51
|
Dusek P, Schneider SA, Aaseth J. Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol 2016; 38:81-92. [PMID: 27033472 DOI: 10.1016/j.jtemb.2016.03.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/14/2023]
Abstract
Disturbance of cerebral iron regulation is almost universal in neurodegenerative disorders. There is a growing body of evidence that increased iron deposits may contribute to degenerative changes. Thus, the effect of iron chelation therapy has been investigated in many neurological disorders including rare genetic syndromes with neurodegeneration with brain iron accumulation as well as common sporadic disorders such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis. This review summarizes recent advances in understanding the role of iron in the etiology of neurodegeneration. Outcomes of studies investigating the effect of iron chelation therapy in neurodegenerative disorders are systematically presented in tables. Iron chelators, particularly the blood brain barrier-crossing compound deferiprone, are capable of decreasing cerebral iron in areas with abnormally high concentrations as documented by MRI. Yet, currently, there is no compelling evidence of the clinical effect of iron removal therapy on any neurological disorder. However, several studies indicate that it may prevent or slow down disease progression of several disorders such as aceruloplasminemia, pantothenate kinase-associated neurodegeneration or Parkinson's disease.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Czech Republic; Institute of Neuroradiology, University Göttingen, Göttingen, Germany.
| | | | - Jan Aaseth
- Innlandet Hospital Trust, Kongsvinger, Norway; Hedmark University College, Elverum, Norway
| |
Collapse
|
52
|
Voortman MM, Stojakovic T, Pirpamer L, Jehna M, Langkammer C, Scharnagl H, Reindl M, Ropele S, Seifert-Held T, Archelos JJ, Fuchs S, Enzinger C, Fazekas F, Khalil M. Prognostic value of free light chains lambda and kappa in early multiple sclerosis. Mult Scler 2016; 23:1496-1505. [DOI: 10.1177/1352458516681503] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Cerebrospinal fluid (CSF) immunoglobulin free light chains (FLC) have been suggested as quantitative alternative to oligoclonal bands (OCB) in the diagnosis of multiple sclerosis (MS). However, little is known on their role in predicting clinical and paraclinical disease progression, particularly in early stages. Objective: To assess the prognostic value of FLC in OCB-positive patients with clinically isolated syndrome (CIS) suggestive of MS and early MS. Methods: We determined FLC kappa (KFLC) and lambda (LFLC) in CSF and serum by nephelometry in 61 patients (CIS ( n = 48), relapsing-remitting multiple sclerosis ( n = 13)) and 60 non-inflammatory neurological controls. Median clinical follow-up time in CIS was 4.8 years (interquartile range (IQR), 1.5–6.5 years). Patients underwent 3T magnetic resonance imaging (MRI) at baseline and follow-up (median time interval, 2.2 years; IQR, 1.0–3.7 years) to determine T2 lesion load (T2LL) and percent brain volume change (PBVC). Results: CSF FLC were significantly increased in CIS/MS compared to controls (all p < 0.001). A lower KFLC/LFLC CSF ratio was associated with CIS-clinically definite multiple sclerosis (CDMS) conversion (hazard ratio (HR) = 2.89; 95% confidence interval (CI) = 1.17–7.14; p < 0.05). No correlations were found for FLC variables with T2LL or PBVC. Conclusion: Our study confirms increased intrathecal synthesis of FLC in CIS/MS which supports their diagnostic contribution. The KFLC/LFLC CSF ratio appears to have a prognostic value in CIS beyond OCB.
