51
|
Bulteau S, Guirette C, Brunelin J, Poulet E, Trojak B, Richieri R, Szekely D, Bennabi D, Yrondi A, Rotharmel M, Bougerol T, Dall’Igna G, Attal J, Benadhira R, Bouaziz N, Bubrovszky M, Calvet B, Dollfus S, Foucher J, Galvao F, Gay A, Haesebaert F, Haffen E, Jalenques I, Januel D, Jardri R, Millet B, Nathou C, Nauczyciel C, Plaze M, Rachid F, Vanelle JM, Sauvaget A. Troubles de l’humeur : quand recourir à la stimulation magnétique transcrânienne ? Presse Med 2019; 48:625-646. [DOI: 10.1016/j.lpm.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/30/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
|
52
|
Cirillo P, Gold AK, Nardi AE, Ornelas AC, Nierenberg AA, Camprodon J, Kinrys G. Transcranial magnetic stimulation in anxiety and trauma-related disorders: A systematic review and meta-analysis. Brain Behav 2019; 9:e01284. [PMID: 31066227 PMCID: PMC6576151 DOI: 10.1002/brb3.1284] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) has been evaluated as an effective treatment option for patients with major depressive disorder. However, there are limited studies that have evaluated the efficacy of TMS for other neuropsychiatric disorders such as anxiety and trauma-related disorders. We reviewed the literature that has evaluated TMS as a treatment for anxiety and trauma-related disorders. METHODS We searched for articles published up to December 2017 in Embase, Medline, and ISI Web of Science databases, following the Preferred Items for Reporting of Systematic Reviews and Meta-Analyses (PRISMA) statement. Articles (n = 520) evaluating TMS in anxiety and trauma-related disorders were screened and a small subset of these that met the eligibility criteria (n = 17) were included in the systematic review, of which nine evaluated TMS in posttraumatic stress disorder (PTSD), four in generalized anxiety disorder (GAD), two in specific phobia (SP), and two in panic disorder (PD). The meta-analysis was performed with PTSD and GAD since PD and SP had an insufficient number of studies and sample sizes. RESULTS Among anxiety and trauma-related disorders, TMS has been most widely studied as a treatment for PTSD. TMS demonstrated large overall treatment effect for both PTSD (ES = -0.88, 95% CI: -1.42, -0.34) and GAD (ES = -2.06, 95% CI: -2.64, -1.48), including applying high frequency over the right dorsolateral prefrontal cortex. Since few studies have evaluated TMS for SP and PD, few conclusions can be drawn. CONCLUSIONS Our meta-analysis suggests that TMS may be an effective treatment for GAD and PTSD.
Collapse
Affiliation(s)
- Patricia Cirillo
- Department of PsychiatryMassachusetts General HospitalBostonMassachusetts
- Division of Neuropsychiatry, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusetts
- Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Alexandra K. Gold
- Department of Psychological and Brain SciencesBoston UniversityBostonMassachusetts
- Dauten Family Center for Bipolar Treatment InnovationMassachusetts General HospitalBostonMassachusetts
| | | | - Ana C. Ornelas
- Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Andrew A. Nierenberg
- Department of PsychiatryMassachusetts General HospitalBostonMassachusetts
- Dauten Family Center for Bipolar Treatment InnovationMassachusetts General HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| | - Joan Camprodon
- Department of PsychiatryMassachusetts General HospitalBostonMassachusetts
- Division of Neuropsychiatry, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusetts
- Dauten Family Center for Bipolar Treatment InnovationMassachusetts General HospitalBostonMassachusetts
| | - Gustavo Kinrys
- Department of PsychiatryMassachusetts General HospitalBostonMassachusetts
- Dauten Family Center for Bipolar Treatment InnovationMassachusetts General HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| |
Collapse
|
53
|
