51
|
Picconi B, Hernández LF, Obeso JA, Calabresi P. Motor complications in Parkinson's disease: Striatal molecular and electrophysiological mechanisms of dyskinesias. Mov Disord 2017; 33:867-876. [PMID: 29219207 DOI: 10.1002/mds.27261] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Long-term levodopa (l-dopa) treatment in patients with Parkinson´s disease (PD) is associated with the development of motor complications (ie, motor fluctuations and dyskinesias). The principal etiopathogenic factors are the degree of nigro-striatal dopaminergic loss and the duration and dose of l-dopa treatment. In this review article we concentrate on analysis of the mechanisms underlying l-dopa-induced dyskinesias, a phenomenon that causes disability in a proportion of patients and that has not benefited from major therapeutic advances. Thus, we discuss the main neurotransmitters, receptors, and pathways that have been thought to play a role in l-dopa-induced dyskinesias from the perspective of basic neuroscience studies. Some important advances in deciphering the molecular pathways involved in these abnormal movements have occurred in recent years to reveal potential targets that could be used for therapeutic purposes. However, it has not been an easy road because there have been a plethora of components involved in the generation of these undesired movements, even bypassing the traditional and well-accepted dopamine receptor activation, as recently revealed by optogenetics. Here, we attempt to unify the available data with the hope of guiding and fostering future research in the field of striatal activation and abnormal movement generation. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Ledia F Hernández
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, Madrid, Spain.,Universidad CEU San Pablo, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Jose A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, Madrid, Spain.,Universidad CEU San Pablo, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Paolo Calabresi
- Fondazione Santa Lucia, IRCCS, Rome, Italy.,Clinica Neurologica, Università degli studi di Perugia, Ospedale Santa Maria della Misericordia, Perugia, Italy
| |
Collapse
|
52
|
Lower serotonin transporter binding in patients with cervical dystonia is associated with psychiatric symptoms. EJNMMI Res 2017; 7:87. [PMID: 29071431 PMCID: PMC5656503 DOI: 10.1186/s13550-017-0338-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cervical dystonia (CD) is often accompanied by depressive symptoms, anxiety, and jerks/tremor. The dopamine transporter (DAT) binding is related with both depressive symptoms and jerks/tremor in CD. Serotonergic and dopaminergic systems are closely related. As serotonin is involved in the pathophysiology of psychiatric symptoms and jerks, we expected an altered serotoninergic system in CD. We hypothesized that CD is associated with reduced serotonin transporter (SERT) binding, more specific that SERT binding is lower in CD patients with psychiatric symptoms and/or jerks/tremor compared to those without, and to controls. The balance between SERT and DAT binding can be altered in different CD phenotypes. RESULTS In 23 CD patients and 14 healthy controls, SERT binding in the diencephalon/midbrain was assessed using [123I]FP-CIT SPECT, with a brain-dedicated system. The specific to non-specific binding ratio (binding potential; BPND) to SERT was the main outcome measure. There was a clear trend towards reduced SERT BPND in CD patients with psychiatric symptoms compared to those without (p = 0.05). There was no correlation between SERT binding and dystonia, jerks, or anxiety. There was a significant positive correlation between extrastriatal SERT and striatal DAT BPND in CD patients with jerks, but not in patients without jerks. CONCLUSION CD patients with psychiatric symptoms have lower SERT binding in the midbrain/diencephalon, while dystonia and jerks appear unrelated to SERT binding. The balance between extrastriatal SERT and striatal DAT binding is different in CD with and without jerks.
Collapse
|
53
|
Abstract
Purpose of Review To review the current status of positron emission tomography (PET) molecular imaging research of levodopa-induced dyskinesias (LIDs) in Parkinson’s disease (PD). Recent Findings Recent PET studies have provided robust evidence that LIDs in PD are associated with elevated and fluctuating striatal dopamine synaptic levels, which is a consequence of the imbalance between dopaminergic and serotonergic terminals, with the latter playing a key role in mishandling presynaptic dopamine release. Long-term exposure to levodopa is no longer believed to solely induce LIDs, as studies have highlighted that PD patients who go on to develop LIDs exhibit elevated putaminal dopamine release before the initiation of levodopa treatment, suggesting the involvement of other mechanisms, including altered neuronal firing and abnormal levels of phosphodiesterase 10A. Summary Dopaminergic, serotonergic, glutamatergic, adenosinergic and opioid systems and phosphodiesterase 10A levels have been shown to be implicated in the development of LIDs in PD. However, no system may be considered sufficient on its own for the development of LIDs, and the mechanisms underlying LIDs in PD may have a multisystem origin. In line with this notion, future studies should use multimodal PET molecular imaging in the same individuals to shed further light on the different mechanisms underlying the development of LIDs in PD.