Collapse
Affiliation(s)
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical
Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Lukas Pirpamer
- Department of Neurology, Medical University of
Graz, Graz, Austria
| | - Margit Jehna
- Division of Neuroradiology, Vascular and
Interventional Radiology, Medical University of Graz, Graz, Austria
| | | | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical
Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical
University of Innsbruck, Innsbruck, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of
Graz, Graz, Austria
| | | | | | - Siegrid Fuchs
- Department of Neurology, Medical University of
Graz, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of
Graz, Graz, Austria/Division of Neuroradiology, Vascular and Interventional
Radiology, Medical University of Graz, Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of
Graz, Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of
Graz, Graz, Austria
| |
Collapse
|
53
|
Lewin A, Hamilton S, Witkover A, Langford P, Nicholas R, Chataway J, Bangham CRM. Free serum haemoglobin is associated with brain atrophy in secondary progressive multiple sclerosis. Wellcome Open Res 2016. [PMID: 27996064 DOI: 10.12688/wellcomeopenres.9967.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background A major cause of disability in secondary progressive multiple sclerosis (SPMS) is progressive brain atrophy, whose pathogenesis is not fully understood. The objective of this study was to identify protein biomarkers of brain atrophy in SPMS. Methods We used surface-enhanced laser desorption-ionization time-of-flight mass spectrometry to carry out an unbiased search for serum proteins whose concentration correlated with the rate of brain atrophy, measured by serial MRI scans over a 2-year period in a well-characterized cohort of 140 patients with SPMS. Protein species were identified by liquid chromatography-electrospray ionization tandem mass spectrometry. Results There was a significant (p<0.004) correlation between the rate of brain atrophy and a rise in the concentration of proteins at 15.1 kDa and 15.9 kDa in the serum. Tandem mass spectrometry identified these proteins as alpha-haemoglobin and beta-haemoglobin, respectively. The abnormal concentration of free serum haemoglobin was confirmed by ELISA (p<0.001). The serum lactate dehydrogenase activity was also highly significantly raised (p<10-12) in patients with secondary progressive multiple sclerosis. Conclusions An underlying low-grade chronic intravascular haemolysis is a potential source of the iron whose deposition along blood vessels in multiple sclerosis plaques contributes to the neurodegeneration and consequent brain atrophy seen in progressive disease. Chelators of free serum iron will be ineffective in preventing this neurodegeneration, because the iron (Fe2+) is chelated by haemoglobin.
Collapse
Affiliation(s)
- Alex Lewin
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.,Present address: Department of Mathematics, Brunel University, London, UK
| | - Shea Hamilton
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Aviva Witkover
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Paul Langford
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Jeremy Chataway
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust and Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London, London, UK
| | - Charles R M Bangham
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
54
|
Uddin MN, Lebel RM, Seres P, Blevins G, Wilman AH. Spin echo transverse relaxation and atrophy in multiple sclerosis deep gray matter: A two-year longitudinal study. Mult Scler 2016; 22:1133-43. [DOI: 10.1177/1352458515614091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/03/2015] [Indexed: 02/04/2023]
Abstract
Background: Deep gray matter (DGM) is affected in relapsing–remitting multiple sclerosis (RRMS) and may be studied using short-term longitudinal MRI. Objective: To investigate two-year changes in spin-echo transverse relaxation rate (R2) and atrophy in DGM, and its relationship with disease severity in RRMS patients. Methods: Twenty six RRMS patients and 26 matched controls were imaged at 4.7 T. Multiecho spin-echo R2 maps and atrophy measurements were obtained in DGM at baseline and two-year follow-up. Differences between MRI measures and correlations to disease severity were examined. Results: After two years, mean R2 values in the globus pallidus and pulvinar increased by ~4% ( p<0.001) in patients and <1.7% in controls. Two-year changes in R2 showed significant correlation to disease severity in the globus pallidus, pulvinar, substantia nigra, and thalamus. Multiple regression of the two-year R2 difference using these four DGM structures as variables, yielded high correlation with disease severity ( r=0.83, p<0.001). Two-year changes in volume and R2 showed significant correlation only for the globus pallidus in multiple sclerosis (MS) ( p<0.05). Conclusions: Two-year difference R2 measurements in DGM correlate to disease severity in MS. R2 mapping and atrophy measurements over two years can be used to identify changes in DGM in MS.
