51
|
EL-Deep MH, Amber KA, Eid YZ, Alrashood ST, Khan HA, Sakr MS, Dawood MAO. The Influence of Dietary Chicken Egg Lysozyme on the Growth Performance, Blood Health, and Resistance Against Escherichia coli in the Growing Rabbits' Cecum. Front Vet Sci 2020; 7:579576. [PMID: 33195588 PMCID: PMC7593809 DOI: 10.3389/fvets.2020.579576] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/04/2020] [Indexed: 02/05/2023] Open
Abstract
The dietary chicken egg lysozyme (LZM) at different concentrations was tested on the growth performance, blood health, and resistance against Escherichia coli of growing rabbits. A total number of 48 rabbits averaged 611.25 g (5 weeks of age) of APRI line-rabbits (Egyptian developed line) were allocated into four treatments (three replicates and each contained four rabbits) of 5-week weaning APRI rabbits. The first group was fed a basal diet without LZM supplementation and served as a control group, whereas the remaining groups of rabbits were fed a basal diet supplemented with LZM at 50, 100, and 200 mg/kg diet, respectively, for 8 weeks. The obtained results revealed that rabbits fed the basal diet supplemented with different concentrations of LZM linearly (P < 0.05) displayed improved growth performance and reduced feed intake and FCR. The best result was for rabbits fed a 200 mg per kg diet supplemented with LZM, followed by a 100 mg per kg diet. The total count of Escherichia coli and Clostridium count was linearly (P < 0.05) decreased by adding LZM at 100 and 200 mg/kg in the diets compared to the control groups. In contrast, total bacterial count and the total count of Lactobacilli had increased considerably by increasing LZM at different levels relative to the control groups. The LZM supplementation linearly (P < 0.05) increased hematological parameters (RBCs, PCV, Hb, and WBCs) together with an increase in lymphocyte count compared to the control group. The total protein and globulin concentrations were significantly (P < 0.05) increased by feeding with LZM. On the other hand, ALT, AST, urea, and creatinine were significantly (P < 0.05) decreased by increasing LZM supplementation. It could be concluded that supplementation of the rabbit's diet with chicken egg LZM was able to improve the growth performance and hematological and serum biochemical parameters compared with the control group. Therefore, LZM is required at the rate of the hobx100-200 mg/kg diet as a potential feed additive and a friendly alternative for antibiotics in rabbit feed.
Collapse
Affiliation(s)
- Mahmoud H. EL-Deep
- Animal Production Research Institute, Agricultural, Research Center, Ministry of Agriculture, Giza, Egypt
| | - Khairy A. Amber
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Yahya Z. Eid
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Sara T. Alrashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S. Sakr
- Animal Production Research Institute, Agricultural, Research Center, Ministry of Agriculture, Giza, Egypt
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
52
|
Mohammed A, Alghetaa HK, Zhou J, Chatterjee S, Nagarkatti P, Nagarkatti M. Protective effects of Δ 9 -tetrahydrocannabinol against enterotoxin-induced acute respiratory distress syndrome are mediated by modulation of microbiota. Br J Pharmacol 2020; 177:5078-5095. [PMID: 32754917 PMCID: PMC7436585 DOI: 10.1111/bph.15226] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose Staphylococcal enterotoxin‐B (SEB) is one of the most potent bacterial superantigens that exerts profound toxic effects by inducing a cytokine storm. Inhaled SEB can cause acute respiratory distress syndrome (ARDS), which is often fatal and with no effective treatments. Experimental Approach Efficacy of Δ9‐tetrahydrocannabinol (THC) was tested in a mouse model of SEB‐mediated ARDS, in which lung inflammation, alterations in gut/lung microbiota and production of short‐chain fatty acids (SCFAs) was measured. Gene dysregulation of lung epithelial cells was studied by transcriptome arrays. Faecal microbiota transplantation (FMT) was performed to confirm the role of microbiota in suppressing ARDS. Key Results While SEB triggered ARDS and 100% mortality in mice, THC protected the mice from fatality. Pyrosequencing analysis revealed that THC caused significant and similar alterations in microbiota in the lungs and gut of mice exposed to SEB. THC significantly increased the abundance of beneficial bacterial species, Ruminococcus gnavus, but decreased pathogenic microbiota, Akkermansia muciniphila. FMT confirmed that THC‐mediated reversal of microbial dysbiosis played crucial role in attenuation of SEB‐mediated ARDS. THC treatment caused an increase in SCFA, of which propionic acid was found to inhibit the inflammatory response. Transcriptome array showed that THC up‐regulated several genes like lysozyme1 and lysozyme2, β‐defensin‐2, claudin, zonula‐1, occludin‐1, Mucin2 and Muc5b while down‐regulating β‐defensin‐1. Conclusion and Implications The study demonstrates for the first time that THC attenuates SEB‐mediated ARDS and toxicity by altering the microbiota in the lungs and the gut as well as promoting antimicrobial and anti‐inflammatory pathways.
