51
|
Wang B, Sun Z, Yu Z. Pectin Degradation is an Important Determinant for Alfalfa Silage Fermentation through the Rescheduling of the Bacterial Community. Microorganisms 2020; 8:E488. [PMID: 32235428 PMCID: PMC7232347 DOI: 10.3390/microorganisms8040488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 11/30/2022] Open
Abstract
This study aimed to evaluate the effects of the four kinds of additives on the silage quality and the relevant bacterial community diversity by Illumina HiSeq 16S rRNA sequencing. The four kinds of additives were Lactobacillus plantarum (LP), organic acids including gallic acid (GA) and phenyllactic acid (PA), pectin (PEC), and enzymes including pectinase (PEE) and cellulase (CE). After 30 d of fermentation, the pH value was shown to have the lowest value in the PEE and PEC groups, followed by the PA group, and then in CE and GA groups; the highest value of pH was found in both LP and control groups. The ammonia nitrogen concentration was lower in the PEE group compared to the other groups except for the PA group. In the comparisons among the seven groups, Lactobacillus was higher in the LP group, Paracoccus was higher in the GA group, Weissella was higher in the PA group, Leuconostoc was higher in the PEC group, Bacillus, Aeromonas, and Curvibacter were higher in the PEE group, and Coriobacteriaceae_UCG_002 was higher in the CE group compared to the other groups. This study proposed that the addition of PEC and PEE improved the fermentation quality of alfalfa silage compared to other additives by improving the bacterial community of Leuconostoc, and Bacillus and Aeromonas, respectively. Moreover, the enhanced fermentation quality of alfalfa silage by the supplementation of PEC and PEE might be attributed to other unclassified genera. This study provides an implication that pectin degradation is an important determinant for alfalfa silage fermentation through the rescheduling of bacterial community diversity.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
52
|
Xiong L, Ni X, Niu L, Zhou Y, Wang Q, Khalique A, Liu Q, Zeng Y, Shu G, Pan K, Jing B, Zeng D. Isolation and Preliminary Screening of a Weissella confusa Strain from Giant Panda (Ailuropoda melanoleuca). Probiotics Antimicrob Proteins 2020; 11:535-544. [PMID: 29654473 DOI: 10.1007/s12602-018-9402-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Weissella confusa has recently received attention for its probiotic potential. Some W. confusa and Weissella cibaria strains isolated from fermented foods show favorable probiotic effects. However, the probiotic properties of W. confusa isolated from giant panda remain unreported to date. Thus, this study isolated a W. confusa strain from giant panda feces and then investigated its characteristics and probiotic properties. A lactic acid bacteria strain was isolated from giant panda fecal samples. The isolated strain was screened by in vitro probiotic property tests, including in vitro antimicrobial test, antioxidant test, surface hydrophobicity, and stress resistance. On the basis of biochemical identification and 16S rDNA sequencing, the W. confusa strain was identified as BSP201703. This Weissella confusa strain can survive at pH 2 and 0.3% (w/v) concentration of bile salt environment and inhibit common intestinal pathogens. It also possesses an in vitro antioxidant capacity, a high auto-aggregation ability, and a high surface hydrophobicity. BSP201703 might serve as a probiotic to giant pandas.