Collapse
Affiliation(s)
- Md Nasir Uddin
- Department of Biomedical Engineering, University of Alberta, Canada
| | - R Marc Lebel
- Department of Biomedical Engineering, University of Alberta, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Canada
| | - Gregg Blevins
- Division of Neurology, Department of Medicine, University of Alberta, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Canada
| |
Collapse
|
55
|
Gattringer T, Khalil M, Langkammer C, Jehna M, Pichler A, Pinter D, Kneihsl M, Petrovic K, Ropele S, Fazekas F, Enzinger C. No evidence for increased brain iron deposition in patients with ischemic white matter disease. Neurobiol Aging 2016; 45:61-63. [PMID: 27459926 DOI: 10.1016/j.neurobiolaging.2016.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 11/18/2022]
Abstract
Besides specific iron accumulation in some neurodegenerative disorders, increased iron deposition in cerebral deep gray matter (DGM) is found in multiple sclerosis. As this is considered largely a white matter (WM) disease, we speculated that patients with more severe ischemic WM hyperintensities (WMH) might also have an increased iron concentration in DGM structures and tested this assumption by using magnetic resonance imaging-based quantitative R2* relaxometry. WMH severity was measured in 61 patients with acute transient neurological symptoms (mean age: 71.5 ± 8.3 years) undergoing 3-Tesla magnetic resonance imaging. Despite a 6-year higher age of patients with more severe (i.e., early confluent or confluent) WMH, their DGM R2* rates did not differ from patients with punctate or no WMH. In the globus pallidum, R2* rates were even lower in patients with severe WMH. WMH volume was not correlated with R2* levels in any of the analyzed DGM structures. These findings argue against WM damage per se causing increased DGM iron deposition in multiple sclerosis and suggest no role of iron accumulation in ischemic small vessel disease.
Collapse
Affiliation(s)
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | | | - Margit Jehna
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | | | - Daniela Pinter
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Markus Kneihsl
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Katja Petrovic
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria; Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| |
Collapse
|
56
|
Lorio S, Kherif F, Ruef A, Melie-Garcia L, Frackowiak R, Ashburner J, Helms G, Lutti A, Draganski B. Neurobiological origin of spurious brain morphological changes: A quantitative MRI study. Hum Brain Mapp 2016; 37:1801-15. [PMID: 26876452 PMCID: PMC4855623 DOI: 10.1002/hbm.23137] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 01/04/2023] Open
Abstract
The high gray‐white matter contrast and spatial resolution provided by T1‐weighted magnetic resonance imaging (MRI) has made it a widely used imaging protocol for computational anatomy studies of the brain. While the image intensity in T1‐weighted images is predominantly driven by T1, other MRI parameters affect the image contrast, and hence brain morphological measures derived from the data. Because MRI parameters are correlates of different histological properties of brain tissue, this mixed contribution hampers the neurobiological interpretation of morphometry findings, an issue which remains largely ignored in the community. We acquired quantitative maps of the MRI parameters that determine signal intensities in T1‐weighted images (R1 (=1/T1), R2*, and PD) in a large cohort of healthy subjects (n = 120, aged 18–87 years). Synthetic T1‐weighted images were calculated from these quantitative maps and used to extract morphometry features—gray matter volume and cortical thickness. We observed significant variations in morphometry measures obtained from synthetic images derived from different subsets of MRI parameters. We also detected a modulation of these variations by age. Our findings highlight the impact of microstructural properties of brain tissue—myelination, iron, and water content—on automated measures of brain morphology and show that microstructural tissue changes might lead to the detection of spurious morphological changes in computational anatomy studies. They motivate a review of previous morphological results obtained from standard anatomical MRI images and highlight the value of quantitative MRI data for the inference of microscopic tissue changes in the healthy and diseased brain. Hum Brain Mapp 37:1801–1815, 2016. © 2016 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Lorio
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Ferath Kherif
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Anne Ruef
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Lester Melie-Garcia
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Richard Frackowiak
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, UCL, London, United Kingdom
| | - Gunther Helms
- Department of Clinical Sciences, Lund University, Medical Radiation Physics, Lund, Sweden
| | - Antoine Lutti
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Bodgan Draganski
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
57
|
Stüber C, Pitt D, Wang Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping. Int J Mol Sci 2016; 17:ijms17010100. [PMID: 26784172 PMCID: PMC4730342 DOI: 10.3390/ijms17010100] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 01/06/2023] Open
Abstract
Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS.
Collapse
Affiliation(s)
- Carsten Stüber
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - David Pitt
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
58
|
Stüber C, Pitt D, Wang Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping. Int J Mol Sci 2016. [PMID: 26784172 DOI: 10.3390/ijmsl17010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS.
