51
|
Abstract
The gonadal steroid, 17beta-estradiol (E(2)), acts as a protective hormone preventing beta-cell apoptosis in vivo in mice of both sexes and in cultured mouse and human islets. E(2) signals via the classical estrogen receptor (ER)alpha and ERbeta, an extranuclear form of ERalpha and the G protein-coupled estrogen receptor (GPER). In a recent study, we determined the contribution of these receptors to beta-cell survival, using a combination of genetic and pharmacological tools in mice and cultured mouse and human islets. We showed that E(2) favors islet survival by preventing apoptosis via ERalpha and ERbeta through ERE-independent, extra-nuclear mechanisms and with a predominant ERalpha effect. We also revealed that E(2) prevents apoptosis via GPER-dependent mechanisms. Here, we show that E(2) prevents apoptosis independently of gene transcription or de novo protein synthesis suggesting that E(2) cytoprotection happens independently of nuclear events. Furthermore, we report that E(2) islet cytoprotection can be mimicked by the nonfeminizing E(2) stereoisomer, 17alpha-estradiol, suggesting that it is partially non-estrogen receptor mediated. These studies identify novel estrogen pathways and targets to protect islet survival.
Collapse
Affiliation(s)
- Suhuan Liu
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
52
|
Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1540-70. [PMID: 19559056 DOI: 10.1016/j.bbamcr.2009.06.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/21/2022]
Abstract
There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17beta-estradiol (E(2)) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E(2)-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERalpha and ERbeta and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anti-cancer drug resistance in human breast cancer cells, neuroprotection for Alzheimer's disease and Parkinson's disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimens for the prevention or treatment of a wide variety of medical complications based on E(2)/ER-mediated MRC biogenesis pathway.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
53
|
Hirahara Y, Matsuda KI, Gao W, Arvanitis DN, Kawata M, Boggs JM. The localization and non-genomic function of the membrane-associated estrogen receptor in oligodendrocytes. Glia 2009; 57:153-65. [PMID: 18709647 DOI: 10.1002/glia.20742] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is general acceptance that the estrogen receptor can act as a transcription factor. However, estrogens can also bind to receptors that are located at the plasma membrane and stimulate rapid intracellular signaling processes. We recently showed that a membrane-associated estrogen receptor (mER) is present within myelin and at the oligodendrocyte (OL) plasma membrane. To understand the physiological function of mER in OLs, we investigated its cellular localization and involvement in rapid signaling in CG4 cells and OL primary cultures. An ERalpha was expressed along the lacy network of veins in the membrane sheets and in the perikaryon and nucleus in OLs. ERbeta was located in the nucleus, and to a lesser extent along the veins. The expression of ERalpha and ERbeta in OL membranes was confirmed by Western analysis of isolated membranes. OL membranes mainly had truncated forms of ERalpha, 53 and 50 kDa, in addition to some 65 kDa form, whereas ERbeta was a 54 kDa form. CG4 cells and OLs were pulsed with 17alpha- and 17beta-estradiol for various times and the total lysates were analyzed for phosphorylated kinases. Both 17alpha- and 17beta-estradiol elicited rapid phosphorylation of p42/44MAPK, Akt, and GSK-3beta within 8 min. This rapid signaling is consistent with estradiol ligation of a membrane form of ER. Since 17alpha-estradiol is produced at higher concentrations than 17beta-estradiol in the brain of both sexes, signaling via 17alpha-estradiol-liganded mER may have an important function in OLs.
Collapse
Affiliation(s)
- Yukie Hirahara
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
54
|
Moos WH, Dykens JA, Nohynek D, Rubinchik E, Howell N. Review of the effects of 17α-estradiol in humans: a less feminizing estrogen with neuroprotective potential. Drug Dev Res 2009. [DOI: 10.1002/ddr.20284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
55
|
Abstract
A large body of evidence from postmortem brain tissue and genetic analysis in humans and biochemical and pathological studies in animal models (transgenic and toxin) of neurodegeneration suggest that mitochondrial dysfunction is a common pathological mechanism. Mitochondrial dysfunction from oxidative stress, mitochondrial DNA deletions, pathological mutations, altered mitochondrial morphology, and interaction of pathogenic proteins with mitochondria leads to neuronal demise. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. This review discusses the potential therapeutic efficacy of creatine, coenzyme Q10, idebenone, synthetic triterpenoids, and mitochondrial targeted antioxidants (MitoQ) and peptides (SS-31) in in vitro studies and in animal models of Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We have also reviewed the current status of clinical trials of creatine, coenzyme Q10, idebenone, and MitoQ in neurodegenerative disorders. Further, we discuss newly identified therapeutic targets, including peroxisome proliferator-activated receptor-gamma-coactivator and sirtuins, which provide promise for future therapeutic developments in neurodegenerative disorders.