Collapse
Affiliation(s)
- Amira Mohammed
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Hasan K Alghetaa
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Juhua Zhou
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Saurabh Chatterjee
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
53
|
Transcriptome profiling and in silico detection of the antimicrobial peptides of red king crab Paralithodes camtschaticus. Sci Rep 2020; 10:12679. [PMID: 32728087 PMCID: PMC7391757 DOI: 10.1038/s41598-020-69126-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/20/2020] [Indexed: 01/24/2023] Open
Abstract
Endogenous antimicrobial peptides (AMPs) are evolutionarily ancient factors of innate immunity, which are produced by all multicellular organisms and play a key role in their protection against infection. Red king crab (Paralithodes camtschaticus), also called Kamchatka crab, is widely distributed and the best known species of all king crabs belonging to the family Lithodidae. Despite their economic importance, the genetic resources of king crabs are scarcely known and no full-genome sequences are available to date. Therefore, analysis of the red king crab transcriptome and identification and characterization of its AMPs could potentially contribute to the development of novel antimicrobial drug candidates when antibiotic resistance has become a global health threat. In this study, we sequenced the P. camtschaticus transcriptomes from carapace, tail flap and leg tissues using an Illumina NGS platform. Libraries were systematically analyzed for gene expression profiles along with AMP prediction. By an in silico approach using public databases we defined 49 cDNAs encoding for AMP candidates belonging to diverse families and functional classes, including buforins, crustins, paralithocins, and ALFs (anti-lipopolysaccharide factors). We analyzed expression patterns of 27 AMP genes. The highest expression was found for Paralithocin 1 and Crustin 3, with more than 8,000 reads. Other paralithocins, ALFs, crustins and ubiquicidins were among medium expressed genes. This transcriptome data set and AMPs provide a solid baseline for further functional analysis in P. camtschaticus. Results from the current study contribute also to the future application of red king crab as a bio-resource in addition to its being a known seafood delicacy.
Collapse
|
54
|
Immune Response to Herpes Simplex Virus Infection and Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020302. [PMID: 32545507 PMCID: PMC7350219 DOI: 10.3390/vaccines8020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.
Collapse
|
55
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Wei Q, Wei D. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121682. [PMID: 31744723 DOI: 10.1016/j.jhazmat.2019.121682] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 05/06/2023]
Abstract
Swine wastewater (SW) is an important source of antibiotics and hormones (A&H) in the environment due to their large-scale application in swine industry. A&H in SW can be released into the water environment through the direct discharge of SW, effluent from SW treatment plants, and runoff and leaching from farmland polluted by swine wastes. The presence of A&H in the water environment has become an increasing global concern considering their adverse effects to the aquatic organism and human. This review critically discusses: (i) the occurrence of A&H in global water environment and their potential risks to water organisms and human; (ii) the management and technical approaches for reducing the emission of A&H in SW to the water environment. The development of antibiotic alternatives and the enhanced implementation of vaccination and biosecurity are promising management approaches to cut down the consumption of antibiotics during swine production. Through the comparison of different biological treatment technologies for removing A&H in SW, membrane-based bioprocesses have relatively higher and more stable removal efficiencies. Whereas, the combined system of bioprocesses and AOPs is expected to be a promising technology for elimination and mineralization of A&H in swine wastewater. Further study on this system is therefore necessary.
Collapse
Affiliation(s)
- Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia
| | - Qin Wei
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dong Wei
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
56
|
Cells and Cytokines in Milk of Subclinically Infected Bovine Mammary Glands after the Use of Immunomodulatory Composition GLP 810. Mediators Inflamm 2020; 2020:8238029. [PMID: 32256195 PMCID: PMC7085878 DOI: 10.1155/2020/8238029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/17/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to investigate the effect of intramammary infusions of natural composition GLP 810 with immunomodulating properties on the local nonspecific cellular and humoral immune response in cows with subclinical mastitis. The composition GLP 810 consists of lactic acid, lysozyme, glycopeptides, and 0.9% solution of NaCl. The following parameters were studied: (1) leukocyte differential distribution in milk, (2) expression of cytokines in milk leukocytes, (3) antibacterial activity, and (4) milk quality. Nineteen mammary glands in five lactating cows were infused with 10 mL of GLP 810, and nineteen other glands from five control cows were treated with 10 mL 0.9% NaCl. The results showed that after intramammary administration of the composition GLP 810 three times with 48 h intervals, the following effects on leukocyte populations in milk were observed: (1) an increase in the number of polymorphonuclear leukocytes and lymphocytes and (2) a decrease in the number of macrophages. A reduction in the number of pathogenic bacteria was also detected. The analyses of tumour necrosis factor-alpha, interleukin-10, and beta-defensin-2 revealed that the production of the aforementioned cytokines significantly increased, whereas no significant effects on interleukin-1 and caspase-6 expression in milk leukocytes were recorded. However, there were significant differences between mammary glands with high and low milk somatic cell count. The results suggest that the composition GLP 810 has an immunomodulatory effect on mammary glands and it could be used for improving the immune response in cows with subclinical mastitis during lactation.