Collapse
Affiliation(s)
- Carsten Stüber
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - David Pitt
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
59
|
Enzinger C, Barkhof F, Ciccarelli O, Filippi M, Kappos L, Rocca MA, Ropele S, Rovira À, Schneider T, de Stefano N, Vrenken H, Wheeler-Kingshott C, Wuerfel J, Fazekas F. Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nat Rev Neurol 2015; 11:676-86. [PMID: 26526531 DOI: 10.1038/nrneurol.2015.194] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MRI has become the most important paraclinical tool for diagnosing and monitoring patients with multiple sclerosis (MS). However, conventional MRI sequences are largely nonspecific in the pathology they reveal, and only provide a limited view of the complex morphological changes associated with MS. Nonconventional MRI techniques, such as magnetization transfer imaging (MTI), diffusion-weighted imaging (DWI) and susceptibility-weighted imaging (SWI) promise to complement existing techniques by revealing more-specific information on microstructural tissue changes. Past years have witnessed dramatic advances in the acquisition and analysis of such imaging data, and numerous studies have used these tools to probe tissue alterations associated with MS. Other MRI-based techniques-such as myelin-water imaging, (23)Na imaging, magnetic resonance elastography and magnetic resonance perfusion imaging-might also shed new light on disease-associated changes. This Review summarizes the rapid technical progress in the use of MRI in patients with MS, with a focus on nonconventional structural MRI. We critically discuss the present utility of nonconventional MRI in MS, and provide an outlook on future applications, including clinical practice. This information should allow appropriate selection of advanced MRI techniques, and facilitate their use in future studies of this disease.
Collapse
Affiliation(s)
- Christian Enzinger
- Division of Neuroradiology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria.,Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Frederik Barkhof
- VU University MS Center Amsterdam, Department of Radiology and Nuclear Medicine and Department of Physics &Medical Technology, VU University Medical Center, Netherlands
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, University College London Institute of Neurology, UK
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Italy
| | - Ludwig Kappos
- Department of Neurology, University of Basel, Switzerland
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Italy
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Àlex Rovira
- Magnetic Resonance Unit, Cemcat, Hospital Vall d'Hebron, Autonomous University of Barcelona, Spain
| | - Torben Schneider
- NMR Research Unit, Queen Square MS Centre, University College London Institute of Neurology, UK
| | - Nicola de Stefano
- Department of Neurological and Behavioural Sciences, University of Siena, Italy
| | - Hugo Vrenken
- VU University MS Center Amsterdam, Department of Radiology and Nuclear Medicine and Department of Physics &Medical Technology, VU University Medical Center, Netherlands
| | | | - Jens Wuerfel
- Medical Image Analysis Center, University Hospital Basel, Switzerland
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | | |
Collapse
|
60
|
Hernández-Torres E, Wiggermann V, Hametner S, Baumeister TR, Sadovnick AD, Zhao Y, Machan L, Li DKB, Traboulsee A, Rauscher A. Orientation Dependent MR Signal Decay Differentiates between People with MS, Their Asymptomatic Siblings and Unrelated Healthy Controls. PLoS One 2015; 10:e0140956. [PMID: 26489078 PMCID: PMC4619399 DOI: 10.1371/journal.pone.0140956] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/02/2015] [Indexed: 11/19/2022] Open
Abstract
R2* relaxometry of the brain is a quantitative magnetic resonance technique which is influenced by iron and myelin content across different brain regions. Multiple sclerosis (MS) is a common inflammatory, demyelinating disease affecting both white and grey matter regions of the CNS. Using R2*, increased iron deposition has been described in deep gray matter of MS patients. Iron accumulation might promote oxidative stress in the brain, which can lead to cell death and neurodegeneration. However, recent histological work indicates that iron may be reduced within the normal appearing white matter (WM) in MS. In the present study we analyzed the R2* signal across the white matter in 39 patients with MS, 31 asymptomatic age matched siblings of patients and 30 age-matched controls. The measurement of R2* in white matter is affected by the signal's dependency on white matter fibre orientation with respect to the main magnetic field which can be accounted using diffusion tensor imaging. We observed a clear separation of the three study groups in R2*. The values in the MS group were significantly lower compared to the siblings and controls, while the siblings group presented with significantly higher R2* values than both unrelated healthy controls and patients. Furthermore, we found significantly decreased normal-appearing white matter R2* values in patients with more severe disease course. Angle resolved analysis of R2* improves the sensitivity for detecting subtle differences in WM R2* compared to standard histogram based analyses. Our findings suggest that the decreased R2* values in MS are due to diffuse tissue damage and decreased myelin in the normal appearing and diffusely abnormal WM. The increased R2* in unaffected siblings may identify a predisposition to increased iron and the potential for oxidative stress as a risk factor for developing MS.