Philip NS, Leuchter AF, Cook IA, Massaro J, Goethe JW, Carpenter LL. Predictors of response to synchronized transcranial magnetic stimulation for major depressive disorder. Depress Anxiety 2019; 36:278-285. [PMID: 30480860 DOI: 10.1002/da.22862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/26/2018] [Accepted: 11/06/2018] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Synchronized transcranial magnetic stimulation (sTMS) is a new modality to reduce symptoms of major depressive disorder (MDD). sTMS uses rotating neodymium magnets to deliver low-field stimulation matched to the individual alpha frequency (IAF). A previous multisite study showed that sTMS significantly reduced MDD symptoms in the per-protocol sample. To this end, we evaluated clinical features associated with optimal sTMS outcomes. METHODS Using the per-protocol sample (n = 120) from the parent sham-controlled trial, we performed univariate and stepwise linear regression to identify predictors of response after 6 weeks of sTMS. A subsample (n = 83) that entered a 4-week open/active continuation phase also was examined. Candidate variables included age, sex, comorbid anxiety, number of failed antidepressants in the current depressive episode, MDD severity (17-item Hamilton Depression Rating Scale; HAMD17), anxiety symptom severity (HAMD17 anxiety/somatization factor), and IAF. RESULTS We found that greater baseline depressive (p < 0.001) and anxiety (p < 0.001) symptom severity were associated with better response to active sTMS, whereas fewer failed antidepressant trials predicted superior response to sham (p < 0.001). MDD severity and antidepressant resistance predicted outcomes in open/active phase sTMS; lower IAF predicted poorer response in participants who received 10 weeks of active sTMS (p = 0.001). CONCLUSIONS Participants with greater severity of depression and higher anxiety had superior responses to active sTMS, whereas treatment naïve individuals exhibited a greater response to sham. These results lend support to the primary efficacy findings, and support further investigation of sTMS as a therapeutic noninvasive brain stimulation modality.
Collapse
Affiliation(s)
- Noah S Philip
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, 02908, USA.,Butler Hospital Mood Disorders Research Program and Neuromodulation Research Facility, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, 02906, USA
| | - Andrew F Leuchter
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ian A Cook
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science at UCLA, Los Angeles, CA, 90095, USA.,Mood and TMS Services, Greater Los Angeles VA Health System, Los Angeles, CA, 90073, USA
| | - Joe Massaro
- Boston University School of Public Health, Boston, MA, USA
| | | | - Linda L Carpenter
- Butler Hospital Mood Disorders Research Program and Neuromodulation Research Facility, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, 02906, USA
| |
Collapse
|
54
|
Diefenbach GJ, Rabany L, Hallion LS, Tolin DF, Goethe JW, Gueorguieva R, Zertuche L, Assaf M. Sleep improvements and associations with default mode network functional connectivity following rTMS for generalized anxiety disorder. Brain Stimul 2019; 12:184-186. [DOI: 10.1016/j.brs.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022] Open
|
55
|
Rodrigues PA, Zaninotto AL, Neville IS, Hayashi CY, Brunoni AR, Teixeira MJ, Paiva WS. Transcranial magnetic stimulation for the treatment of anxiety disorder. Neuropsychiatr Dis Treat 2019; 15:2743-2761. [PMID: 31576130 PMCID: PMC6765211 DOI: 10.2147/ndt.s201407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022] Open
Abstract
Anxiety is currently one of the main mood changes and can impair the quality of life of the individual when associated with other neurological or psychiatric disorders. Neuromodulation has been highlighted as a form of treatment of several pathologies, including those involving anxiety symptoms. Among the neuromodulatory options with the potential to improve mood changes, we highlight repetitive transcranial magnetic stimulation (rTMS). rTMS is a viable therapeutical option for neuropsychiatric dysfunctions of high prevalence and is important for the understanding of pathological and neuropsychological adaptation processes. Even with this potential, and high relevance of intervention, we observe the scarcity of literature that covers this subject. The objective of this study was to carry out a survey of the current literature, using scientific databases for the last five years. We found 32 studies reporting the effects of rTMS on anxiety, 7 on anxiety disorders and 25 on anxiety symptoms as comorbidities of neurological or psychiatric disorders. This survey suggests the need for further studies using TMS for anxiety in order to seek strategies that minimize these anxiety effects on the quality of life of the victims of this disorder.
