51
|
Eichner A, Sonnenberger S, Dobner B, Hauß T, Schroeter A, Neubert RH. Localization of methyl-branched ceramide [EOS] species within the long-periodicity phase in stratum corneum lipid model membranes: A neutron diffraction study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2911-2922. [DOI: 10.1016/j.bbamem.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/25/2016] [Accepted: 09/03/2016] [Indexed: 01/03/2023]
|
52
|
Quantitative analysis of ceramides using a novel lipidomics approach with three dimensional response modelling. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1652-1661. [PMID: 27422369 DOI: 10.1016/j.bbalip.2016.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022]
Abstract
In the outermost layer of the skin, the stratum corneum (SC), ceramides form a diverse and essential pool of lipids. Due to their diversity and the limited availability of synthetic standards it is challenging to quantitatively analyse all SC ceramides independently. We aim to perform a detailed analysis of ceramides on SC harvested from in vivo and ex vivo skin, therefore, a LC/MS method was developed in which all steps from sample acquisition until data analysis were examined and optimized. Improving extraction efficiency of ceramides resulted in an increase in efficiency from 71.5% to 99.3%. It was shown that sample harvesting by tape-stripping in vivo was accurate and precise. A full scan MS method was developed, compatible with all sample types, enabling simultaneously qualitative and quantitative data analysis. A novel three dimensional response model was constructed to quantify all detected ceramides from full scan data using a limited amount of synthetic ceramides. The application is demonstrated on various SC sample types. When ex vivo SC was regenerated during human skin culture, increases are observed in the amount of the ceramide sphingosine subclasses, in mono unsaturated ceramides (which have an cis-double bond in the acyl chain), and ceramides with a short C34 carbon chain (ceramides with a total carbon chain of 34 carbon atoms), compared with native human skin. These changes in ceramide levels are also often encountered in diseased skin.
Collapse
|
53
|
Wegner MS, Schiffmann S, Parnham MJ, Geisslinger G, Grösch S. The enigma of ceramide synthase regulation in mammalian cells. Prog Lipid Res 2016; 63:93-119. [PMID: 27180613 DOI: 10.1016/j.plipres.2016.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 12/20/2022]
Abstract
Ceramide synthases (CerS) are key enzymes in the lipid metabolism of eukaryotic cells. Their products, ceramides (Cer), are components of cellular membranes but also mediate signaling functions in physiological processes such as proliferation, skin barrier function and cerebellar development. In pathophysiological processes such as multiple sclerosis and tumor progression, ceramide levels are altered, which can be ascribed, partly, to dysregulation of CerS gene transcription. Most publications deal with the effects of altered ceramide levels on physiological and pathophysiological processes, but the regulation of the appropriate CerS is frequently not investigated. This is insufficient for the clarification of the role of ceramides, because most ceramide species are generated by at least two CerS. The mechanisms of CerS regulation are manifold and it seems that each CerS isoform is regulated individually. For this reason, we discuss the different CerS separately in this review. From transcriptional regulation to alteration of protein activity, the possibilities to influence CerS are diverse. Furthermore, CerS are influenced by a variety of molecules including hormones and lipids. Without claiming completeness, we provide a résumé of the regulatory mechanisms for each CerS in mammalian cells and how dysregulation of these mechanisms during physiological processes may lead to pathophysiological processes.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Michael John Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
54
|
Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nat Commun 2016; 7:10893. [PMID: 26964756 PMCID: PMC4792958 DOI: 10.1038/ncomms10893] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is a fundamental part of cancer treatment but its use is limited by the onset of late adverse effects in the normal tissue, especially radiation-induced fibrosis. Since the molecular causes for fibrosis are largely unknown, we analyse if epigenetic regulation might explain inter-individual differences in fibrosis risk. DNA methylation profiling of dermal fibroblasts obtained from breast cancer patients prior to irradiation identifies differences associated with fibrosis. One region is characterized as a differentially methylated enhancer of diacylglycerol kinase alpha (DGKA). Decreased DNA methylation at this enhancer enables recruitment of the profibrotic transcription factor early growth response 1 (EGR1) and facilitates radiation-induced DGKA transcription in cells from patients later developing fibrosis. Conversely, inhibition of DGKA has pronounced effects on diacylglycerol-mediated lipid homeostasis and reduces profibrotic fibroblast activation. Collectively, DGKA is an epigenetically deregulated kinase involved in radiation response and may serve as a marker and therapeutic target for personalized radiotherapy. Radiotherapy can induce fibrosis in cancer patients, limiting its use in clinical settings. Here, the authors identify a differentially methylated enhancer of the lipid kinase DGKA in fibroblasts from breast cancer patients developing fibrosis after radiotherapy and they show that DGKA inhibition affects lipid homeostasis and reduces pro-fibrotic fibroblast activation.
