G.)
- AdaptVac Aps, Agern Alle 1, 2970 Hørsholm, Denmark
- Correspondence:
| |
Collapse
|
56
|
Blank A, Fürle K, Jäschke A, Mikus G, Lehmann M, Hüsing J, Heiss K, Giese T, Carter D, Böhnlein E, Lanzer M, Haefeli WE, Bujard H. Immunization with full-length Plasmodium falciparum merozoite surface protein 1 is safe and elicits functional cytophilic antibodies in a randomized first-in-human trial. NPJ Vaccines 2020; 5:10. [PMID: 32025341 PMCID: PMC6994672 DOI: 10.1038/s41541-020-0160-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
A vaccine remains a priority in the global fight against malaria. Here, we report on a single-center, randomized, double-blind, placebo and adjuvant-controlled, dose escalation phase 1a safety and immunogenicity clinical trial of full-length Plasmodium falciparum merozoite surface protein 1 (MSP1) in combination with GLA-SE adjuvant. Thirty-two healthy volunteers were vaccinated at least three times with MSP1 plus adjuvant, adjuvant alone, or placebo (24:4:4) to evaluate the safety and immunogenicity. MSP1 was safe, well tolerated and immunogenic, with all vaccinees sero-converting independent of the dose. The MSP1-specific IgG and IgM titers persisted above levels found in malaria semi-immune humans for at least 6 months after the last immunization. The antibodies were variant- and strain-transcending and stimulated respiratory activity in granulocytes. Furthermore, full-length MSP1 induced memory T-cells. Our findings encourage challenge studies as the next step to evaluate the efficacy of full-length MSP1 as a vaccine candidate against falciparum malaria (EudraCT 2016-002463-33).
Collapse
Affiliation(s)
- Antje Blank
- Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Kristin Fürle
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Anja Jäschke
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Gerd Mikus
- Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Monika Lehmann
- Koordinierungszentrum für Klinische Studien (KKS), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Johannes Hüsing
- Koordinierungszentrum für Klinische Studien (KKS), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Kirsten Heiss
- PEPperPRINT GmbH, Rischerstrasse 12, 69123 Heidelberg, Germany
| | - Thomas Giese
- Institut für Immunologie, Universitätsklinikum Heidelberg und Deutsches Zentrum für Infektionsforschung (DZIF) Standort Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Darrick Carter
- PAI Life Sciences, 1616 Eastlake Ave E, Suite 550, Seattle, WA 98102 USA
| | - Ernst Böhnlein
- Sumaya Biotech GmbH & Co. KG, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Walter E. Haefeli
- Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hermann Bujard
- Sumaya Biotech GmbH & Co. KG, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
57
|
Marini A, Zhou Y, Li Y, Taylor IJ, Leneghan DB, Jin J, Zaric M, Mekhaiel D, Long CA, Miura K, Biswas S. A Universal Plug-and-Display Vaccine Carrier Based on HBsAg VLP to Maximize Effective Antibody Response. Front Immunol 2019; 10:2931. [PMID: 31921185 PMCID: PMC6921968 DOI: 10.3389/fimmu.2019.02931] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/28/2019] [Indexed: 01/26/2023] Open
Abstract
Development of effective malaria vaccines requires delivery platforms to enhance the immunogenicity and efficacy of the target antigens. This is particularly challenging for transmission-blocking malaria vaccines (TBVs), and specifically for those based on the Pfs25 antigen, that need to elicit very high antibody titers to stop the parasite development in the mosquito host and its transmission. Presenting antigens to the immune system on virus-like particles (VLPs) is an efficient way to improve the quantity and quality of the immune response generated. Here we introduce for the first time a new VLP vaccine platform, based on the well-established hepatitis B surface antigen (HBsAg) fused to the SpyCatcher protein, so that the antigen of interest, linked to the SpyTag peptide, can be easily displayed on it (Plug-and-Display technology). As little as 10% of the SpyCatcher::HBsAg VLPs decorated with Pfs25::SpyTag (molar ratio) induces a higher antibody response and transmission-reducing activity in mice compared to the soluble protein, with 50 and 90% of the VLP coupled to the antigen further enhancing the response. Importantly, using this carrier that is a vaccine antigen itself could be beneficial, as we show that anti-HBsAg IgG antibodies are induced without interfering with the Pfs25-specific immune response generated. Furthermore, pre-existing anti-HBsAg immunity does not affect the antigen-specific response to Pfs25::SpyTag-SpyCatcher::HBsAg, suggesting that these VLPs can have a broad use as a vaccine platform.