Collapse
Affiliation(s)
- Lvchen Xiong
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiang Wang
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- Key laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bo Jing
- Key laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
53
|
Evaluation of functional properties of potential probiotic isolates from fermented brine pickle. Food Chem 2019; 311:126057. [PMID: 31869636 DOI: 10.1016/j.foodchem.2019.126057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
Abstract
Fermented foods have been consumed for centuries in various parts of the world and are known to be rich resources of functionally important microorganisms. This study documents the antioxidative, anticancer and enzyme-inhibiting properties of potential probiotic Bacillus strains isolated from fermented brine mango pickle. Antioxidant activity was determined through in-vitro assays namely, DPPH•, ABTS•+, hydroxyl radical scavenging ability, reducing activity, superoxide anion scavenging ability, linoleic acid and plasma lipid peroxidation ability. Both intact cells (IC) and intracellular cell-free extracts (CFE) from most of the strains exhibited prominent antioxidant activity. Likewise, CFE and intracellular cell-free supernatants (CFS) exhibited potential inhibitory activities towards α-amylase, α-glucosidase and tyrosinase. Interestingly, CFS and crude ethyl acetate extracts of PUFSTP35 (Bacillus licheniformis KT921419) displayed strong anticancer activity against HT-29 colon cancer cell line. Hence, these probiotic strains have been showed to exhibit unique functional properties and could be further commercially exploited.
Collapse
|
54
|
Kanagendran A, Chatterjee P, Liu B, Sa T, Pazouki L, Niinemets Ü. Foliage inoculation by Burkholderia vietnamiensis CBMB40 antagonizes methyl jasmonate-mediated stress in Eucalyptus grandis. JOURNAL OF PLANT PHYSIOLOGY 2019; 242:153032. [PMID: 31491672 PMCID: PMC6863749 DOI: 10.1016/j.jplph.2019.153032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
Methyl jasmonate (MeJA) is widely used as a model chemical to study hypersensitive responses to biotic stress impacts in plants. Elevated levels of methyl jasmonate induce jasmonate-dependent defense responses, associated with a decline in primary metabolism and enhancement of secondary metabolism of plants. However, there is no information of how stress resistance of plants, and accordingly the sensitivity to exogenous MeJA can be decreased by endophytic plant growth promoting rhizobacteria (PGPR) harboring ACC (1-aminocyclopropane-1-carboxylate) deaminase. In this study, we estimated stress alleviating potential of endophytic PGPR against MeJA-induced plant perturbations through assessing photosynthetic traits and stress volatile emissions. We used mild (5 mM) to severe (20 mM) MeJA and endophytic plant growth promoting rhizobacteria Burkholderia vietnamiensis CBMB40 and studied how MeJA and B. vietnamiensis treatments influenced temporal changes in photosynthetic characteristics and stress volatile emissions. Separate application of MeJA markedly decreased photosynthetic characteristics and increased lipoxygenase pathway (LOX) volatiles, volatile isoprenoids, saturated aldehydes, lightweight oxygenated compounds (LOC), geranyl-geranyl diphosphate pathway (GGDP) volatiles, and benzenoids. However, MeJA-treated leaves inoculated by endophytic bacteria B. vietnamiensis had substantially increased photosynthetic characteristics and decreased emissions of LOX, volatile isoprenoids and other stress volatiles compared with non-inoculated MeJA treatments, especially at later stages of recovery. In addition, analysis of leaf terpenoid contents demonstrated that several mono- and sesquiterpenes were de novo synthesized upon MeJA and B. vietnamiensis applications. This study demonstrates that foliar application of endophytic bacteria B. vietnamiensis can potentially enhance resistance to biotic stresses and contribute to the maintenance of the integrity of plant metabolic activity.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Faculty of Science, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea; Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
55
|
Kotowicz N, Bhardwaj R, Ferreira W, Hong H, Olender A, Ramirez J, Cutting S. Safety and probiotic evaluation of two Bacillus strains producing antioxidant compounds. Benef Microbes 2019; 10:759-771. [DOI: 10.3920/bm2019.0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacillus species are becoming increasingly relevant for use as probiotics or feed additives where their heat stability can ensure survival in the food matrix or enable long-term storage at ambient temperature. Some Bacillus species are pigmented and in this study, we have examined two strains, one Bacillus pumilus (pigmented red) and the other Bacillus megaterium (pigmented yellow) for their safety for potential use in humans as dietary supplements. In addition, we have set out to determine if they might confer any potential health benefits. Both strains produce C30 carotenoids while the B. pumilus strain also produced large quantities of riboflavin equivalent to genetically modified Bacillus strains and most probably contributing to this strain’s pigmentation. Riboflavin’s and carotenoids are antioxidants, and we have evaluated the ability of vegetative cells and/or spores to influence populations of Faecalibacterium prausnitzii in the colon of mice. While both strains increased levels of F. prausnitzii, spores of the B. pumilus strain produced a significant increase in F. prausnitzii levels. If found to be reproducible in humans such an effect might, potentially, confer health benefits particularly for those suffering from inflammatory bowel disease.