Collapse
|
55
|
Rabionet M, Bayerle A, Jennemann R, Heid H, Fuchser J, Marsching C, Porubsky S, Bolenz C, Guillou F, Gröne HJ, Gorgas K, Sandhoff R. Male meiotic cytokinesis requires ceramide synthase 3-dependent sphingolipids with unique membrane anchors. Hum Mol Genet 2015; 24:4792-808. [DOI: 10.1093/hmg/ddv204] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022] Open
|
56
|
Rawlings AV. Molecular basis for stratum corneum maturation and moisturization. Br J Dermatol 2015; 171 Suppl 3:19-28. [PMID: 25234174 DOI: 10.1111/bjd.13303] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2014] [Indexed: 12/31/2022]
Abstract
This themed edition of BJD is dedicated to the work of Professor Ronald Marks for his untiring work on the understanding of stratum corneum (SC) structure and function. He and his coworkers, in my opinion, had the right focus for cosmetic dermatology issues. Namely, consumers experience the wonderful properties of the SC through sight, touch and the somatosensory system. They do not experience, for example, transepidermal water loss and skin conductance or capacitance! Marks understood this and set about developing the methodologies to examine the changes in SC architecture and function when desquamation goes haywire. More importantly, he understood that moisturizers do far more than simply hydrate the SC, as exemplified in the paper by Tree and Marks, 'An explanation for the placebo effect of bland ointment bases.' Moisturizing ingredients influence the properties of the SC in many ways with the sole purpose of overcoming the signs and symptoms of dry skin. Marks demonstrated the decrease in SC cohesion following use of hydrating agents, which led to the mechanistic work on the effects of a simple molecule like glycerol on the desquamatory process. In further exploiting forced desquamation and use of abrasion, he showed that improvements in exfoliation contribute to the mitigation of the signs of photodamaged skin, which can explain part of the antiageing effect of simple moisturizers. It is here that I should point out that at least this particular author in 1988 was 'standing on the shoulders of' a great corneologist whose work influenced his research directions. So this paper will provide an update on the latest developments for the molecular basis of SC maturation and moisturization, while highlighting the contributions of Professor Marks in the different areas.
Collapse
Affiliation(s)
- A V Rawlings
- AVR Consulting Ltd, 26 Shavington Way, Northwich, Cheshire, CW9 8FH, U.K
| |
Collapse
|
57
|
Loizides-Mangold U, Clément S, Alfonso-Garcia A, Branche E, Conzelmann S, Parisot C, Potma EO, Riezman H, Negro F. HCV 3a core protein increases lipid droplet cholesteryl ester content via a mechanism dependent on sphingolipid biosynthesis. PLoS One 2014; 9:e115309. [PMID: 25522003 PMCID: PMC4270764 DOI: 10.1371/journal.pone.0115309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/21/2014] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) infected patients often develop steatosis and the HCV core protein alone can induce this phenomenon. To gain new insights into the pathways leading to steatosis, we performed lipidomic profiling of HCV core protein expressing-Huh-7 cells and also assessed the lipid profile of purified lipid droplets isolated from HCV 3a core expressing cells. Cholesteryl esters, ceramides and glycosylceramides, but not triglycerides, increased specifically in cells expressing the steatogenic HCV 3a core protein. Accordingly, inhibitors of cholesteryl ester biosynthesis such as statins and acyl-CoA cholesterol acyl transferase inhibitors prevented the increase of cholesteryl ester production and the formation of large lipid droplets in HCV core 3a-expressing cells. Furthermore, inhibition of de novo sphingolipid biosynthesis by myriocin - but not of glycosphingolipid biosynthesis by miglustat - affected both lipid droplet size and cholesteryl ester level. The lipid profile of purified lipid droplets, isolated from HCV 3a core-expressing cells, confirmed the particular increase of cholesteryl ester. Thus, both sphingolipid and cholesteryl ester biosynthesis are affected by the steatogenic core protein of HCV genotype 3a. These results may explain the peculiar lipid profile of HCV-infected patients with steatosis.
Collapse
Affiliation(s)
- Ursula Loizides-Mangold
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Sophie Clément
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
| | - Alba Alfonso-Garcia
- University of California Irvine, Beckman Laser Institute, Irvine, California, United States of America
| | - Emilie Branche
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stéphanie Conzelmann
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
| | - Clotilde Parisot
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
| | - Eric O. Potma
- University of California Irvine, Beckman Laser Institute, Irvine, California, United States of America
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Francesco Negro
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
- Divisions of Gastroenterology and Hepatology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
58
|
Boncheva M. The physical chemistry of the stratum corneum lipids. Int J Cosmet Sci 2014; 36:505-15. [PMID: 25230344 DOI: 10.1111/ics.12162] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022]
Abstract
This article summarizes the current knowledge of the composition, self-assembly, and molecular organization of the stratum corneum (SC) lipids, reviews the evidence connecting these parameters and the barrier properties of human skin, and outlines the immediate issues in the field of SC lipid research.
Collapse
Affiliation(s)
- M Boncheva
- Corporate R&D Division, Firmenich SA, PO Box 239, Route des Jeunes 1, Geneva, CH-1211, Switzerland
| |
Collapse
|
59
|
Školová B, Hudská K, Pullmannová P, Kováčik A, Palát K, Roh J, Fleddermann J, Estrela-Lopis I, Vávrová K. Different Phase Behavior and Packing of Ceramides with Long (C16) and Very Long (C24) Acyls in Model Membranes: Infrared Spectroscopy Using Deuterated Lipids. J Phys Chem B 2014; 118:10460-70. [DOI: 10.1021/jp506407r] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Barbora Školová
- Skin
Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 50005 Hradec Králové, Czech Republic
- Institute
of Medical Physics and Biophysics, University of Leipzig, Härtelstrasse
16-18, 04275 Leipzig, Germany
| | - Klára Hudská
- Skin
Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Petra Pullmannová
- Skin
Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Andrej Kováčik
- Skin
Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Karel Palát
- Skin
Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Skin
Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Jana Fleddermann
- Institute
of Medical Physics and Biophysics, University of Leipzig, Härtelstrasse
16-18, 04275 Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute
of Medical Physics and Biophysics, University of Leipzig, Härtelstrasse
16-18, 04275 Leipzig, Germany
| | - Kateřina Vávrová
- Skin
Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| |
Collapse
|