Collapse
Affiliation(s)
| | - Ana Luiza Zaninotto
- Department of Neurology, University of São Paulo, São Paulo, Brazil.,Laboratory of Neuromodulation, Harvard Medical School, Boston, MA, USA
| | | | | | - André R Brunoni
- Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
56
|
Vicario CM, Salehinejad MA, Felmingham K, Martino G, Nitsche MA. A systematic review on the therapeutic effectiveness of non-invasive brain stimulation for the treatment of anxiety disorders. Neurosci Biobehav Rev 2018; 96:219-231. [PMID: 30543906 DOI: 10.1016/j.neubiorev.2018.12.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
The interest in the use of non-invasive brain stimulation for enhancing neural functions and reducing symptoms in anxiety disorders is growing. Based on the DSM-V classification for anxiety disorders, we examined all available research using repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) for the treatment of specific phobias, social anxiety disorder, panic disorder, agoraphobia, and generalized anxiety disorder. A systematic literature search conducted in PubMed and Google Scholar databases provided 26 results: 12 sham-controlled studies and 15 not sham-controlled studies. With regard to the latter sub-group of studies, 9 were case reports, and 6 open label studies. Overall, our work provides preliminary evidence that both, excitatory stimulation of the left prefrontal cortex and inhibitory stimulation of the right prefrontal cortex can reduce symptom severity in anxiety disorders. The current results are discussed in the light of a model for the treatment for anxiety disorders via non-invasive brain stimulation, which is based on up-/downregulation mechanisms and might serve as guide for future systematic investigations in the field.
Collapse
Affiliation(s)
- C M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy; Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; School of Psychology, University of Tasmania, Hobart, TAS, Australia.
| | - Mohammad Ali Salehinejad
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - K Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| | - G Martino
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| | - M A Nitsche
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
57
|
Kozel FA. Clinical Repetitive Transcranial Magnetic Stimulation for Posttraumatic Stress Disorder, Generalized Anxiety Disorder, and Bipolar Disorder. Psychiatr Clin North Am 2018; 41:433-446. [PMID: 30098656 DOI: 10.1016/j.psc.2018.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is being investigated for psychiatric disorders such as posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), and both phases of bipolar disorder. Case series, open trials, and randomized controlled studies have demonstrated preliminary support for treating PTSD with rTMS alone as well as with rTMS combined with psychotherapy. Similarly, there is some evidence that GAD can be treated with rTMS. The results for treating either phase of bipolar disorder are mixed with most of the current studies showing lack of benefit over sham. Further study is required before rTMS can be recommended for these disorders.
Collapse
Affiliation(s)
- F Andrew Kozel
- Mental Health and Behavioral Sciences & HSR&D Center of Innovation on Disability and Rehabilitation Research (CINDRR), James A. Haley Veterans' Administration Hospital and Clinics, 116A, 13000 Bruce B. Downs Boulevard, Tampa, FL 33612, USA; Department of Psychiatry and Behavioral Neurosciences, University of South Florida, 3515 E Fletcher Avenue, Tampa, FL 33613, USA.
| |
Collapse
|
58
|
Repetitive transcranial magnetic stimulation of the right parietal cortex for comorbid generalized anxiety disorder and insomnia: A randomized, double-blind, sham-controlled pilot study. Brain Stimul 2018; 11:1103-1109. [DOI: 10.1016/j.brs.2018.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/20/2018] [Accepted: 05/26/2018] [Indexed: 01/04/2023] Open
|
59
|
Assaf M, Rabany L, Zertuche L, Bragdon L, Tolin D, Goethe J, Diefenbach G. Neural functional architecture and modulation during decision making under uncertainty in individuals with generalized anxiety disorder. Brain Behav 2018; 8:e01015. [PMID: 29931835 PMCID: PMC6085921 DOI: 10.1002/brb3.1015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent evidence suggests that repetitive transcranial magnetic stimulation (rTMS) might be effective in treating generalized anxiety disorder (GAD). Cognitive models of GAD highlight the role of intolerance of uncertainty (IU) in precipitating and maintaining worry, and it has been hypothesized that patients with GAD exhibit decision-making deficits under uncertain conditions. Improving understanding of the neural mechanisms underlying cognitive deficits associated with IU may lead to the identification of novel rTMS treatment targets and optimization of treatment parameters. The current report describes two interrelated studies designed to identify and verify a potential neural target for rTMS treatment of GAD. METHODS Study I explored the integrity of prefrontal cortex (PFC) and amygdala neural networks, which underlie decision making under conditions of uncertainty, in GAD. Individuals diagnosed with GAD (n = 31) and healthy controls (n = 20) completed a functional magnetic resonance imaging (fMRI) gambling task that manipulated uncertainty using high versus low error rates. In a subsequent randomized-controlled trial (Study II), a subset of the GAD sample (n = 16) completed the fMRI gambling task again after 30 sessions of active versus sham rTMS (1 Hz, right dorsolateral prefrontal cortex) to investigate the modulation of functional networks and symptoms. RESULTS In Study I, participants with GAD demonstrated impairments in PFC-PFC and PFC-amygdala functional connectivity (FC) mostly during the high uncertainty condition. In Study II, one region of interest pair, dorsal anterior cingulate (ACC) - subgenual ACC, showed "normalization" of FC following active, but not sham, rTMS, and neural changes were associated with improvement in worry symptoms. CONCLUSIONS These results outline a possible treatment mechanism of rTMS in GAD, and pave the way for future studies of treatment optimization.
