51
|
Liu P, Cui J, Liu RD, Wang M, Jiang P, Liu LN, Long SR, Li LG, Zhang SB, Zhang XZ, Wang ZQ. Protective immunity against Trichinella spiralis infection induced by TsNd vaccine in mice. Parasit Vectors 2015; 8:185. [PMID: 25889976 PMCID: PMC4382852 DOI: 10.1186/s13071-015-0791-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 03/10/2015] [Indexed: 01/13/2023] Open
Abstract
Background We have previously reported that Trichinella spiralis Nudix hydrolase (TsNd) bound to intestinal epithelial cells (IECs), and vaccination of mice with recombinant TsNd protein (rTsNd) produced a partial protective immunity. The aim of this study was to investigate the immune protection induced by TsNd DNA vaccine. Methods The full-length cDNA sequence of TsNd gene was cloned into pcDNA3.1 and used to immunize BALB/c mice by intramuscular injection. Transcription and expression of TsNd were detected by RT-PCR and IFT. The levels of specific IgA, IgG, IgG1 and IgG2a, and cytokines were assayed by ELISA at weeks 0, 6 and 8 post-immunization. The immune protection of TsNd DNA vaccine against challenge infection was investigated. Results Immunization of mice with TsNd DNA elicited a systemic Th1/Th2 immune response and a local mucosal IgA response. The in vitro transcription and expression of TsNd gene was observed at all developmental stages of T. spiralis (ML, IIL, AW and NBL). Anti-rTsNd IgG levels were increased after immunization and levels of IgG1 were obviously higher than that of IgG2a. Intestinal specific IgA levels of immunized mice were significantly higher than those of vector and PBS control mice. Cytokine profiling also showed a significant increase in Th1 (IFN-γ, IL-2) and Th2 (IL-4, 10) responses in splenocytes of immunized mice on stimulation with rTsNd. Vaccination of mice with pcDNA3.1-TsNd displayed a 40.44% reduction in adult worms and a 53.9% reduction in larval burden. Conclusions TsNd DNA induced a mixed Th1/Th2 immune response and partial protection against T. spiralis infection in mice.
Collapse
Affiliation(s)
- Pei Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Min Wang
- Department of Infection Control, The Second People's Hospital of Zhengzhou City, Zhengzhou, 450000, P. R. China.
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Li Na Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Ling Ge Li
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Shuai Bing Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
53
|
Sinha A, Datta SP, Ray A, Sarkar S. A reduced VWA domain-containing proteasomal ubiquitin receptor of Giardia lamblia localizes to the flagellar pore regions in microtubule-dependent manner. Parasit Vectors 2015; 8:120. [PMID: 25888841 PMCID: PMC4352536 DOI: 10.1186/s13071-015-0737-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/13/2015] [Indexed: 11/22/2022] Open
Abstract
Background Giardia lamblia switches its lifecycle between trophozoite and cyst forms and the proteasome plays a pivotal role in this switching event. Compared to most model eukaryotes, the proteasome of this parasite has already been documented to have certain variations. This study was undertaken to characterize the ubiquitin receptor, GlRpn10, of the 19S regulatory particle of the Giardia proteasome and determine its cellular localization in trophozoites, encysting trophozoites and cysts. Method Sequence alignment and domain architecture analyses were performed to characterize GlRpn10. In vitro ubiquitin binding assay, functional complementation and biochemical studies verified the protein’s ability to function as ubiquitin receptor in the context of the yeast proteasome. Immunofluorescence localization was performed with antibody against GlRpn10 to determine its distribution in trophozoites, encysting trophozoites and cysts. Real-time PCR and Western blotting were performed to monitor the expression pattern of GlRpn10 during encystation. Result GlRpn10 contained a functional ubiquitin interacting motif, which was capable of binding to ubiquitin. Although it contained a truncated VWA domain, it was still capable of partially complementing the function of the yeast Rpn10 orthologue. Apart from localizing to the nucleus and cytosol, GlRpn10 was also present at flagellar pores of trophozoites and this localization was microtubule-dependent. Although there was no change in the cellular levels of GlRpn10 during encystation, its selective distribution at the flagellar pores was absent. Conclusion GlRpn10 contains a noncanonical VWA domain that is partially functional in yeast. Besides the expected nuclear and cytosolic distribution, the protein displays microtubule-dependent flagellar pore localization in trophozoites. While the protein remained in the nucleus and cytosol in encysting trophozoites, it could no longer be detected at the flagellar pores. This absence at the flagellar pore regions in encysting trophozoites is likely to involve redistribution of the protein, rather than decreased gene expression or selective protein degradation. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0737-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abhishek Sinha
- Department of Biochemistry, Bose Institute, P 1/12, C. I. T. Road, Scheme - VII M, Kolkata, 700054, West Bengal, India.
| | - Shankari Prasad Datta
- Department of Biochemistry, Bose Institute, P 1/12, C. I. T. Road, Scheme - VII M, Kolkata, 700054, West Bengal, India.
| | - Atrayee Ray
- Department of Biochemistry, Bose Institute, P 1/12, C. I. T. Road, Scheme - VII M, Kolkata, 700054, West Bengal, India.
| | - Srimonti Sarkar
- Department of Biochemistry, Bose Institute, P 1/12, C. I. T. Road, Scheme - VII M, Kolkata, 700054, West Bengal, India.
| |
Collapse
|