Collapse
Affiliation(s)
- N. Kotowicz
- SporeGen Ltd., Bourne Labs, Egham, Surrey, TW20 OEX, United Kingdom
| | - R.K. Bhardwaj
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| | - W.T. Ferreira
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| | - H.A. Hong
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| | - A. Olender
- Department of Medical Microbiology, Medical University of Lublin, Chodzki 1 Street, Lublin, 20-093, Poland
| | - J. Ramirez
- Enviromedica, 2301 Scarbrough Drive, Suite 300, Austin, TX 78728, USA
| | - S.M. Cutting
- SporeGen Ltd., Bourne Labs, Egham, Surrey, TW20 OEX, United Kingdom
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| |
Collapse
|
56
|
Adhikari B, Hernandez-Patlan D, Solis-Cruz B, Kwon YM, Arreguin MA, Latorre JD, Hernandez-Velasco X, Hargis BM, Tellez-Isaias G. Evaluation of the Antimicrobial and Anti-inflammatory Properties of Bacillus-DFM (Norum™) in Broiler Chickens Infected With Salmonella Enteritidis. Front Vet Sci 2019; 6:282. [PMID: 31508436 PMCID: PMC6718558 DOI: 10.3389/fvets.2019.00282] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Restrictions of in-feed antibiotics use in poultry has pushed research toward finding appropriate alternatives such as Direct-Fed Microbials (DFM). In this study, previously tested Bacillus isolates (B. subtilis and B. amyloliquefaciens) were used to evaluate their therapeutic and prophylactic effects against Salmonella enterica serovar Enteritidis (S. Enteritidis) in broiler chickens. For this purpose, initial antibacterial activity of Bacillus-DFM (104 spores/g or 106 spores/g) against S. Enteritidis colonization in crop, proventriculus and intestine was investigated using an in vitro digestive model. Furthermore, to evaluate therapeutic and prophylactic effects of Bacillus-DFM (104 spores/g) against S. Enteritidis colonization, altogether 60 (n = 30/group) and 30 (n = 15/group) 1-day-old broiler chickens were randomly allocated to either DFM or control group (without Bacillus-DFM), respectively. Chickens were orally gavaged with 104 cfu of S. Enteritidis per chicken at 1-day old, and cecal tonsils (CT) and crop were collected 3 and 10 days later during the therapeutic study, whereas they were orally gavaged with 107 cfu of S. Enteritidis per chicken at 6-day-old, and CT and crop were collected 24 h later from two independent trials during the prophylactic study. Serum superoxide dismutase (SOD), FITC-d and intestinal IgA levels were reported for both chicken studies, in addition cecal microbiota analysis was performed during the therapeutic study. DFM significantly reduced S. Enteritidis concentration in the intestine compartment, and in both proventriculus and intestine compartments as compared to the control when used at 104 spores/g and 106 spores/g, respectively (p < 0.05). DFM significantly reduced FITC-d and IgA as well as SOD and IgA levels (p < 0.05) compared to the control in therapeutic and prophylactic studies, respectively. Interestingly, in the therapeutic study, there were significant differences in bacterial community structure and predicted metabolic pathways between DFM and control. Likewise, phylum Actinobacteria and the genera Bifidobacterium, Roseburia, Proteus, and cc_115 were decreased, while the genus Streptococcus was enriched significantly in the DFM group as compared to the control (MetagenomeSeq, p < 0.05). Thus, the overall results suggest that the Bacillus-DFM can reduce S. Enteritidis colonization and improve the intestinal health in chickens through mechanism(s) that might involve the modulation of gut microbiota and their metabolic pathways.