Collapse
Affiliation(s)
- Arianna Marini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yu Zhou
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yuanyuan Li
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona J. Taylor
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Darren B. Leneghan
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jing Jin
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Marija Zaric
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sumi Biswas
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
58
|
Abstract
Malaria is an illness caused by Plasmodium parasites transmitted to humans by infected mosquitoes. Of the five species that infect humans, P. falciparum exacts the highest toll in terms of human morbidity and mortality, and therefore represents a major public health threat in endemic areas. Recent advances in control efforts have reduced malaria incidence and prevalence, including rapid diagnostic testing, highly effective artemisinin combination therapy, use of insecticide-treated bednets, and indoor residual spraying. But, reductions in numbers of cases have stalled over the last few years, and incidence may have increased. As this concerning trend calls for new tools to combat the disease, the RTS,S vaccine has arrived just in time. The vaccine was created in 1987 and began pilot implementation in endemic countries in 2019. This first-generation malaria vaccine demonstrates modest efficacy against malaria illness and holds promise as a public health tool, especially for children in high-transmission areas where mortality is high.
Collapse
Affiliation(s)
- Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
59
|
Kurtovic L, Boyle MJ, Opi DH, Kennedy AT, Tham WH, Reiling L, Chan JA, Beeson JG. Complement in malaria immunity and vaccines. Immunol Rev 2019; 293:38-56. [PMID: 31556468 PMCID: PMC6972673 DOI: 10.1111/imr.12802] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Developing efficacious vaccines for human malaria caused by Plasmodium falciparum is a major global health priority, although this has proven to be immensely challenging over the decades. One major hindrance is the incomplete understanding of specific immune responses that confer protection against disease and/or infection. While antibodies to play a crucial role in malaria immunity, the functional mechanisms of these antibodies remain unclear as most research has primarily focused on the direct inhibitory or neutralizing activity of antibodies. Recently, there is a growing body of evidence that antibodies can also mediate effector functions through activating the complement system against multiple developmental stages of the parasite life cycle. These antibody‐complement interactions can have detrimental consequences to parasite function and viability, and have been significantly associated with protection against clinical malaria in naturally acquired immunity, and emerging findings suggest these mechanisms could contribute to vaccine‐induced immunity. In order to develop highly efficacious vaccines, strategies are needed that prioritize the induction of antibodies with enhanced functional activity, including the ability to activate complement. Here we review the role of complement in acquired immunity to malaria, and provide insights into how this knowledge could be used to harness complement in malaria vaccine development.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | | | | | - Alexander T Kennedy
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia
| | | | - Jo-Anne Chan
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia.,Department of Medicine, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
60
|
Dobaño C, Ubillos I, Jairoce C, Gyan B, Vidal M, Jiménez A, Santano R, Dosoo D, Nhabomba AJ, Ayestaran A, Aguilar R, Williams NA, Díez-Padrisa N, Lanar D, Chauhan V, Chitnis C, Dutta S, Gaur D, Angov E, Asante KP, Owusu-Agyei S, Valim C, Gamain B, Coppel RL, Cavanagh D, Beeson JG, Campo JJ, Moncunill G. RTS,S/AS01E immunization increases antibody responses to vaccine-unrelated Plasmodium falciparum antigens associated with protection against clinical malaria in African children: a case-control study. BMC Med 2019; 17:157. [PMID: 31409398 PMCID: PMC6693200 DOI: 10.1186/s12916-019-1378-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vaccination and naturally acquired immunity against microbial pathogens may have complex interactions that influence disease outcomes. To date, only vaccine-specific immune responses have routinely been investigated in malaria vaccine trials conducted in endemic areas. We hypothesized that RTS,S/A01E immunization affects acquisition of antibodies to Plasmodium falciparum antigens not included in the vaccine and that such responses have an impact on overall malaria protective immunity. METHODS We evaluated IgM and IgG responses to 38 P. falciparum proteins putatively involved in naturally acquired immunity to malaria in 195 young children participating in a case-control study nested within the African phase 3 clinical trial of RTS,S/AS01E (MAL055 NCT00866619) in two sites of different transmission intensity (Kintampo high and Manhiça moderate/low). We measured antibody levels by quantitative suspension array technology and applied regression models, multimarker analysis, and machine learning techniques to analyze factors affecting their levels and correlates of protection. RESULTS RTS,S/AS01E immunization decreased antibody responses to parasite antigens considered as markers of exposure (MSP142, AMA1) and levels correlated with risk of clinical malaria over 1-year follow-up. In addition, we show for the first time that RTS,S vaccination increased IgG levels to a specific group of pre-erythrocytic and blood-stage antigens (MSP5, MSP1 block 2, RH4.2, EBA140, and SSP2/TRAP) which levels correlated with protection against clinical malaria (odds ratio [95% confidence interval] 0.53 [0.3-0.93], p = 0.03, for MSP1; 0.52 [0.26-0.98], p = 0.05, for SSP2) in multivariable logistic regression analyses. CONCLUSIONS Increased antibody responses to specific P. falciparum antigens in subjects immunized with this partially efficacious vaccine upon natural infection may contribute to overall protective immunity against malaria. Inclusion of such antigens in multivalent constructs could result in more efficacious second-generation multistage vaccines.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique.