Collapse
Affiliation(s)
- Rajnish K Chaturvedi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | |
Collapse
|
56
|
Maselli A, Matarrese P, Straface E, Canu S, Franconi F, Malorni W. Cell sex: a new look at cell fate studies. FASEB J 2008; 23:978-84. [DOI: 10.1096/fj.08-114348] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Angela Maselli
- Department of Drug Research and Evaluation Istituto Superiore di Sanità Rome Italy
- National Laboratory of the National Institute of Biostructures and Biosystems Osilo Italy
| | - Paola Matarrese
- Department of Drug Research and Evaluation Istituto Superiore di Sanità Rome Italy
| | - Elisabetta Straface
- Department of Drug Research and Evaluation Istituto Superiore di Sanità Rome Italy
| | - Silvia Canu
- Department of Pharmacology and Center for Biotechnology Development and Biodiversity Research University of Sassari Sassari Italy
| | - Flavia Franconi
- Department of Pharmacology and Center for Biotechnology Development and Biodiversity Research University of Sassari Sassari Italy
- National Laboratory of the National Institute of Biostructures and Biosystems Osilo Italy
| | - Walter Malorni
- Department of Drug Research and Evaluation Istituto Superiore di Sanità Rome Italy
| |
Collapse
|
57
|
Mackenzie PI, Rogers A, Treloar J, Jorgensen BR, Miners JO, Meech R. Identification of UDP glycosyltransferase 3A1 as a UDP N-acetylglucosaminyltransferase. J Biol Chem 2008; 283:36205-10. [PMID: 18981171 DOI: 10.1074/jbc.m807961200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The UDP glycosyltransferases (UGT) attach sugar residues to small lipophilic chemicals to alter their biological properties and enhance elimination. Of the four families present in mammals, two families, UGT1 and UGT2, use UDP glucuronic acid to glucuronidate bilirubin, steroids, bile acids, drugs, and many other endogenous chemicals and xenobiotics. UGT8, in contrast, uses UDP galactose to galactosidate ceramide, an important step in the synthesis of glycosphingolipids and cerebrosides. The function of the fourth family, UGT3, is unknown. Here we report the cloning, expression, and functional characterization of UGT3A1. This enzyme catalyzes the transfer of N-acetylglucosamine from UDP N-acetylglucosamine to ursodeoxycholic acid (3alpha, 7beta-dihydroxy-5beta-cholanoic acid). The enzyme uses ursodeoxycholic acid and UDP N-acetylglucosamine in preference to other primary and secondary bile acids, and other UDP sugars such as UDP glucose, UDP glucuronic acid, UDP galactose, and UDP xylose. In addition to ursodeoxycholic acid, UGT3A1 has activity toward 17alpha-estradiol, 17beta-estradiol, and the prototypic substrates of the UGT1 and UGT2 forms, 4-nitrophenol and 1-naphthol. A polymorphic UGT3A1 variant containing a C121G substitution was catalytically inactive. UGT3A1 is found in the liver and kidney, and to a lesser, in the gastrointestinal tract. These data describe the first characterization of a member of the UGT3 family. Its activity and distribution suggest that UGT3A1 may have an important role in the metabolism and elimination of ursodeoxycholic acid in therapies for ameliorating the symptoms of cholestasis or for dissolving gallstones.