Collapse
|
54
|
Brumberg J, Küsters S, Al-Momani E, Marotta G, Cosgrove KP, van Dyck CH, Herrmann K, Homola GA, Pezzoli G, Buck AK, Volkmann J, Samnick S, Isaias IU. Cholinergic activity and levodopa-induced dyskinesia: a multitracer molecular imaging study. Ann Clin Transl Neurol 2017; 4:632-639. [PMID: 28904985 PMCID: PMC5590520 DOI: 10.1002/acn3.438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/23/2022] Open
Abstract
Objective To investigate the association between levodopa‐induced dyskinesias and striatal cholinergic activity in patients with Parkinson's disease. Methods This study included 13 Parkinson's disease patients with peak‐of‐dose levodopa‐induced dyskinesias, 12 nondyskinetic patients, and 12 healthy controls. Participants underwent 5‐[123I]iodo‐3‐[2(S)‐2‐azetidinylmethoxy]pyridine single‐photon emission computed tomography, a marker of nicotinic acetylcholine receptors, [123I]N‐ω‐fluoropropyl‐2β‐carbomethoxy‐3β‐(4‐iodophenyl)nortropane single‐photon emission computed tomography, to measure dopamine reuptake transporter density and 2‐[18F]fluoro‐2‐deoxyglucose positron emission tomography to assess regional cerebral metabolic activity. Striatal binding potentials, uptake values at basal ganglia structures, and correlations with clinical variables were analyzed. Results Density of nicotinic acetylcholine receptors in the caudate nucleus of dyskinetic subjects was similar to that of healthy controls and significantly higher to that of nondyskinetic patients, in particular, contralaterally to the clinically most affected side. Interpretation Our findings support the hypothesis that the expression of dyskinesia may be related to cholinergic neuronal excitability in a dopaminergic‐depleted striatum. Cholinergic signaling would play a role in maintaining striatal dopaminergic responsiveness, possibly defining disease phenotype and progression.
Collapse
Affiliation(s)
- Joachim Brumberg
- Department of Nuclear Medicine University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | - Sebastian Küsters
- Department of Neurology University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | - Ehab Al-Momani
- Department of Nuclear Medicine University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | - Giorgio Marotta
- Department of Nuclear Medicine Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico Milan Italy
| | - Kelly P Cosgrove
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut
| | | | - Ken Herrmann
- Department of Nuclear Medicine University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany.,Department of Nuclear Medicine University Hospital Essen Essen Germany
| | - György A Homola
- Department of Neuroradiology University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | | | - Andreas K Buck
- Department of Nuclear Medicine University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | - Jens Volkmann
- Department of Neurology University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | - Samuel Samnick
- Department of Nuclear Medicine University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | - Ioannis U Isaias
- Department of Neurology University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| |
Collapse
|
55
|
Yousaf T, Wilson H, Politis M. Imaging the Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:179-257. [PMID: 28802921 DOI: 10.1016/bs.irn.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is acknowledged to be a multisystem syndrome, manifesting as a result of multineuropeptide dysfunction, including dopaminergic, cholinergic, serotonergic, and noradrenergic deficits. This multisystem disorder ultimately leads to the presentation of a range of nonmotor symptoms, now appreciated to be an integral part of the disease-specific spectrum of symptoms, often preceding the diagnosis of motor Parkinson's disease. In this chapter, we review the dopaminergic and nondopaminergic basis of these symptoms by exploring the neuroimaging evidence based on several techniques including positron emission tomography, single-photon emission computed tomography molecular imaging, magnetic resonance imaging, functional magnetic resonance imaging, and diffusion tensor imaging. We discuss the role of these neuroimaging techniques in elucidating the underlying pathophysiology of NMS in Parkinson's disease.