| | - Itziar Ubillos
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Ben Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,Kintampo Health Research Centre, Kintampo, Ghana
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain.,Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Rebeca Santano
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - David Dosoo
- Kintampo Health Research Centre, Kintampo, Ghana
| | - Augusto J Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Aintzane Ayestaran
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Nana Aba Williams
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Núria Díez-Padrisa
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - David Lanar
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Virander Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chetan Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Paris, France
| | - Sheetij Dutta
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Deepak Gaur
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Evelina Angov
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Kintampo, Ghana.,Disease Control Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Clarissa Valim
- Department of Osteopathic Medical Specialties, Michigan State University, 909 Fee Road, Room B 309 West Fee Hall, East Lansing, MI, 48824, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chen School of Public Health, 675 Huntington Ave., Boston, MA, 02115, USA
| | - Benoit Gamain
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR_S1134, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK
| | - James G Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
| | - Joseph J Campo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique.
| |
Collapse
|
61
|
Atre T, Robinson TM, Savransky T, Dutta S, Epstein JE, Bergmann-Leitner ES. Novel sporozoite-based ELISpot assay to assess frequency of parasite-specific B cells after vaccination with irradiated sporozoites. Malar J 2019; 18:186. [PMID: 31142328 PMCID: PMC6540377 DOI: 10.1186/s12936-019-2819-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/18/2019] [Indexed: 11/29/2022] Open
Abstract
Background Whole parasite vaccination is an efficacious strategy to induce sterile immunity and to prevent malaria transmission. Understanding the mechanism and response of immune cells to vaccines plays a critical role in deciphering correlates of protection against infection and disease. Immunoassays, such as ELISpot, are commonly used to assess the immunogenicity of vaccines towards T cells and B cells. To date, these assays only analyse responses to specific antigens since they are based on recombinant parasite-derived proteins or peptides. There is the need for an agnostic approach that allows the evaluation of all sporozoite-associated antigens. Methods ELISpot plates coated with a defined amount of lysed Plasmodium falciparum sporozoites were used to assess the frequency of sporozoite-specific B cells in peripheral blood mononuclear cells from donors immunized with either a recombinant malaria vaccine or irradiated sporozoites. Results This report describes the assay conditions for a specific and sensitive sporozoite-based B cell ELISpot assay. The assay development considers the quality of sporozoite preparation as well as the detection threshold of the frequency of antigen-specific B cells. The assay enables the detection of sporozoite-specific IgM and IgG-producing B cells. Moreover, the assay can detect sporozoite-reactive B cells from subjects that were either vaccinated with the radiation attenuated sporozoite vaccine or a recombinant pre-erythrocytic vaccine. Conclusion The newly developed sporozoite-based B cell ELISpot enables the monitoring of changes in the frequency of sporozoite-specific B cells. Applying this assay to assess the potency of vaccination regimens or seasonal changes in B cell populations from subjects residing in malaria-endemic areas will provide an opportunity to gain insight into immune mechanisms involved in protection and/or disease.
Collapse
Affiliation(s)
- Tanmaya Atre
- Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Tanisha M Robinson
- Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Tatyana Savransky
- Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheetij Dutta
- Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Judith E Epstein
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Elke S Bergmann-Leitner
- Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|