Collapse
|
57
|
Sais M, Barroeta AC, López-Colom P, Nofrarías M, Majó N, Lopez-Ulibarri R, Pérez Calvo E, Martín-Orúe SM. Evaluation of dietary supplementation of a novel microbial muramidase on gastrointestinal functionality and growth performance in broiler chickens. Poult Sci 2020; 99:235-245. [PMID: 32416807 PMCID: PMC7587705 DOI: 10.3382/ps/pez466] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to assess the effect of dietary supplementation of Muramidase 007 to broiler chickens on gastrointestinal functionality, evaluating growth performance, apparent ileal digestibility, intestinal histomorphology, vitamin A in plasma and cecal microbiota. A total of 480 one-day male chicks (Ross 308) were distributed in 16 pens allocated in 2 experimental diets: the control diet (CTR) without feed enzymes, coccidiostat or growth promoters, and the experimental diet (MUR): CTR supplemented with 35,000 units (LSU(F))/kg of the Muramidase 007. Digesta and tissue samples were obtained on days 9 and 36 of the study. A lower feed conversion ratio was observed in the MUR treatment. Apparent ileal digestibility of DM, organic matter and energy were improved by Muramidase 007. It was also observed that MUR improved digestibility of total fatty acids, mono-unsaturated fatty acids and poly-unsaturated fatty acids, and content of vitamin A in plasma at day 9 (P < 0.05). Histomorphological analysis of jejunum samples revealed no differences in the villus height or crypt depth; but a higher number of goblet cells and intraepithelial lymphocytes at day 36 with MUR. No differences were observed in plate counts of enterobacteria or Lactobacillus along the gastrointestinal tract, neither on the cecal short-chain fatty acids. An statistical trend was observed for reduction of cecal clostridia at day 9 for MUR. Analysis of cecal microbiota structure by 16S rRNA gene sequencing revealed relevant changes correlated to age. At day 9, broilers receiving MUR showed decreased alpha diversity compared to CTR that was not detected at day 36. Changes in specific taxonomic groups with an increase in Lactobacillus genus were identified. In conclusion, evaluation of the variables in this study indicates that dietary Muramidase 007 contributes to improve feed conversation ratio and gastrointestinal function in broiler chickens. Effects could have been mediated by slight shifts observed in the intestinal microbiota. More studies are guaranteed to fully understand the mechanisms involved.
Collapse
Affiliation(s)
- Mounira Sais
- Animal Nutrition and Welfare Service. Animal and Food Science Department, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ana C Barroeta
- Animal Nutrition and Welfare Service. Animal and Food Science Department, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Paola López-Colom
- Animal Nutrition and Welfare Service. Animal and Food Science Department, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Miquel Nofrarías
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, UAB-IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Natàlia Majó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, UAB-IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Rual Lopez-Ulibarri
- DSM Nutritional Products Ltd, Nutrition Innovation Center - ANH, 4303 Kaiseraugst, Switzerland
| | - Estefanía Pérez Calvo
- DSM Nutritional Products Ltd, Nutrition Innovation Center - ANH, 68128 Village Neuf, France
| | - Susana M Martín-Orúe
- Animal Nutrition and Welfare Service. Animal and Food Science Department, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
58
|
Swift SM, Reid KP, Donovan DM, Ramsay TG. Thermophile Lytic Enzyme Fusion Proteins that Target Clostridium perfringens. Antibiotics (Basel) 2019; 8:antibiotics8040214. [PMID: 31717357 PMCID: PMC6963370 DOI: 10.3390/antibiotics8040214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/20/2019] [Accepted: 11/04/2019] [Indexed: 12/04/2022] Open
Abstract
Clostridium perfringens is a bacterial pathogen that causes necrotic enteritis in poultry and livestock, and is a source of food poisoning and gas gangrene in humans. As the agriculture industry eliminates the use of antibiotics in animal feed, alternatives to antibiotics will be needed. Bacteriophage endolysins are enzymes used by the virus to burst their bacterial host, releasing bacteriophage particles. This type of enzyme represents a potential replacement for antibiotics controlling C. perfringens. As animal feed is often heat-treated during production of feed pellets, thermostable enzymes would be preferred for use in feed. To create thermostable endolysins that target C. perfringens, thermophile endolysin catalytic domains were fused to cell wall binding domains from different C. perfringens prophage endolysins. Three thermostable catalytic domains were used, two from prophage endolysins from two Geobacillus strains, and a third endolysin from the deep-sea thermophilic bacteriophage Geobacillus virus E2 (GVE2). These domains harbor predicted L-alanine-amidase, glucosaminidase, and L-alanine-amidase activities, respectively and degrade the peptidoglycan of the bacterial cell wall. The cell wall binding domains were from C. perfringens prophage endolysins (Phage LYtic enzymes; Ply): PlyCP18, PlyCP10, PlyCP33, PlyCP41, and PlyCP26F. The resulting fifteen chimeric proteins were more thermostable than the native C. perfringens endolysins, and killed swine and poultry disease-associated strains of C. perfringens.