Collapse
Affiliation(s)
- Peter I Mackenzie
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | | | | | | | | | | |
Collapse
|
58
|
Itäaho K, Mackenzie PI, Ikushiro SI, Miners JO, Finel M. The configuration of the 17-hydroxy group variably influences the glucuronidation of beta-estradiol and epiestradiol by human UDP-glucuronosyltransferases. Drug Metab Dispos 2008; 36:2307-15. [PMID: 18719240 DOI: 10.1124/dmd.108.022731] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The glucuronidation of 17beta-estradiol (beta-estradiol) and 17alpha-estradiol (epiestradiol) was studied to elucidate how the orientation of the 17-OH group affects conjugation at the 3-OH or the 17-OH of either diastereomer. Recombinant human UDP-glucuronosyltransferases (UGTs) UGT1A1, UGT1A3, UGT1A7, UGT1A8, and UGT1A10 conjugated one or both diastereomers, mainly at the 3-OH. The activity of UGT1A4 was low and unique because it was directed merely toward the 17-OH of both aglycones. UGT1A10 exhibited particularly high estradiol glucuronidation activity, the rate and affinity of which were significantly higher in the case of beta-estradiol than with epiestradiol. UGT1A9 did not catalyze estradiol glucuronidation, but UGT1A9-catalyzed scopoletin glucuronidation was competitively inhibited by beta-estradiol. UGT2B4, UGT2B7, and UGT2B17 exclusively conjugated the estradiols at the 17-OH position in a highly stereoselective fashion. UGT2B4 was specific for epiestradiol; UGT2B7 glucuronidated both diastereomers, with high affinity for epiestradiol, whereas UGT2B17 only glucuronidated beta-estradiol. UGT2B15 glucuronidated both estradiols at the 3-OH, with a strong preference for epiestradiol. Human UGT2A1 and UGT2A2 glucuronidated both diastereoisomers at both hydroxyl groups. Microsomal studies revealed that human liver mainly yielded epiestradiol 17-O-glucuronide, and human intestine primarily yielded beta-estradiol 3-O-glucuronide, whereas rat liver preferentially formed beta-estradiol 17-O-glucuronide. Of the three recombinant rat UGTs that were examined in this study, rUGT2B1 was specific for the 17-OH of beta-estradiol, rUGT2B2 did not catalyze estradiol glucuronidation, whereas rUGT2B3 exhibited high activity toward the 17-OH in both diastereoisomers. The results show that although many UGTs can catalyze estradiol glucuronidation, there are marked differences in their kinetics, regioselectivity, and stereoselectivity.
Collapse
Affiliation(s)
- Katriina Itäaho
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5), University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
59
|
Abstract
Anesthesiologists are frequently confronted with patients who are at risk for neurological complications due to perioperative stroke or prior traumatic brain injury. In this review, we address the growing and fascinating body of data that suggests gender and sex steroids influence the pathophysiology of injury and outcome for these patients. Cerebral ischemia, traumatic brain injury, and epilepsy are reviewed in the context of potential sex differences in mechanisms and outcomes of brain injury and the role of estrogen, progesterone, and androgens in shaping these processes. Lastly, implications for current and future perioperative and intensive care are identified.
Collapse
Affiliation(s)
- Kamila Vagnerova
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
60
|
Jun DY, Park HS, Kim JS, Kim JS, Park W, Song BH, Kim HS, Taub D, Kim YH. 17Alpha-estradiol arrests cell cycle progression at G2/M and induces apoptotic cell death in human acute leukemia Jurkat T cells. Toxicol Appl Pharmacol 2008; 231:401-12. [PMID: 18603276 DOI: 10.1016/j.taap.2008.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 05/08/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
Abstract
A pharmacological dose (2.5-10 microM) of 17alpha-estradiol (17alpha-E(2)) exerted a cytotoxic effect on human leukemias Jurkat T and U937 cells, which was not suppressed by the estrogen receptor (ER) antagonist ICI 182,780. Along with cytotoxicity in Jurkat T cells, several apoptotic events including mitochondrial cytochrome c release, activation of caspase-9, -3, and -8, PARP degradation, and DNA fragmentation were induced. The cytotoxicity of 17alpha-E(2) was not blocked by the anti-Fas neutralizing antibody ZB-4. While undergoing apoptosis, there was a remarkable accumulation of G(2)/M cells with the upregulatoin of cdc2 kinase activity, which was reflected in the Thr56 phosphorylation of Bcl-2. Dephosphorylation at Tyr15 and phosphorylation at Thr161 of cdc2, and significant increase in the cyclin B1 level were underlying factors for the cdc2 kinase activation. Whereas the 17alpha-E(2)-induced apoptosis was completely abrogated by overexpression of Bcl-2 or by pretreatment with the pan-caspase inhibitor z-VAD-fmk, the accumulation of G(2)/M cells significantly increased. The caspase-8 inhibitor z-IETD-fmk failed to influence 17alpha-E(2)-mediated caspase-9 activation, but it markedly reduced caspase-3 activation and PARP degradation with the suppression of apoptosis, indicating the contribution of caspase-8; not as an upstream event of the mitochondrial cytochrome c release, but to caspase-3 activation. In the presence of hydroxyurea, which blocked the cell cycle progression at the G(1)/S boundary, 17alpha-E(2) failed to induce the G(2)/M arrest as well as apoptosis. These results demonstrate that the cytotoxicity of 17alpha-E(2) toward Jurkat T cells is attributable to apoptosis mainly induced in G(2)/M-arrested cells, in an ER-independent manner, via a mitochondria-dependent caspase pathway regulated by Bcl-2.