Collapse
Affiliation(s)
- Bishnu Adhikari
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Daniel Hernandez-Patlan
- Unidad de Investigación Multidisciplinaria, Laboratorio 5: LEDEFAR, Facultad de Estudios Superiores (FES) Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, Mexico
| | - Bruno Solis-Cruz
- Unidad de Investigación Multidisciplinaria, Laboratorio 5: LEDEFAR, Facultad de Estudios Superiores (FES) Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, Mexico
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | |
Collapse
|
57
|
Chen K, Shao LL, Huo YF, Zhou JM, Zhu Q, Hider RC, Zhou T. Antimicrobial and antioxidant effects of a hydroxypyridinone derivative containing an oxime ether moiety and its application in shrimp preservation. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
58
|
Nikolić I, Berić T, Dimkić I, Popović T, Lozo J, Fira D, Stanković S. Biological control of Pseudomonas syringae pv. aptata on sugar beet with Bacillus pumilus SS-10.7 and Bacillus amyloliquefaciens (SS-12.6 and SS-38.4) strains. J Appl Microbiol 2018; 126:165-176. [PMID: 30117660 DOI: 10.1111/jam.14070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
Abstract
AIM Assessment of biological control of Pseudomonas syringae pv. aptata using crude lipopeptide extracts (CLEs) of two Bacillus amyloliquefaciens strains (SS-12.6 and SS-38.4) and one Bacillus pumilus strain (SS-10.7). METHODS AND RESULTS The minimum inhibitory concentration (MIC) of CLEs and their combinations against the pathogen and potential interaction between the extracts were determined in vitro. The most effective antibacterial activity was achieved with the CLE from B. amyloliquefaciens SS-12.6, with an MIC value of 0·63 mg ml-1 . Interactions between CLE combinations were mostly indifferent. The biocontrol potential of CLEs, mixtures of CLEs, and cell culture of B. amyloliquefaciens SS-12.6 was tested on sugar beet plants inoculated with P. syringae pv. aptata P53. The best result in inhibiting the appearance of tissue necrosis (up to 92%) was achieved with B. amyloliquefaciens SS-12.6 cell culture. CONCLUSION This work demonstrated significant biocontrol potential of the CLE and cell culture of B. amyloliquefaciens SS-12.6 which successfully suppress leaf spot disease severity on sugar beet plants. SIGNIFICANCE AND IMPACT OF THE STUDY The findings of biocontrol of sugar beet emerging pathogen will contribute to growers in terms of alternative disease control management. This study represents first assessment of biological control of P. syringae pv. aptata.