Collapse
Affiliation(s)
- Steven M. Swift
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agricultural (USDA), Agricultural Research Service, Baltimore Avenue, Beltsville, MD 10300, USA or (S.M.S.); (K.P.R.); (D.M.D.)
- Contrafect Corporation., Yonkers, NY 10701, USA
| | - Kevin P. Reid
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agricultural (USDA), Agricultural Research Service, Baltimore Avenue, Beltsville, MD 10300, USA or (S.M.S.); (K.P.R.); (D.M.D.)
| | - David M. Donovan
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agricultural (USDA), Agricultural Research Service, Baltimore Avenue, Beltsville, MD 10300, USA or (S.M.S.); (K.P.R.); (D.M.D.)
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Timothy G. Ramsay
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agricultural (USDA), Agricultural Research Service, Baltimore Avenue, Beltsville, MD 10300, USA or (S.M.S.); (K.P.R.); (D.M.D.)
- Correspondence: or
| |
Collapse
|
59
|
Xiong X, Zhou J, Liu H, Tang Y, Tan B, Yin Y. Dietary lysozyme supplementation contributes to enhanced intestinal functions and gut microflora of piglets. Food Funct 2019; 10:1696-1706. [PMID: 30839962 DOI: 10.1039/c8fo02335b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysozyme plays a significant role in defense against bacterial pathogens and in regulating the interactions between gut microbiota and host immune systems. Here, the effects of dietary lysozyme on the intestinal development, immunity, and colonic microbiota of piglets were comprehensively evaluated. Twenty-four seven-day-old piglets from Landrace × Yorkshire sows (n = 8 per group) received no supplementation (group A, the control), 0.5 g kg-1 lysozyme (group B), or 1.0 g kg-1 lysozyme (group C). After the 14-day treatment, piglets supplemented with 1.0 g kg-1 lysozyme had higher average weaning weight, jejunal villus height (VH), and ileal lymphocyte counts than those in the control groups (P < 0.005). Serum total protein and albumin were significantly up-regulated (P < 0.005) and immunoglobulin G tended to increase in the 0.5 g kg-1 lysozyme group (P = 0.065). Bacteroidetes, Proteobacteria, and Fibrobacteres all showed a significant increase in relative abundance after lysozyme treatment at the highest dosage (P < 0.005). At the genus level, the relative abundance of Lactobacillus, Treponema_2, and Prevotellaceae_NK3B31_group was significantly increased in the lysozyme-treated groups. Furthermore, microbial genes related to glycerolipid, propanoate, and pyruvate metabolism showed much more abundance in the 1.0 g kg-1 lysozyme group. Interleukin-4 in the colonic mucosa was significantly up-regulated, while transforming growth factor-β1 showed significant reduction in the lysozyme-treated group. Moreover, mucosal catalase and malondialdehyde in colon samples increased significantly. These results demonstrate that dietary lysozyme efficaciously improves the development of intestinal structure and functions and promotes the enrichment of beneficial microbes in the gut microbiota in terms of both composition and metabolic functions.