Collapse
Affiliation(s)
- Michal Assaf
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Liron Rabany
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - Luis Zertuche
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - Laura Bragdon
- Psychology Department, Binghamton University, Binghamton, New York.,Anxiety Disorders Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - David Tolin
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Anxiety Disorders Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - John Goethe
- Burlingame Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - Gretchen Diefenbach
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Anxiety Disorders Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| |
Collapse
|
60
|
Lu R, Zhang C, Liu Y, Wang L, Chen X, Zhou X. The effect of bilateral low-frequency rTMS over dorsolateral prefrontal cortex on serum brain-derived neurotropic factor and serotonin in patients with generalized anxiety disorder. Neurosci Lett 2018; 684:67-71. [PMID: 30008380 DOI: 10.1016/j.neulet.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/22/2018] [Accepted: 07/05/2018] [Indexed: 12/23/2022]
Abstract
To investigate the effect of bilateral low-frequency repetitive transcranial magnetic stimulation (rTMS) over dorsolateral prefrontal cortex on serum brain-derived neurotropic factor (BDNF) and serotonin (5-HT) in patients with generalized anxiety disorders (GAD). As compared with before treatment, the HARS score in patients markedly decreased after treatment, and the levels of serum BDNF and 5-HT were significantly higher. Pearson correlation analysis revealed that the increase in the level of serum 5-HT was positively associated with the increase of the level of serum BDNF, and the change of anxiety score was negatively associated with the change of the level of serum BDNF and 5-HT. The results suggested that alleviation of GAD by bilateral low-frequency rTMS may be involved in the increase of the level of BDNF and the release of 5-HT in the brain.
Collapse
Affiliation(s)
- Rulan Lu
- Laboratory of Neurological Disease, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical Univeristy, Changzhou, Jiangsu, 213003, China
| | - Chengliang Zhang
- Laboratory of Neurological Disease, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical Univeristy, Changzhou, Jiangsu, 213003, China
| | - Yanyan Liu
- Laboratory of Neurological Disease, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical Univeristy, Changzhou, Jiangsu, 213003, China
| | - Linxiao Wang
- Laboratory of Neurological Disease, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical Univeristy, Changzhou, Jiangsu, 213003, China
| | - Xia Chen
- Laboratory of Neurological Disease, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical Univeristy, Changzhou, Jiangsu, 213003, China
| | - Xianju Zhou
- Laboratory of Neurological Disease, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical Univeristy, Changzhou, Jiangsu, 213003, China.
| |
Collapse
|
61
|
Aguila J, Cudeiro FJ, Rivadulla C. Suppression of V1 Feedback Produces a Shift in the Topographic Representation of Receptive Fields of LGN Cells by Unmasking Latent Retinal Drives. Cereb Cortex 2018; 27:3331-3345. [PMID: 28334353 DOI: 10.1093/cercor/bhx071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
In awake monkeys, we used repetitive transcranial magnetic stimulation (rTMS) to focally inactivate visual cortex while measuring the responsiveness of parvocellular lateral geniculate nucleus (LGN) neurons. Effects were noted in 64/75 neurons, and could be divided into 2 main groups: (1) for 39 neurons, visual responsiveness decreased and visual latency increased without apparent shift in receptive field (RF) position and (2) a second group (n = 25, 33% of the recorded cells) whose excitability was not compromised, but whose RF position shifted an average of 4.5°. This change is related to the retinotopic correspondence observed between the recorded thalamic area and the affected cortical zone. The effect of inactivation for this group of neurons was compatible with silencing the original retinal drive and unmasking a second latent retinal drive onto the studied neuron. These results indicate novel and remarkable dynamics in thalamocortical circuitry that force us to reassess constraints on retinogeniculate transmission.
