51
|
An Y, Luo Q, Han D, Guan L. Abietic acid inhibits acetaminophen-induced liver injury by alleviating inflammation and ferroptosis through regulating Nrf2/HO-1 axis. Int Immunopharmacol 2023; 118:110029. [PMID: 36963265 DOI: 10.1016/j.intimp.2023.110029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/26/2023]
Abstract
Abietic acid has been known to exhibit anti-inflammatory activity. This study was designed to investigate the protective effects of abietic acid on acetaminophen (APAP)-induced liver injury. The data demonstrated that abietic acid significantly ameliorated APAP-induced liver pathological changes, TNF-α and IL-1β production. APAP could increase malondialdehyde (MDA) and Fe2+ levels, and decrease ATP and glutathione (GSH) levels, as well as glutathione peroxidase 4 (GPX4) and xCT expression. However, these changes induced by APAP were prevented by abietic acid, indicating abietic acid could inhibit APAP-induced ferroptosis. Furthermore, abietic acid inhibited APAP-induced NF-κB activation and increased the expression of Nrf2 and HO-1. Additionally, the inhibitory effects of abietic acid on APAP-induced liver injury were prevented in Nrf2-/- mice. In vitro, the inhibition of abietic acid on APAP-induced inflammation and ferroptosis were reversed when Nrf2 was knockdown. In summary, abietic acidexhibited a therapeutic effectagainst liver injury by attenuating inflammation and ferroptosis.
Collapse
Affiliation(s)
- Yuan An
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Qiang Luo
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Donghai Han
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Lianyue Guan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
52
|
Liu Y, Xue Y, Zhang Z, Ji J, Li C, Zheng K, Lu J, Gao Y, Gong Y, Zhang Y, Shi X. Wolfberry enhanced the abundance of Akkermansia muciniphila by YAP1 in mice with acetaminophen-induced liver injury. FASEB J 2023; 37:e22689. [PMID: 36468767 DOI: 10.1096/fj.202200945r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) by acetaminophen (APAP) was one of the most challenging liver diseases. Wolfberry (Lycium barbarum L.), a traditional Chinese medicinal material and food supplement, has a potential effect on increasing the abundance of Akkermansia muciniphila (A. muciniphila) in mice colons. However, the effect and mechanism of wolfberry remain unclear in APAP-induced DILI. In this study, wolfberry promoted the proliferation of activated-A. muciniphila in vitro and in vivo. For the first time, we detected that the activated-A. muciniphila but not the killed-A. muciniphila increased the expression level of Yes-associated protein 1 (YAP1) in the liver and alleviated liver injury in APAP-induced DILI mice. Mechanically, A. muciniphila improved the intestinal mucosal barrier and reduced lipopolysaccharide (LPS) content in the liver, leading to the increased expression level of YAP1. Furthermore, wolfberry increased the A. muciniphila abundance in the colon and YAP1 expression in the liver from APAP-induced DILI mice, which promoted the recovery of APAP-induced liver injury. Meanwhile, wolfberry combination with A. muciniphila synergistically increased AKK abundance and YAP1 expression in the liver. Our research provides an innovative strategy to improve DILI.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Kangning Zheng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Junlan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuting Gao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yi Gong
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuman Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|