Collapse
Affiliation(s)
- Xia Xiong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
60
|
Stimulated Growth and Innate Immunity in Brook Charr ( Salvelinus fontinalis) Treated with a General Probiotic (Bactocell ®) and Two Endogenous Probiotics That Inhibit Aeromonas salmonicida In Vitro. Microorganisms 2019; 7:microorganisms7070193. [PMID: 31284626 PMCID: PMC6681104 DOI: 10.3390/microorganisms7070193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 11/17/2022] Open
Abstract
Aeromonas salmonicida subsp. salmonicida is a Gram-negative bacterium causing furunculosis, an opportunistic infection of farmed salmonid fish. Current treatment methods against furunculosis rely heavily on antibiotherapy. However, strains of this opportunistic fish pathogen were found to possess genes that confer resistance to major antibiotics including those used to cure furunculosis. Therefore, dispensing bacterial symbionts as probiotics to susceptible hosts appears to be a promising alternative. Here, we present the genomic characterization and in vivo safety assessment of two brook charr (Salvelinus fontinalis) bacterial symbionts that inhibited A. salmonicida subsp. salmonicida growth in vitro (Pseudomonas fluorescens ML11A and Aeromonas sobria TM18) as well as a commercialized probiotic, Pediococcus acidilactici MA18/5M (Bactocell®). The genomic sequences of ML11A and TM18 obtained by whole-genome shotgun sequencing lack key virulence factor genes found in related pathogenic strains. Their genomic sequences are also devoid of genes involved in the inactivation (or target modification of) several key antimicrobial compounds used in salmonid aquaculture. Finally, when administered daily to live brook charr fingerlings, ML11A, TM18 and Bactocell® helped improve several physiological condition metrics such as mean body weight, Fulton's condition factor and blood plasma lysozyme activity (an indicator for innate immune activity).
Collapse
|
61
|
Goodarzi Boroojeni F, Männer K, Rieger J, Pérez Calvo E, Zentek J. Evaluation of a microbial muramidase supplementation on growth performance, apparent ileal digestibility, and intestinal histology of broiler chickens. Poult Sci 2019; 98:2080-2086. [PMID: 30566631 DOI: 10.3382/ps/pey556] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/21/2018] [Indexed: 01/14/2023] Open
Abstract
The current study evaluated the effects of different inclusion levels of microbial muramidase (Muramidase 007, DSM Nutritional Products) on gastrointestinal functionality by determination of apparent ileal digestibility (AID) of nutrients, investigation of intestinal histomorphology, and quantification of resulting growth performance. Four maize-wheat-soybean experimental diets were produced without (C) and with different dosages of muramidase: low (L, 25,000 LSU(F)/kg), medium (M, 35,000 LSU(F)/kg), and high (H, 45,000 LSU(F)/kg); diets were fed to broilers for 35 d. At the end of the experiment, AID of ether extract (EE), crude protein (CP), Ca, and P were determined and samples of the mid-jejunum and -ileum were collected for histomorphological observations. Data were subjected to ANOVA analysis using the GLM procedure. Orthogonal polynomial contrasts were used to assess linear and quadratic effects of different levels of the muramidase. At the end of the trial, Muramidase 007 supplementation linearly increased body weight gain and decreased feed conversion ratio (FCR) (P ≤ 0.05). Adding the muramidase to broiler diets also linearly increased the European poultry efficiency factor (P ≤ 0.05). Inclusion of the muramidase in broiler diets linearly increased AID of CP, EE, and P (P ≤ 0.05), and the H group had a higher AID of EE and CP compared to C group (P ≤ 0.05). Microbial muramidase supplementation linearly increased ileal villus length to crypt depth ratio and decreased the number of ileal CD45 cells (P ≤ 0.05). Broilers fed M and H diets had fewer number of CD45 cells in the ileum compared to those in C group (P ≤ 0.05). In conclusion, the results of the present study demonstrated that inclusion of the microbial muramidase in broiler diets could increase AID of key nutrients and improve growth performance in broilers. Adding microbial muramidase to broiler diets can therefore be considered as an interesting prospect to improve gastrointestinal functionality. Biological mechanisms causing these improvements need to be studied further.