Collapse
Affiliation(s)
- Jordi Aguila
- Neurocom, School of Health Sciences and Centro de Investigacións Científicas Avanzadas (CICA), Institute of Biomedical Research (INIBIC), University of A Coruña, 15006 A Coruña, Spain
| | - F Javier Cudeiro
- Neurocom, School of Health Sciences and Centro de Investigacións Científicas Avanzadas (CICA), Institute of Biomedical Research (INIBIC), University of A Coruña, 15006 A Coruña, Spain.,Cerebral Stimulation Center of Galicia, 15009 A Coruña, Spain
| | - Casto Rivadulla
- Neurocom, School of Health Sciences and Centro de Investigacións Científicas Avanzadas (CICA), Institute of Biomedical Research (INIBIC), University of A Coruña, 15006 A Coruña, Spain
| |
Collapse
|
62
|
Philip NS, Barredo J, Aiken E, Carpenter LL. Neuroimaging Mechanisms of Therapeutic Transcranial Magnetic Stimulation for Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:211-222. [PMID: 29486862 PMCID: PMC5856477 DOI: 10.1016/j.bpsc.2017.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/29/2017] [Indexed: 01/11/2023]
Abstract
Research into therapeutic transcranial magnetic stimulation (TMS) for major depression has dramatically increased in the last decade. Understanding the mechanism of action of TMS is crucial to improve efficacy and develop the next generation of therapeutic stimulation. Early imaging research provided initial data supportive of widely held assumptions about hypothesized inhibitory or excitatory consequences of stimulation. Early work also indicated that while TMS modulated brain activity under the stimulation site, effects at deeper regions, in particular, the subgenual anterior cingulate cortex, were associated with clinical improvement. Concordant with earlier findings, functional connectivity studies also demonstrated that clinical improvements were related to changes distal, rather than proximal, to the site of stimulation. Moreover, recent work suggests that TMS modulates and potentially normalizes functional relationships between neural networks. An important observation that emerged from this review is that similar patterns of connectivity changes are observed across studies regardless of TMS parameters. Though promising, we stress that these imaging findings must be evaluated cautiously given the widespread reliance on modest sample sizes and little implementation of statistical validation. Additional limitations included use of imaging before and after a course of TMS, which provided little insight into changes that might occur during the weeks of stimulation. Furthermore, as studies to date have focused on depression, it is unclear whether our observations were related to mechanisms of action of TMS for depression or represented broader patterns of functional brain changes associated with clinical improvement.
Collapse
Affiliation(s)
- Noah S Philip
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island; Mood Disorders Research Program and Neuromodulation Research Facility, Butler Hospital, Providence, Rhode Island; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island.
| | - Jennifer Barredo
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Emily Aiken
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island
| | - Linda L Carpenter
- Mood Disorders Research Program and Neuromodulation Research Facility, Butler Hospital, Providence, Rhode Island; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
63
|
The vicious cycle of itch and anxiety. Neurosci Biobehav Rev 2018; 87:17-26. [PMID: 29374516 DOI: 10.1016/j.neubiorev.2018.01.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/28/2017] [Accepted: 01/21/2018] [Indexed: 12/21/2022]
Abstract
Chronic itch is associated with increased stress, anxiety, and other mood disorders. In turn, stress and anxiety exacerbate itch, leading to a vicious cycle that affects patient behavior (scratching) and worsens disease prognosis and quality of life. This cycle persists across chronic itch conditions of different etiologies and even to some extent in healthy individuals, suggesting that the final common pathway for itch processing (the central nervous system) plays a major role in the relationship between itch and anxiety. Pharmacological and nonpharmacological treatments that reduce anxiety have shown promising anti-itch effects. Further research is needed to establish specific central mechanisms of the itch-anxiety cycle and provide new targets for treatment.