Collapse
Affiliation(s)
- I Nikolić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - T Berić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - I Dimkić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - T Popović
- Institute for Plant Protection and Environment, Belgrade, Serbia
| | - J Lozo
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - D Fira
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - S Stanković
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
59
|
Dubey MK, Aamir M, Kaushik MS, Khare S, Meena M, Singh S, Upadhyay RS. PR Toxin - Biosynthesis, Genetic Regulation, Toxicological Potential, Prevention and Control Measures: Overview and Challenges. Front Pharmacol 2018; 9:288. [PMID: 29651243 PMCID: PMC5885497 DOI: 10.3389/fphar.2018.00288] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/13/2018] [Indexed: 01/28/2023] Open
Abstract
Out of the various mycotoxigenic food and feed contaminant, the fungal species belonging to Penicillium genera, particularly Penicillium roqueforti is of great economic importance, and well known for its crucial role in the manufacturing of Roquefort and Gorgonzola cheese. The mycotoxicosis effect of this mold is due to secretion of several metabolites, of which PR toxin is of considerable importance, with regard to food quality and safety challenges issues. The food products and silages enriched with PR toxin could lead into damage to vital internal organs, gastrointestinal perturbations, carcinogenicity, immunotoxicity, necrosis, and enzyme inhibition. Moreover, it also has the significant mutagenic potential to disrupt/alter the crucial processes like DNA replication, transcription, and translation at the molecular level. The high genetic diversities in between the various strains of P. roqueforti persuaded their nominations with Protected Geographical Indication (PGI), accordingly to the cheese type, they have been employed. Recently, the biosynthetic mechanism and toxicogenetic studies unraveled the role of ari1 and prx gene clusters that cross-talk with the synthesis of other metabolites or involve other cross-regulatory pathways to negatively regulate/inhibit the other biosynthetic route targeted for production of a strain-specific metabolites. Interestingly, the chemical conversion that imparts toxic properties to PR toxin is the substitution/oxidation of functional hydroxyl group (-OH) to aldehyde group (-CHO). The rapid conversion of PR toxin to the other derivatives such as PR imine, PR amide, and PR acid, based on conditions available reflects their unstability and degradative aspects. Since the PR toxin-induced toxicity could not be eliminated safely, the assessment of dose-response and other pharmacological aspects for its safe consumption is indispensable. The present review describes the natural occurrences, diversity, biosynthesis, genetics, toxicological aspects, control and prevention strategies, and other management aspects of PR toxin with paying special attention on economic impacts with intended legislations for avoiding PR toxin contamination with respect to food security and other biosafety purposes.
Collapse
Affiliation(s)
- Manish K. Dubey
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mohd Aamir
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manish S. Kaushik
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saumya Khare
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mukesh Meena
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Centre for Transgenic Plant Development, Department of Biotechnology, Faculty of Science, Hamdard University, New Delhi, India
| | - Surendra Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ram S. Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
60
|
Draft Genome Sequence of Bacillus velezensis OSY-S3, a Producer of Potent Antimicrobial Agents Active against Bacteria and Fungi. GENOME ANNOUNCEMENTS 2018; 6:6/3/e01465-17. [PMID: 29348344 PMCID: PMC5773729 DOI: 10.1128/genomea.01465-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus velezensis OSY-S3 produces anti-Listeria, anti-Escherichia coli, and antifungal compounds. Additionally, fermentate of B. velezensis OSY-S3 culture removes Staphylococcus aureus biofilms effectively. The draft genome sequence of B. velezensis OSY-S3 reported here had a genome size of ~3.90 Mb and a G+C content of 46.5%.
Collapse
|
61
|
Gotor-Vila A, Teixidó N, Sisquella M, Torres R, Usall J. Biological Characterization of the Biocontrol Agent Bacillus amyloliquefaciens CPA-8: The Effect of Temperature, pH and Water Activity on Growth, Susceptibility to Antibiotics and Detection of Enterotoxic Genes. Curr Microbiol 2017; 74:1089-1099. [DOI: 10.1007/s00284-017-1289-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
|
62
|
Masmoudi F, Ben Khedher S, Kamoun A, Zouari N, Tounsi S, Trigui M. Combinatorial effect of mutagenesis and medium component optimization on Bacillus amyloliquefaciens antifungal activity and efficacy in eradicating Botrytis cinerea. Microbiol Res 2017; 197:29-38. [DOI: 10.1016/j.micres.2017.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/02/2017] [Accepted: 01/07/2017] [Indexed: 11/25/2022]
|
63
|
Geeraerts S, Delezie E, Ducatelle R, Haesebrouck F, Devreese B, Van Immerseel F. Vegetative Bacillus amyloliquefaciens cells do not confer protection against necrotic enteritis in broilers despite high antibacterial activity of its supernatant against Clostridium perfringens in vitro. Br Poult Sci 2017; 57:324-9. [PMID: 27122203 DOI: 10.1080/00071668.2016.1169246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this study, the effect of Bacillus amyloliquefaciens on Clostridium perfringens was tested in vitro and in vivo. Using an agar well diffusion assay, the inhibitory activity of B. amyloliquefaciens supernatant was analysed against a large collection of netB-positive and netB-negative C. perfringens strains. Although strong growth inhibiting activity was detected against all C. perfringens isolates, it was significantly higher against virulent netB-positive C. perfringens strains compared with avirulent netB-negative isolates. Subsequently, the efficacy of in-feed administration of lyophilised vegetative cells of B. amyloliquefaciens to prevent necrotic enteritis was tested in vivo using an established experimental infection model in broilers. Ross 308 broilers received either B. amyloliquefaciens supplemented or unsupplemented feed throughout the experiment. No significant differences could be detected between the untreated positive control group and the B. amyloliquefaciens treated group in body weight, the number of chickens that developed necrotic lesions and in pathological lesion scores. These results demonstrate that despite its substantial inhibitory activity in vitro, lyophilised vegetative B. amyloliquefaciens cells had no beneficial effect against necrotic enteritis in the in vivo model used here.
