51
|
Duan K, Hernandez KG, Mete O. Clinicopathological correlates of adrenal Cushing's syndrome. J Clin Pathol 2014; 68:175-86. [DOI: 10.1136/jclinpath-2014-202612] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
52
|
Abstract
The majority of benign adrenal cortex lesions leading to Cushing syndrome are associated to one or another abnormality of the cAMP/cGMP-phosphodiesterase signaling pathway. Phosphodiesterases (PDEs) are key regulatory enzymes of intracellular cAMP/cGMP levels. These second messengers play important regulatory roles in controlling steroidogenesis in the adrenal. Disruption of PDEs has been associated with a number of adrenal diseases. Specifically, genetic mutations have been associated with benign adrenal lesions, leading to Cushing syndrome and/or related adrenal hyperplasias. A Genome Wide Association study, in 2006, led to the identification of mutations in 2 PDE genes: PDE8B and PDE11A; mutations in these 2 genes modulate steroidogenesis. Further human studies have identified PDE2 as also directly regulating steroidogenesis. PDE2 decreases aldosterone production. This review focuses on the most recent knowledge we have gained on PDEs and their association with adrenal steroidogenesis and altered function, through analysis of patient cohorts and what we have learned from mouse studies.
Collapse
Affiliation(s)
- E Szarek
- Section of Endocrinology and Genetics, Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - C A Stratakis
- Section of Endocrinology and Genetics, Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
53
|
Stratakis CA. E pluribus unum? The main protein kinase A catalytic subunit (PRKACA), a likely oncogene, and cortisol-producing tumors. J Clin Endocrinol Metab 2014; 99:3629-33. [PMID: 25279575 PMCID: PMC4184082 DOI: 10.1210/jc.2014-3295] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Constantine A Stratakis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH); Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, NICHD, NIH; and Inter-Institute Pediatric Endocrinology Training Program, NIH, Bethesda, Maryland 20892
| |
Collapse
|
54
|
De Venanzi A, Alencar GA, Bourdeau I, Fragoso MCBV, Lacroix A. Primary bilateral macronodular adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 2014; 21:177-84. [PMID: 24739311 DOI: 10.1097/med.0000000000000061] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Primary bilateral macronodular adrenal hyperplasia is a rare cause of Cushing's syndrome and is more often diagnosed as bilateral adrenal incidentalomas with subclinical cortisol production. We summarize the recent insights concerning its epidemiology, diagnosis, genetics, pathophysiology, and therapeutic options. RECENT FINDINGS Recent publications have modified our notions on the genetics and pathophysiology of bilateral macronodular adrenal hyperplasia. Combined germline and somatic mutations of armadillo repeat containing 5 gene were identified in familial cases, in approximately 50% of apparently sporadic cases and in the relatives of index cases; genetic testing should allow early diagnosis in the near future. The recent finding of ectopic adrenocortical production of adrenocorticotropic hormone in clusters of bilateral macronodular adrenal hyperplasia tissues and its regulation by aberrant hormone receptors opens new horizons for eventual medical therapy using melanocortin-2 receptor and G-protein-coupled receptor antagonists. Finally, some medical and surgical treatments have been updated. SUMMARY Recent findings indicate that bilateral macronodular adrenal hyperplasia is more frequently genetically determined than previously believed. Considering the role of paracrine adrenocorticotropic hormone production on cortisol secretion, the previous nomenclature of adrenocorticotropic hormone-independent macronodular adrenal hyperplasia appears inappropriate, and this disease should now be named primary bilateral macronodular adrenal hyperplasia.