Collapse
|
64
|
Kosman KA, Lonergan BB, Awasthi S, Hinchman CA, Stern AP. Emerging areas of transcranial magnetic stimulation use in psychiatry. FUTURE NEUROLOGY 2017. [DOI: 10.2217/fnl-2017-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transcranial magnetic stimulation (TMS) is most widely known clinically as a treatment for medication-refractory major depressive disorder, but it holds promise in a number of other areas. In addition to emerging neurologic areas of investigation such as in mild cognitive impairment, dementia, Parkinson's disease and stroke rehab, novel approaches to psychiatric conditions are also being explored. This review provides a critical condensation of the available data assessing the efficacy of TMS in the treatment of other psychiatric conditions, namely bipolar disorder, substance use, post-traumatic stress disorder and other anxiety disorders. Each section details the field's current accumulation of evidence of the respective condition's pathophysiology in the context of a discussion of the relevant therapeutic target(s) of TMS. Each section then reviews both positive and negative studies evaluating TMS in clinical practice. Given the relative tolerability and proven efficacy of TMS in treatment-resistant depression (TRD), further study to determine its therapeutic effect in other psychiatric entities is warranted.
Collapse
Affiliation(s)
- Katherine A Kosman
- Harvard Longwood Psychiatry Residency Training Program, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Rabb-2, Boston, MA 02215, USA
| | - Brady B Lonergan
- Harvard Longwood Psychiatry Residency Training Program, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Rabb-2, Boston, MA 02215, USA
| | - Samir Awasthi
- Harvard Longwood Psychiatry Residency Training Program, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Rabb-2, Boston, MA 02215, USA
| | - Carrie A Hinchman
- Berenson Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, MA, USA
| | - Adam P Stern
- Berenson Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, MA, USA
| |
Collapse
|
65
|
Hone-Blanchet A, Mondino M, Fecteau S. Repetitive transcranial magnetic stimulation reduces anxiety symptoms, drug cravings, and elevates 1H-MRS brain metabolites: A case report. Brain Stimul 2017; 10:856-858. [PMID: 28363807 DOI: 10.1016/j.brs.2017.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 11/24/2022] Open
Affiliation(s)
- Antoine Hone-Blanchet
- Centre intégré universitaire en santé et services sociaux de la Capitale-Nationale, Faculté de médecine, Université Laval, 2325 rue de l'Université, Quebec City, QC, G1V 0A6, Canada
| | - Marine Mondino
- Centre intégré universitaire en santé et services sociaux de la Capitale-Nationale, Faculté de médecine, Université Laval, 2325 rue de l'Université, Quebec City, QC, G1V 0A6, Canada
| | - Shirley Fecteau
- Centre intégré universitaire en santé et services sociaux de la Capitale-Nationale, Faculté de médecine, Université Laval, 2325 rue de l'Université, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
66
|
Diefenbach GJ, Assaf M, Goethe JW, Gueorguieva R, Tolin DF. Improvements in emotion regulation following repetitive transcranial magnetic stimulation for generalized anxiety disorder. J Anxiety Disord 2016; 43:1-7. [PMID: 27467027 DOI: 10.1016/j.janxdis.2016.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 11/16/2022]
Abstract
Generalized anxiety disorder (GAD) is characterized by emotion regulation difficulties, which are associated with abnormalities in neural circuits encompassing fronto-limbic regions including the dorsolateral prefrontal cortex (DLPFC). The aim of this study was to determine whether DLPFC neuromodulation improves emotion regulation in patients with GAD. This is a secondary analysis from a randomized-controlled trial comparing 30 sessions of low-frequency right-sided active (n=13) versus sham (n=12, sham coil) repetitive transcranial magnetic stimulation (rTMS) at the right DLPFC in patients with GAD. Results indicated statistically significant improvements in self-reported emotion regulation difficulties at posttreatment and 3-month follow-up in the active group only. Improvements were found primarily in the domains of goal-directed behaviors and impulse control and were significantly associated with a global clinician rating of improvement. These preliminary results support rTMS as a treatment for GAD and suggest improved emotion regulation as a possible mechanism of change.
Collapse
Affiliation(s)
- Gretchen J Diefenbach
- The Institute of Living, Hartford, CT, USA; Yale University School of Medicine, New Haven, CT, USA.
| | - Michal Assaf
- The Institute of Living, Hartford, CT, USA; Yale University School of Medicine, New Haven, CT, USA
| | | | | | - David F Tolin
- The Institute of Living, Hartford, CT, USA; Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|