Collapse
Affiliation(s)
- S Geeraerts
- a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - E Delezie
- b Institute for Agricultural and Fisheries Research , Melle , Belgium
| | - R Ducatelle
- a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - F Haesebrouck
- a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - B Devreese
- c Department of Biochemistry and Microbiology , Ghent University , Ghent , Belgium
| | - F Van Immerseel
- a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| |
Collapse
|
64
|
Chen JN, Wei CW, Liu HC, Chen SY, Chen C, Juang YM, Lai CC, Yiang GT. Extracts containing CLPs of Bacillus amyloliquefaciens JN68 isolated from chicken intestines exert antimicrobial effects, particularly on methicillin-resistant Staphylococcus aureus and Listeria monocytogenes. Mol Med Rep 2016; 14:5155-5163. [PMID: 27840979 PMCID: PMC5355721 DOI: 10.3892/mmr.2016.5900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/11/2016] [Indexed: 11/06/2022] Open
Abstract
Bacillus amyloliquefaciens JN68, which has been discussed with regards to its antimicrobial activities, was successfully isolated from healthy chicken intestines in the present study. Using the spot-on-the-lawn antagonism method, the preliminary study indicated that a suspension culture of the B. amyloliquefaciens JN68 strain can inhibit the growth of Aspergillus niger and Penicillium pinophilum. Furthermore, the cyclic lipopeptides (CLPs) produced by the B. amyloliquefaciens JN68 strain were further purified through acid precipitation and Bond Elut®C18 chromatography, and their structures were identified using the liquid chromatography‑electrospray ionization‑mass spectrometry (MS)/MS method. Purified CLPs exerted broad spectrum antimicrobial activities on various pathogenic and foodborne bacteria and fungi, as determined using the agar well diffusion method. Listeria monocytogenes can induce listeriosis, which is associated with a high mortality rate. Methicillin‑resistant Staphylococcus aureus (MRSA) is a major pathogenic bacteria that causes nosocomial infections. Therefore, L. monocytogenes and MRSA are currently of great concern. The present study aimed to determine whether B. amyloliquefaciens JN68 extracts could inhibit L. monocytogenes and MRSA. The results indicated that extracts of B. amyloliquefaciens JN68 have CLP components, and can successfully inhibit the growth of L. monocytogenes and MRSA.
Collapse
Affiliation(s)
- Jen-Ni Chen
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Hsiao-Chun Liu
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Shu-Ying Chen
- Department of Nursing, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Chinshuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Yu-Min Juang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Giou-Teng Yiang
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan, R.O.C
| |
Collapse
|
65
|
Dai XY, Zhang MX, Wei XY, Hider RC, Zhou T. Novel Multifunctional Hydroxypyridinone Derivatives as Potential Shrimp Preservatives. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1694-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|