Collapse
Affiliation(s)
- Do Youn Jun
- Laboratory of Immunobiology, Department of Microbiology, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
|
62
|
Bogaerts V, Theuns J, van Broeckhoven C. Genetic findings in Parkinson's disease and translation into treatment: a leading role for mitochondria? GENES, BRAIN, AND BEHAVIOR 2008; 7:129-51. [PMID: 17680806 PMCID: PMC2268956 DOI: 10.1111/j.1601-183x.2007.00342.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 06/06/2007] [Accepted: 06/25/2007] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder and in most patients its aetiology remains unknown. Molecular genetic studies in familial forms of the disease identified key proteins involved in PD pathogenesis, and support a major role for mitochondrial dysfunction, which is also of significant importance to the common sporadic forms of PD. While current treatments temporarily alleviate symptoms, they do not halt disease progression. Drugs that target the underlying pathways to PD pathogenesis, including mitochondrial dysfunction, therefore hold great promise for neuroprotection in PD. Here we summarize how the proteins identified through genetic research (alpha-synuclein, parkin, PINK1, DJ-1, LRRK2 and HTRA2) fit into and add to our current understanding of the role of mitochondrial dysfunction in PD. We highlight how these genetic findings provided us with suitable animal models and critically review how the gained insights will contribute to better therapies for PD.
Collapse
Affiliation(s)
- V Bogaerts
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| | - J Theuns
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| | - C van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| |
Collapse
|
63
|
Qiao Y, Zhang ZK, Cai LQ, Tan C, Imperato-McGinley JL, Zhu YS. 17alpha-estradiol inhibits LAPC-4 prostatic tumor cell proliferation in cell cultures and tumor growth in xenograft animals. Prostate 2007; 67:1719-1728. [PMID: 17879940 PMCID: PMC2862353 DOI: 10.1002/pros.20656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Blockade of androgen activity is a major effective therapy for advanced prostate cancer. Estrogen analogs have been used for prostate cancer therapy for years presumably by inhibiting testosterone biosyntheses, but with considerable adverse events due to their classic estrogenic activity. With the discovery of the estrogen receptor (ER) beta and its presence in prostate tumor cells, evaluation of estrogen analogs with less classic estrogenic activity in prostate cancer therapy is emerging. METHODS The effects of 17alpha-estradiol (alphaE2), a stereo-isomer of 17beta-estradiol (betaE2), on dihydrotestosterone (DHT)-induced cell growth and gene expressions were examined in androgen-dependent LAPC-4 prostatic tumor cells and in LAPC-4 xenograft animals, and compared to those of betaE2. RESULTS Both alphaE2 and betaE2 attenuated DHT induction of PSA gene expression, cell proliferation, and cell growth in cultured LAPC-4 cells. The inhibition of cell proliferation was associated with a blockade of DHT-induced cyclin A and cyclin D1 expression by alphaE2 and betaE2. In LAPC-4 xenograft mice, alphaE2 significantly inhibited tumor growth without altering the plasma testosterone level, while betaE2 failed to inhibit tumor growth even though it significantly inhibited PSA gene expression. CONCLUSION alphaE2 is an effective agent for inhibition of DHT-induced PSA, cyclin A, cyclin D1 gene expression, and cell proliferation in LAPC-4 cells, and tumor growth in LAPC-4 xenograft mice.