Collapse
Affiliation(s)
- Enedino Hernández-Torres
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Vanessa Wiggermann
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tobias R. Baumeister
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, Canada
| | - A. Dessa Sadovnick
- Department of Medicine (Neurology), University of British Columbia, Vancouver, Canada
- Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Yinshan Zhao
- Department of Medicine (Neurology), University of British Columbia, Vancouver, Canada
| | - Lindsay Machan
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - David K. B. Li
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
- Department of Medicine (Neurology), University of British Columbia, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Anthony Traboulsee
- Department of Medicine (Neurology), University of British Columbia, Vancouver, Canada
- Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Alexander Rauscher
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Child and Family Research Institute, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
61
|
Appraising the Role of Iron in Brain Aging and Cognition: Promises and Limitations of MRI Methods. Neuropsychol Rev 2015; 25:272-87. [PMID: 26248580 DOI: 10.1007/s11065-015-9292-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022]
Abstract
Age-related increase in frailty is accompanied by a fundamental shift in cellular iron homeostasis. By promoting oxidative stress, the intracellular accumulation of non-heme iron outside of binding complexes contributes to chronic inflammation and interferes with normal brain metabolism. In the absence of direct non-invasive biomarkers of brain oxidative stress, iron accumulation estimated in vivo may serve as its proxy indicator. Hence, developing reliable in vivo measurements of brain iron content via magnetic resonance imaging (MRI) is of significant interest in human neuroscience. To date, by estimating brain iron content through various MRI methods, significant age differences and age-related increases in iron content of the basal ganglia have been revealed across multiple samples. Less consistent are the findings that pertain to the relationship between elevated brain iron content and systemic indices of vascular and metabolic dysfunction. Only a handful of cross-sectional investigations have linked high iron content in various brain regions and poor performance on assorted cognitive tests. The even fewer longitudinal studies indicate that iron accumulation may precede shrinkage of the basal ganglia and thus predict poor maintenance of cognitive functions. This rapidly developing field will benefit from introduction of higher-field MRI scanners, improvement in iron-sensitive and -specific acquisition sequences and post-processing analytic and computational methods, as well as accumulation of data from long-term longitudinal investigations. This review describes the potential advantages and promises of MRI-based assessment of brain iron, summarizes recent findings and highlights the limitations of the current methodology.
Collapse
|
62
|
Rovira À, Wiggermann V, Rauscher A. Trajectories of subcortical iron accumulation in MS. Neurology 2015; 84:2388-9. [PMID: 25979699 DOI: 10.1212/wnl.0000000000001691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Àlex Rovira
- From the Magnetic Resonance Unit (IDI), Department of Radiology (À.R.), Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; and the Department of Physics and Astronomy (V.W.), the Department of Pediatrics (V.W., A.R.), and the UBC MRI Research Centre (V.W., A.R.), University of British Columbia, Vancouver, Canada.
| | - Vanessa Wiggermann
- From the Magnetic Resonance Unit (IDI), Department of Radiology (À.R.), Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; and the Department of Physics and Astronomy (V.W.), the Department of Pediatrics (V.W., A.R.), and the UBC MRI Research Centre (V.W., A.R.), University of British Columbia, Vancouver, Canada
| | - Alexander Rauscher
- From the Magnetic Resonance Unit (IDI), Department of Radiology (À.R.), Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; and the Department of Physics and Astronomy (V.W.), the Department of Pediatrics (V.W., A.R.), and the UBC MRI Research Centre (V.W., A.R.), University of British Columbia, Vancouver, Canada
| |
Collapse
|