Collapse
Affiliation(s)
- Tayyabah Yousaf
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| |
Collapse
|
56
|
Pagano G, Niccolini F, Fusar-Poli P, Politis M. Serotonin transporter in Parkinson's disease: A meta-analysis of positron emission tomography studies. Ann Neurol 2017; 81:171-180. [DOI: 10.1002/ana.24859] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Gennaro Pagano
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN); King's College London; London United Kingdom
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN); King's College London; London United Kingdom
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience (IoPPN); King's College London; London United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN); King's College London; London United Kingdom
| |
Collapse
|
57
|
Strafella AP, Bohnen NI, Perlmutter JS, Eidelberg D, Pavese N, Van Eimeren T, Piccini P, Politis M, Thobois S, Ceravolo R, Higuchi M, Kaasinen V, Masellis M, Peralta MC, Obeso I, Pineda-Pardo JÁ, Cilia R, Ballanger B, Niethammer M, Stoessl JA. Molecular imaging to track Parkinson's disease and atypical parkinsonisms: New imaging frontiers. Mov Disord 2017; 32:181-192. [DOI: 10.1002/mds.26907] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 11/27/2016] [Indexed: 12/23/2022] Open
Affiliation(s)
- Antonio P. Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Neurology Div/Dept. Medicine, Toronto Western Hospital, UHN; Krembil Research Institute, UHN; Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH; University of Toronto; Ontario Canada
| | - Nicolaas I. Bohnen
- University of Michigan & Veterans Administration Medical Center; Ann Arbor Michigan USA
| | - Joel S. Perlmutter
- Neurology, Radiology, Neuroscience, Physical Therapy & Occupational Therapy; Washington University in St. Louis; St. Louis Missouri USA
| | - David Eidelberg
- Center for Neurosciences; The Feinstein Institute for Medical Research; Manhasset New York USA
| | - Nicola Pavese
- Newcastle Magnetic Resonance Centre & Positron Emission Tomography Centre; Newcastle University; Campus for Ageing & Vitality Newcastle upon Tyne United Kingdom
| | - Thilo Van Eimeren
- Multimodal Neuroimaging Group-Department of Nuclear Medicine Department of Neurology-University of Cologne; Institute of Neuroscience and Medicine, Jülich Research Center, German Center for Neurodegenerative Diseases (DZNE); Germany
| | - Paola Piccini
- Neurology Imaging Unit, Centre of Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Hammersmith Campus; Imperial College London; United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry; Psychology and Neuroscience, King's College London; London United Kingdom
| | - Stephane Thobois
- Hospices Civils de Lyon, Hopital Neurologique Pierre Wertheimer; Université Lyon 1; CNRS, Centre de Neurosciences Cognitives; UMR 5229 Lyon France
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, Movement Disorders and Parkinson Center; University of Pisa; Italy
| | - Makoto Higuchi
- National Institute of Radiological Sciences; National Institutes for Quantum and Radiological Science and Technology; Chiba Japan
| | - Valtteri Kaasinen
- Division of Clinical Neurosciences, Turku University Hospital; Department of Neurology; University of Turku; Turku PET Centre, University of Turku; Turku Finland
| | - Mario Masellis
- Cognitive & Movement Disorders Clinic, Sunnybrook Health Sciences Centre; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute; University of Toronto; Toronto Ontario Canada
| | - M. Cecilia Peralta
- Movement Disorder and Parkinson's Disease Program; CEMIC University Hospital; Buenos Aires Argentina
| | - Ignacio Obeso
- Centro Integral de Neurociencias (CINAC), Hospitales Madrid Puerta del Sur & Centro de Investigación Biomédica en Red; Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Jose Ángel Pineda-Pardo
- Centro Integral de Neurociencias (CINAC), Hospitales Madrid Puerta del Sur & Centro de Investigación Biomédica en Red; Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Roberto Cilia
- Parkinson Institute; ASST Gaetano Pini-CTO; Milan Italy
| | - Benedicte Ballanger
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity & Neuropathology of Olfactory Perception Team; University Lyon; France
| | - Martin Niethammer
- Center for Neurosciences; The Feinstein Institute for Medical Research; Manhasset New York USA
| | - Jon A. Stoessl
- Pacific Parkinson's Research Centre & National Parkinson Foundation Centre of Excellence; University of British Columbia & Vancouver Coastal Health; Vancouver British Columbia Canada
| | | |
Collapse
|
58
|
Long-term treatment of Parkinson's disease with levodopa and other adjunctive drugs. J Neural Transm (Vienna) 2017; 125:35-43. [PMID: 28091751 PMCID: PMC5754456 DOI: 10.1007/s00702-016-1671-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/18/2016] [Indexed: 01/11/2023]
Abstract
We report a long-term treatment of Parkinson’s disease in out-patient clinics. The patients with Parkinson’s disease were evaluated at the time of clinic visit from September 1st, 2015 to February 29th, 2016. Total number of the patients was 498. The age at the evaluation was 69.9 ± 9.3 years and the age of onset was 60.2 ± 11.3. Hoehn and Yahr severity was 3.28 ± 0.94 in patients who were from 16 to 20 years (n = 53) and 3.00 ± 0.86 in patients from 21 years or more (n = 38) from the onset of the disease to the evaluation. The dose of levodopa was 741 ± 295 mg per day and the number of levodopa dosing was 5.85 ± 2.59 times in 16–20 years from the onset to the evaluation and 703 ± 251 mg/day and 6.03 ± 3.20 times a day in 21 years or more from the onset to the evaluation. Levodopa was given in most cases into an empty stomach. The incidence of wearing off was 73.6% and dyskinesia was 37.7% in the 16–20 years group and 76.3% and 55.3% in 21 years or more group, respectively. The patients who had 15 years or less from the onset to the evaluation had much milder severity of the disease. Hoehn and Yahr severity, the dose of levodopa, and the incidence of wearing off were about the same as in the literature. But the incidence of dyskinesia was much lower than those appeared in the literature. We discussed reasons why the incidence of dyskinesia was lower in our study.