Collapse
Affiliation(s)
- F Goodarzi Boroojeni
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| | - K Männer
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| | - J Rieger
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| | - E Pérez Calvo
- DSM Nutritional Products France, Centre de Recherche en Nutrition et Santé Animale, F-68305 Saint Louis, France
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
62
|
Zou L, Xiong X, Liu H, Zhou J, Liu Y, Yin Y. Effects of dietary lysozyme levels on growth performance, intestinal morphology, immunity response and microbiota community of growing pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1643-1650. [PMID: 30198063 DOI: 10.1002/jsfa.9348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Lysozyme has been studied as a potential alternative to antibiotics for animals in recent years. The aim of this study was to evaluate the effect of dietary lysozyme on growth performance, serum biochemical parameters, immune response and gut health of growing pigs. RESULTS A total of 216 growing pigs (19.81 ± 0.47 kg) were fed the diets supplemented with colistin sulfate at 20 mg kg-1 (control), or lysozyme at 50 (L50) or 100 mg kg-1 (L100) diet for 30 days. The results showed that pigs fed with L100 or control had greater average daily gain and gain-to-feed ratio than pigs in the L50 group. Pigs fed with L100 or colistin had greater villus height to crypt depth ratio in jejunum compared with pigs in the L50 group. Pigs fed with L100 had greater serum immunoglobulin A and jejunal secretory immunoglobulin A than control and L50, but lower serum total protein and globulin than control. No differences were observed in the messenger RNA expression of genes related to mucosal cytokines, antioxidant capacity, enzyme activity, and barrier functions among three treatments. The caecal microflora evenness was lower in the L100 group than in the control or L50 group by 16S ribosomal DNA sequencing. Phylogenetic investigation of communities by reconstruction of unobserved states analysis predicted that lysozyme may modify nutrient metabolism by changing intestinal microbial function of pigs. CONCLUSIONS Pigs supplemented with 100 mg kg-1 lysozyme had similar growth performance and intestinal morphology as pigs fed with colistin. This was likely due to the improved systemic and gut immune responses and the reduced microbiota diversity by feeding 100 mg kg-1 lysozyme. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lijun Zou
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, China
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Xia Xiong
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
| | - Hongnan Liu
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
| | - Jian Zhou
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA, USA
| | - Yulong Yin
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
63
|
Hanif A, Farooq R, Rehman MU, Khan R, Majid S, Ganaie MA. Aptamer based nanobiosensors: Promising healthcare devices. Saudi Pharm J 2019; 27:312-319. [PMID: 30976173 PMCID: PMC6438676 DOI: 10.1016/j.jsps.2018.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Nanobiosensors based on aptamer are extensively being studied as potent analytical tools in clinical analysis. These biosensors provide high sensitivity, fast response, specificity and desired portability in addition to simplicity and decreased cost compared to conventional methods. The purpose of this manuscript is to provide readers with an overview of current advances about electrochemical, electrochemiluminescent and photoelectrochemical aptasensors from the sea of available literature. These are mainly used for determination of protein-based biomarkers, especially for cancer diagnosis. Here in we have given special emphasis on nanosize-based aptasensors which have been reported to show considerable improvement in the analytical performance.
Collapse
Affiliation(s)
- Aamir Hanif
- City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Rabia Farooq
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Muneeb U. Rehman
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Rehan Khan
- Nanotherapeutics, Institute of Nanoscience & Technology (DST-INST), Habitat Centre Phase 10, Mohali, Punjab, India
| | - Sabhiya Majid
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
64
|
Zhou J, Xiong X, Yin J, Zou L, Wang K, Shao Y, Yin Y. Dietary Lysozyme Alters Sow's Gut Microbiota, Serum Immunity and Milk Metabolite Profile. Front Microbiol 2019; 10:177. [PMID: 30787921 PMCID: PMC6373202 DOI: 10.3389/fmicb.2019.00177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of current study was to determine variations in sow's gut microbiota, serum immunity, and milk metabolite profile mediated by lysozyme supplementation. Twenty-four pregnant sows were assigned to a control group without supplementation and two treatments with 0.5 kg/t and 1.0 kg/t lysozyme provided in formula feed for 21 days (n = 8 per treatment). Microbiota analysis and metagenomic predictions were based on 16s RNA high-throughput sequencing. Milk metabolome was assessed by untargeted liquid chromatography tandem mass spectrometry. Serum biochemical indicators and immunoglobulins were also determined. Gut microbial diversity of sows receiving 1.0 kg/t lysozyme treatment was significantly reduced after the trial. Spirochaetes, Euryarchaeota, and Actinobacteria significantly increased while Firmicutes showed a remarkable reduction in 1.0 kg/t group compared with control. Lysozyme addition rebuilt sow's gut microbiota to beneficial composition identified by reduced richness of Escherichia coli and increased abundance of Lactobacillus amylovorus. Accordingly, microbial metabolic functions including pyrimidine metabolism, purine metabolism, and amino acid related enzymes were significantly up-regulated in 1.0 kg/t group. Microbial metabolic phenotypes like the richness of Gram-positive bacteria and oxidative stress tolerance were also significantly reduced by lysozyme treatment. Serum alanine transaminase (ALT) activity and IgA levels were significantly down-regulated in the 1.0 kg/t group compared with control, but IgM levels showed a significantly increase in 1.0 kg/t group. Milk metabolites such as L-glutamine, creatine, and L-arginine showed significantly dose-dependent changes after treatment. Overall, lysozyme supplementation could effectively improve the composition, metabolic functions, and phenotypes of sow's gut microbiota and it also benefit sows with better serum immunity and milk composition. This research could provide theoretical support for further application of lysozyme in promoting animal gut health and prevent pathogenic infections in livestock production.