Collapse
Affiliation(s)
- Yaming Qiao
- Department of Medicine/Endocrinology, Weill Medical College of Cornell University, New York, New York
| | - Zhi-Kai Zhang
- Department of Medicine/Endocrinology, Weill Medical College of Cornell University, New York, New York
| | - Li-Qun Cai
- Department of Medicine/Endocrinology, Weill Medical College of Cornell University, New York, New York
| | - Chen Tan
- Department of Medicine/Endocrinology, Weill Medical College of Cornell University, New York, New York
| | | | - Yuan-Shan Zhu
- Department of Medicine/Endocrinology, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
64
|
Hua X, Lei M, Zhang Y, Ding J, Han Q, Hu G, Xiao M. Long-term d-galactose injection combined with ovariectomy serves as a new rodent model for Alzheimer's disease. Life Sci 2007; 80:1897-905. [PMID: 17391708 DOI: 10.1016/j.lfs.2007.02.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/22/2006] [Accepted: 02/17/2007] [Indexed: 10/23/2022]
Abstract
Estrogen deprivation and oxidative stress have been well established as two main factors closely related to the pathological development of Alzheimer's disease (AD). The aim of the present study is to investigate whether these two components act synergistically to accelerate the pathophysiological course of AD. To do this, we examined the effect of long-term intraperitoneal administration of D-galactose (D-gal) into ovariectomized (OVX) rats. Six weeks later, the OVX and d-gal-injected rats exhibited a higher degree of cognitive and memory impairment. This was accompanied by cholinergic neuronal loss in the forebrain and synaptic degeneration in the hippocampus and cerebral cortex which was not observed in intact controls, animals receiving injections of d-gal alone, untreated OVX animals or OVX animals receiving both D-gal and 17-beta estradiol. The typical histopathological alterations associated with AD, including intracellular deposition of amyloid beta peptide and the appearance of intracellular neurofibrillary tangles and nuclear granulovacuolar bodies, were observed in the hippocampus of OVX and D-gal-injected rats but not in other control groups. These results strongly suggest that estrogen deprivation and oxidative stress behave synergistically to enhance the development and progression of AD. Long-term OVX combined with D-gal injection serves as an ideal AD rodent model capable of mimicking pathological, neurochemical and behavioral alterations in AD.
Collapse
Affiliation(s)
- Xiangdong Hua
- Department of Human Anatomy, Histology and Embryology, Institute of Neurosciences, Nanjing Medical University, Nanjing, 210029 China
| | | | | | | | | | | | | |
Collapse
|
65
|
Jung ME, Wilson AM, Simpkins JW. A nonfeminizing estrogen analog protects against ethanol withdrawal toxicity in immortalized hippocampal cells. J Pharmacol Exp Ther 2006; 319:543-50. [PMID: 16873607 DOI: 10.1124/jpet.106.103630] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have shown that 17beta-estradiol protects against ethanol withdrawal toxicity in rats. Here, we investigated whether a cellular model of ethanol withdrawal could be developed in a cultured hippocampal cell line (HT22) and whether an adamantyl-containing nonfeminizing estrogen analog, ZYC26 [(3-hydroxy-2-adamantyl(1)-4-methyl-estra-1,3,5(10)-17-one], protects against ethanol withdrawal toxicity. HT22 cells were exposed to ethanol (0-500 mM) for 24 h in the presence or absence of ZYC26 or 17beta-estradiol. The ethanol solution was then removed from the cells for 4 h to create ethanol withdrawal. Samples were collected at the end of a 24-h ethanol exposure or at 4 h of ethanol withdrawal to assess cell viability using a calcein assay, lipid peroxidation by measuring malondialdehyde, and protein oxidation by measuring carbonyl contents. When tested, ethanol concentrations were constantly maintained during a 24-h ethanol exposure and eliminated at 4 h of ethanol withdrawal. Ethanol withdrawal decreased cell viability and increased the levels of malondialdehyde and carbonyls more than ethanol exposure. ZYC26 reduced the cell death and malondialdehyde levels at a lower dose (1 microM) than 17beta-estradiol (10 microM). The increased carbonyl contents were reduced only by ZYC26 treatment. These data suggest that ethanol withdrawal can be created in HT22 cells in a manner that is more toxic than ethanol exposure and that ZYC26 is a more potent cytoprotectant than 17beta-estradiol against cell death and oxidative damage induced by ethanol withdrawal. Therefore, ZYC26 can be a potential alternative estrogen therapy for a cellular and oxidative imbalance associated with ethanol withdrawal.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | | | | |
Collapse
|
66
|
Fraser LR, Adeoya-Osiguwa SA. The potential impact of novel investigational compounds on human fertility. Expert Opin Investig Drugs 2006; 15:1179-89. [PMID: 16989595 DOI: 10.1517/13543784.15.10.1179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is considerable concern that the incidence of infertility in humans may be increasing, in some instances due to the action of bioactive xenobiotic compounds found in our environment; for example, high concentrations of xenobiotics with estrogenic activity can interfere with normal testicular function and fertility. However, recent studies have shown that very low concentrations of several estrogenic xenobiotics can have subtle, unexpected effects on sperm function. When tested in vitro, these compounds stimulate spermatozoa to become fertile very quickly, but continued stimulation causes them to burn out and lose fertilising ability; similar responses occurring in vivo could reduce fertility. In contrast, several other compounds, structurally related to amfetamine, have been shown to act on spermatozoa in vitro in a positive manner, stimulating cells to 'switch on' quickly and then preventing burnout so that they maintain fertilising potential; similar responses occurring in vivo could enhance fertility. These results could have implications for either reducing or enhancing natural fertility.
Collapse
Affiliation(s)
- Lynn R Fraser
- King's College London, Division of Reproduction and Endocrinology, School of Biomedical and Health Sciences, London SE1 1UL, UK.
| | | |
Collapse
|
67
|
Fraser LR, Beyret E, Milligan SR, Adeoya-Osiguwa SA. Effects of estrogenic xenobiotics on human and mouse spermatozoa. Hum Reprod 2006; 21:1184-93. [PMID: 16459350 DOI: 10.1093/humrep/dei486] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate human sperm responsiveness to the estrogenic xenobiotic genistein and seek further information regarding the mechanism of action of estrogenic xenobiotics using mouse spermatozoa. METHODS Uncapacitated human spermatozoa were incubated with genistein and assessed using chlortetracycline (CTC) fluorescence. CTC was also used to evaluate mouse sperm responses to daidzein and combinations of genistein, 8-prenylnaringenin and nonylphenol. Several steroids were tested to determine structure-function relationships, and possible involvement of cAMP and G proteins in responses was also investigated. RESULTS Genistein significantly accelerated capacitation and acrosome loss in human spermatozoa, with 1, 10 and 100 nmol/l being equally effective. In mouse spermatozoa, daidzein produced significant responses, and combinations of xenobiotics at low concentrations were more effective than used singly. The compounds appear to act at the cell surface, and responses to three different steroids were nonidentical. A protein kinase-A inhibitor blocked responses to xenobiotics, while genistein and nonylphenol significantly stimulated cAMP production. Pertussis toxin and dideoxyadenosine blocked responses, suggesting involvement of inhibitory G proteins and membrane-associated adenylyl cyclases. CONCLUSION Human and mouse sperm responses to genistein are very similar, but human gametes appear to be even more sensitive. The mechanism of action may involve unregulated stimulation of cAMP production, leading to significant acrosome loss, undesirable because already acrosome-reacted cells are nonfertilizing. Xenobiotics were even more effective in combination. Since simultaneous exposure to low concentrations of multiple xenobiotics is likely to occur in animals and humans, further investigation is needed to determine whether this could impair fertility.
Collapse
Affiliation(s)
- Lynn R Fraser
- Reproduction and Rhythms Group, School of Biomedical and Health Sciences, King's College London, London, UK.
| | | | | | | |
Collapse
|
68
|
Howell N, Dykens J, Moos WH. Alzheimer's disease, estrogens, and clinical trials: a case study in drug development for complex disorders. Drug Dev Res 2006. [DOI: 10.1002/ddr.20046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|