Collapse
Affiliation(s)
- Agostino De Venanzi
- aDivision of Endocrinology, Department of Medicine, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montreal, Quebec H2W 1T8, Canada bUnidade de Suprarrenal, Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
55
|
Otero C, Peñaloza JP, Rodas PI, Fernández-Ramires R, Velasquez L, Jung JE. Temporal and spatial regulation of cAMP signaling in disease: role of cyclic nucleotide phosphodiesterases. Fundam Clin Pharmacol 2014; 28:593-607. [PMID: 24750474 DOI: 10.1111/fcp.12080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 01/19/2023]
Abstract
Since its discovery, cAMP has been proposed as one of the most versatile second messengers. The remarkable feature of cAMP to tightly control highly diverse physiological processes, including metabolism, homeostasis, secretion, muscle contraction, cell proliferation and migration, immune response, and gene transcription, is reflected by millions of different articles worldwide. Compartmentalization of cAMP in space and time, maintained by mainly phosphodiesterases, contributes to the maintenance of equilibrium inside the cell where one signal can trigger many different events. Novel cAMP sensors seem to carry out certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Measuring space and time events with biosensors will increase our current knowledge on the pathophysiology of diseases, such as chronic obstructive pulmonary disease, asthma, cognitive impairment, cancer, and renal and heart failure. Further insights into the cAMP dynamics will help to optimize the pharmacological treatment for these diseases.
Collapse
Affiliation(s)
- Carolina Otero
- Center for Integrative Medicine and Innovative Science, Universidad Andres Bello, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnologia, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
56
|
Salpea P, Stratakis CA. Carney complex and McCune Albright syndrome: an overview of clinical manifestations and human molecular genetics. Mol Cell Endocrinol 2014; 386:85-91. [PMID: 24012779 PMCID: PMC3943598 DOI: 10.1016/j.mce.2013.08.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
Endocrine neoplasia syndromes feature a wide spectrum of benign and malignant tumors of endocrine and non-endocrine organs associated with other clinical manifestations. This study outlines the main clinical features, genetic basis, and molecular mechanisms behind two multiple endocrine neoplasia syndromes that share quite a bit of similarities, but one can be inherited whereas the other is always sporadic, Carney complex (CNC) and McCune-Albright (MAS), respectively. Spotty skin pigmentation, cardiac and other myxomas, and different types of endocrine tumors and other characterize Carney complex, which is caused largely by inactivating Protein kinase A, regulatory subunit, type I, Alpha (PRKAR1A) gene mutations. The main features of McCune-Albright are fibrous dysplasia of bone (FD), café-au-lait macules and precocious puberty; the disease is caused by activating mutations in the Guanine Nucleotide-binding protein, Alpha-stimulating activity polypeptide (GNAS) gene which are always somatic. We review the clinical manifestations of the two syndromes and provide an update on their molecular genetics.
Collapse
Affiliation(s)
- Paraskevi Salpea
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-Institute Training Program, Eunice Kennedy Shriver, National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-Institute Training Program, Eunice Kennedy Shriver, National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
57
|
Louiset E, Duparc C, Young J, Renouf S, Tetsi Nomigni M, Boutelet I, Libé R, Bram Z, Groussin L, Caron P, Tabarin A, Grunenberger F, Christin-Maitre S, Bertagna X, Kuhn JM, Anouar Y, Bertherat J, Lefebvre H. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N Engl J Med 2013; 369:2115-25. [PMID: 24283225 DOI: 10.1056/nejmoa1215245] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bilateral macronodular adrenal hyperplasia is a rare cause of primary adrenal Cushing's syndrome. In this form of hyperplasia, hypersecretion of cortisol suppresses the release of corticotropin by pituitary corticotrophs, which results in low plasma corticotropin levels. Thus, the disease has been termed corticotropin-independent macronodular adrenal hyperplasia. We examined the abnormal production of corticotropin in these hyperplastic adrenal glands. METHODS We obtained specimens of hyperplastic macronodular adrenal tissue from 30 patients with primary adrenal disease. The corticotropin precursor proopiomelanocortin and corticotropin expression were assessed by means of a polymerase-chain-reaction assay and immunohistochemical analysis. The production of corticotropin and cortisol was assessed in 11 specimens with the use of incubated explants and cell cultures coupled with hormone assays. Corticotropin levels were measured in adrenal and peripheral venous blood samples from 2 patients. RESULTS The expression of proopiomelanocortin messenger RNA (mRNA) was detected in all samples of hyperplastic adrenal tissue. Corticotropin was detected in steroidogenic cells arranged in clusters that were disseminated throughout the adrenal specimens. Adrenal corticotropin levels were higher in adrenal venous blood samples than in peripheral venous samples, a finding that was consistent with local production of the peptide within the hyperplastic adrenals. The release of adrenal corticotropin was stimulated by ligands of aberrant membrane receptors but not by corticotropin-releasing hormone or dexamethasone. A semiquantitative score for corticotropin immunostaining in the samples correlated with basal plasma cortisol levels. Corticotropin-receptor antagonists significantly inhibited in vitro cortisol secretion. CONCLUSIONS Cortisol secretion by the adrenals in patients with macronodular hyperplasia and Cushing's syndrome appears to be regulated by corticotropin, which is produced by a subpopulation of steroidogenic cells in the hyperplastic adrenals. Thus, the hypercortisolism associated with bilateral macronodular adrenal hyperplasia appears to be corticotropin-dependent. (Funded by the Agence Nationale de la Recherche and others.).