Collapse
Affiliation(s)
- Jian Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences - National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production - Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production - Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Xiong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences - National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production - Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production - Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Jia Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lijun Zou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences - National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production - Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production - Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Kexing Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yirui Shao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences - National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production - Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production - Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences - National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production - Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production - Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
65
|
Dan L, Liu S, Shang S, Zhang H, Zhang R, Li N. Expression of recombinant human lysozyme in bacterial artificial chromosome transgenic mice promotes the growth of Bifidobacterium and inhibits the growth of Salmonella in the intestine. J Biotechnol 2018; 272-273:33-39. [PMID: 29549001 DOI: 10.1016/j.jbiotec.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
Abstract
Targeted gene modification is a novel intervention strategy to increase disease resistance more quickly than traditional animal breeding. Human lysozyme, a natural, non-specific immune factor, participates in innate immunity, exerts a wide range of antimicrobial activities against pathogens, and has immuneregulatory effects. Therefore, it is a candidate gene for improved disease resistance in animals. In this study, we successfully generated a transgenic mouse model by microinjecting a modified bacterial artificial chromosome containing a recombinant human lysozyme (rhLZ) gene into the pronuclei of fertilized mouse embryos. rhLZ was expressed in serum, liver, spleen, lung, kidney, stomach, small intestine, and large intestine but not in milk. rhLZ protein concentrations in the serum of transgenic mice ranged from 2.09 to 2.60 mg/l. To examine the effect of rhLZ on intestinal microbiota, total aerobes, total anaerobes, Clostridium, Enterococcus, Streptococcus, Salmonella, Escherichia coli, Staphylococcus, Bifidobacterium, and Lactobacillus were measured in the intestines of transgenic and wild type mice. Results showed that Bifidobacteria were significantly increased (p < 0.001), whereas Salmonella were significantly decreased (p < 0.001) in transgenic mice compared to wild type mice. Our study suggests that rhLZ expression is a potential strategy to increase animal disease resistance.
Collapse
Affiliation(s)
- Lu Dan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Shen Liu
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Shengzhe Shang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Ran Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
66
|
Huang G, Li X, Lu D, Liu S, Suo X, Li Q, Li N. Lysozyme improves gut performance and protects against enterotoxigenic Escherichia coli infection in neonatal piglets. Vet Res 2018; 49:20. [PMID: 29463305 PMCID: PMC5819691 DOI: 10.1186/s13567-018-0511-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/25/2018] [Indexed: 12/26/2022] Open
Abstract
Diarrhea remains one of the leading causes of morbidity and mortality globally, with enterotoxigenic Escherichia coli (ETEC) constituting a major causative pathogen. The development of alternative treatments for diarrhea that do not involve chemotherapeutic drugs or result in antibiotic resistance is critical. Considering that lysozyme is a naturally occurring antimicrobial peptide, in a previous study we developed a transgenic pig line that expresses recombinant human lysozyme (hLZ) in its milk. In the present study, we examined the protective effects of the consumption of this milk against ETEC infection in neonatal piglets. We found that consuming hLZ milk facilitated faster recovery from infection and decreased mortality and morbidity following an ETEC oral inoculation or infection acquired by contact-exposure. The protective effect of hLZ was associated with the enrichment of intestinal bacteria that improve gut health, such as Lactobacillus, and the enhancement of the mucosal IgA response to the ETEC-induced diarrhea. Our study revealed potential protective mechanisms underlying the antimicrobial activity of human lysozyme, validating the use of lysozyme as an effective preventive measure for diarrhea.
Collapse
Affiliation(s)
- Guangping Huang
- State Key Laboratory of Agrobiotechnology & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangqing Li
- State Key Laboratory of Agrobiotechnology & College of Biological Sciences, China Agricultural University, Beijing, China.,Shenzhen Sunsmile Biotechnology Co., Ltd, Shenzhen, Guangdong, China
| | - Dan Lu
- State Key Laboratory of Agrobiotechnology & College of Biological Sciences, China Agricultural University, Beijing, China.,Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, China
| | - Shen Liu
- State Key Laboratory of Agrobiotechnology & College of Biological Sciences, China Agricultural University, Beijing, China.,School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiuyan Li
- State Key Laboratory of Agrobiotechnology & College of Biological Sciences, China Agricultural University, Beijing, China.