Collapse
|
59
|
Nakano N, Matsuda S, Ichimura M, Minami A, Ogino M, Murai T, Kitagishi Y. PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson's disease (Review). Int J Mol Med 2016; 39:253-260. [DOI: 10.3892/ijmm.2016.2833] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/12/2016] [Indexed: 11/05/2022] Open
|
60
|
Bez F, Francardo V, Cenci MA. Dramatic differences in susceptibility to l-DOPA-induced dyskinesia between mice that are aged before or after a nigrostriatal dopamine lesion. Neurobiol Dis 2016; 94:213-25. [DOI: 10.1016/j.nbd.2016.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/08/2016] [Accepted: 06/11/2016] [Indexed: 12/26/2022] Open
|
61
|
Conti MM, Meadows SM, Melikhov-Sosin M, Lindenbach D, Hallmark J, Werner DF, Bishop C. Monoamine transporter contributions to l-DOPA effects in hemi-parkinsonian rats. Neuropharmacology 2016; 110:125-134. [PMID: 27452719 DOI: 10.1016/j.neuropharm.2016.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022]
Abstract
l-DOPA is the standard treatment for Parkinson's disease (PD), but chronic treatment typically leads to abnormal involuntary movement or dyskinesia (LID) development. Although poorly understood, dyskinetic mechanisms involve a complex interaction between the remaining dopamine system and the semi-homologous serotonin and norepinephrine systems. Serotonin and norepinephrine transporters (SERT and NET, respectively) have affinity for dopamine uptake especially when dopamine transporters (DAT) are scant. Monoamine reuptake inhibitors have been reported to modulate l-DOPA's anti-parkinsonian effects, but DAT, SERT, and NET's contribution to dyskinesia has not been well delineated. The current investigation sought to uncover the differential expression and function of DAT, SERT, and NET in the l-DOPA-treated hemi-parkinsonian rat. Protein analysis of striatal monoamine transporters in unilateral sham or 6-hydroxydopamine-lesioned rats treated with l-DOPA (0 or 6 mg/kg) showed lesion-induced DAT loss and l-DOPA-induced gain in SERT:DAT and NET:DAT ratios in lesioned rats which positively correlated with dyskinesia expression, suggesting functional shifts among monoamine transporters in the dyskinetic state. SERT blockade with citalopram (3, 5 mg/kg) reduced LID while DAT and NET blockade with GBR-12909 (5, 10 mg/kg) and nisoxetine (5, 10 mg/kg), respectively, mildly exacerbated dyskinesia expression. Transporter inhibition did not significantly alter l-DOPA's ability to reverse motor deficit. Overall, DA and DAT loss with l-DOPA treatment appear to precipitate gain in SERT and NET function. Strong correlations with LID and direct behavioral comparisons of selective transporter blockade reveal novel implications for SERT, DAT, and NET as potential biomarkers and therapeutic targets in the hemi-parkinsonian model and dyskinetic PD patients.
Collapse
Affiliation(s)
- Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Samantha M Meadows
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Mitchell Melikhov-Sosin
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - David Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Joy Hallmark
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - David F Werner
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
62
|
NEUROIMÁGENES EN ENFERMEDAD DE PARKINSON: ROL DE LA RESONANCIA MAGNÉTICA, EL SPECT Y EL PET. REVISTA MÉDICA CLÍNICA LAS CONDES 2016. [DOI: 10.1016/j.rmclc.2016.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|