Collapse
Affiliation(s)
- Estelle Louiset
- From INSERM Unité 982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, and Rouen University, Mont-Saint-Aignan (E.L., C.D., S.R., M.T.N., I.B., Z.B., J-.M.K., Y.A., H.L.), the Department of Endocrinology, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), University Paris Sud, INSERM Unité 693, Le Kremlin-Bicêtre (J.Y.), INSERM Unité 1016, Institut Cochin (R.L., L.G., X.B., J.B.), the Department of Endocrinology AP-HP, Hôpital Cochin (L.G., X.B., J.B.), Université Paris Descartes (L.G., X.B., J.B.), Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104 (L.G., X.B., J.B.), and the Department of Endocrinology, Hôpital Saint-Antoine, AP-HP (S.C.-M.), Paris; the Department of Endocrinology and Metabolic Diseases, Centre Hospitalier Universitaire Larrey, Toulouse (P.C.); the Department of Endocrinology, Hôpital Haut Lévêque, Centre Hospitalier Universitaire de Bordeaux, Pessac (A.T.); Service de Médecine Interne et Nutrition, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg (F.G.); and the Department of Endocrinology, Diabetes, and Metabolic Diseases, Rouen University Hospital, Rouen (J.M.K., H.L.) - all in France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Stratakis CA. cAMP/PKA signaling defects in tumors: genetics and tissue-specific pluripotential cell-derived lesions in human and mouse. Mol Cell Endocrinol 2013; 371:208-20. [PMID: 23485729 PMCID: PMC3625474 DOI: 10.1016/j.mce.2013.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 12/21/2022]
Abstract
In the last few years, bench and clinical studies led to significant new insight into how cyclic adenosine monophosphate (cAMP) signaling, the molecular pathway that had been identified in the early 2000s as the one involved in most benign cortisol-producing adrenal hyperplasias, affects adrenocortical growth and development, as well as tumor formation. A major discovery was the identification of tissue-specific pluripotential cells (TSPCs) as the culprit behind tumor formation not only in the adrenal, but also in bone. Discoveries in animal studies complemented a number of clinical observations in patients. Gene identification continued in parallel with mouse and other studies on the cAMP signaling and other pathways.
Collapse
Affiliation(s)
- Constantine A Stratakis
- Section on Genetics & Endocrinology (SEGEN), Program on Developmental Endocrinology & Genetics, NICHD, NIH, Bethesda MD 20892, USA.
| |
Collapse
|
59
|
Yates R, Katugampola H, Cavlan D, Cogger K, Meimaridou E, Hughes C, Metherell L, Guasti L, King P. Adrenocortical Development, Maintenance, and Disease. Curr Top Dev Biol 2013; 106:239-312. [DOI: 10.1016/b978-0-12-416021-7.00007-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|