| | - Ning Li
- State Key Laboratory of Agrobiotechnology & College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
67
|
Lichtenberg J, Perez Calvo E, Madsen K, Østergaard Lund T, Kramer Birkved F, van Cauwenberghe S, Mourier M, Wulf-Andersen L, Jansman A, Lopez-Ulibarri R. Safety evaluation of a novel muramidase for feed application. Regul Toxicol Pharmacol 2017; 89:57-69. [DOI: 10.1016/j.yrtph.2017.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 11/25/2022]
|
68
|
Gao X, Guo M, Zhang Z, Shen P, Yang Z, Zhang N. Baicalin promotes the bacteriostatic activity of lysozyme on S. aureus in mammary glands and neutrophilic granulocytes in mice. Oncotarget 2017; 8:19894-19901. [PMID: 28184027 PMCID: PMC5386731 DOI: 10.18632/oncotarget.15193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus causes mastitis as a result of community-acquired or nosocomial infections. Lysozyme (LYSO) is an enzyme that is upregulated in many organisms during the innate immune response against infection by bacterial pathogens. Baicalin is a bioactive flavonoid that can bind to enzymes, often to potentiate their effect. Here we tested the effects of baicalin on the activity of LYSO using the S. aureus mastitis mouse model and neutrophilic granulocyte model of S. aureus infection. In our experiments, S. aureus counts decreased with increasing baicalin concentration. Furthermore, qPCR and western blot analyses showed that LYSO expression was unaffected by baicalin, while fluorescence quenching and UV fluorescence spectral analyses showed that baicalin binds to LYSO. To test whether this binding increased LYSO activity, we assessed LYSO-induced bacteriostasis in the presence of baicalin. Our results showed that LYSO-induced S. aureus bacteriostasis increased with increasing concentrations of baicalin, and that baicalin binding to LYSO synergistically increased the antibacterial activity of LYSO. These results demonstrate that baicalin enhances LYSO-induced bacteriostasis during the innate immune response to S. aureus. They suggest baicalin is a potentially useful therapeutic agent for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Xuejiao Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zecai Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Peng Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Zhengtao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| |
Collapse
|
69
|
Murphy D, Ricci A, Auce Z, Beechinor JG, Bergendahl H, Breathnach R, Bureš J, Duarte Da Silva JP, Hederová J, Hekman P, Ibrahim C, Kozhuharov E, Kulcsár G, Lander Persson E, Lenhardsson JM, Mačiulskis P, Malemis I, Markus-Cizelj L, Michaelidou-Patsia A, Nevalainen M, Pasquali P, Rouby JC, Schefferlie J, Schlumbohm W, Schmit M, Spiteri S, Srčič S, Taban L, Tiirats T, Urbain B, Vestergaard EM, Wachnik-Święcicka A, Weeks J, Zemann B, Allende A, Bolton D, Chemaly M, Fernandez Escamez PS, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Wahlström H, Baptiste K, Catry B, Cocconcelli PS, Davies R, Ducrot C, Friis C, Jungersen G, More S, Muñoz Madero C, Sanders P, Bos M, Kunsagi Z, Torren Edo J, Brozzi R, Candiani D, Guerra B, Liebana E, Stella P, Threlfall J, Jukes H. EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J 2017; 15:e04666. [PMID: 32625259 PMCID: PMC7010070 DOI: 10.2903/j.efsa.2017.4666] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EFSA and EMA have jointly reviewed measures taken in the EU to reduce the need for and use of antimicrobials in food-producing animals, and the resultant impacts on antimicrobial resistance (AMR). Reduction strategies have been implemented successfully in some Member States. Such strategies include national reduction targets, benchmarking of antimicrobial use, controls on prescribing and restrictions on use of specific critically important antimicrobials, together with improvements to animal husbandry and disease prevention and control measures. Due to the multiplicity of factors contributing to AMR, the impact of any single measure is difficult to quantify, although there is evidence of an association between reduction in antimicrobial use and reduced AMR. To minimise antimicrobial use, a multifaceted integrated approach should be implemented, adapted to local circumstances. Recommended options (non-prioritised) include: development of national strategies; harmonised systems for monitoring antimicrobial use and AMR development; establishing national targets for antimicrobial use reduction; use of on-farm health plans; increasing the responsibility of veterinarians for antimicrobial prescribing; training, education and raising public awareness; increasing the availability of rapid and reliable diagnostics; improving husbandry and management procedures for disease prevention and control; rethinking livestock production systems to reduce inherent disease risk. A limited number of studies provide robust evidence of alternatives to antimicrobials that positively influence health parameters. Possible alternatives include probiotics and prebiotics, competitive exclusion, bacteriophages, immunomodulators, organic acids and teat sealants. Development of a legislative framework that permits the use of specific products as alternatives should be considered. Further research to evaluate the potential of alternative farming systems on reducing AMR is also recommended. Animals suffering from bacterial infections should only be treated with antimicrobials based on veterinary diagnosis and prescription. Options should be reviewed to phase out most preventive use of antimicrobials and to reduce and refine metaphylaxis by applying recognised alternative measures.
Collapse
|