51
|
Wagshul ME, Lucas M, Ye K, Izzetoglu M, Holtzer R. Multi-modal neuroimaging of dual-task walking: Structural MRI and fNIRS analysis reveals prefrontal grey matter volume moderation of brain activation in older adults. Neuroimage 2019; 189:745-754. [PMID: 30710680 DOI: 10.1016/j.neuroimage.2019.01.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 11/28/2022] Open
Abstract
It has been well established over the last two decades that walking is not merely an automatic, motoric activity; it also utilizes executive function circuits, which play an increasingly important role in walking for older people and those with mobility and cognitive deficits. Dual-task walking, such as walking while performing a cognitive task, is a necessary skill for everyday functioning, and has been shown to activate prefrontal lobe areas in healthy older people. Another well-established point in healthy aging is the loss of grey matter, and in particular loss of frontal lobe grey matter volume. However, the relationship between increased frontal lobe activity during dual-task walking and loss of frontal grey matter in healthy aging remains unknown. In the current study, we combined oxygenated hemoglobin (HbO2) data from functional near-infrared spectroscopy (fNIRS), taken during dual-task walking, with structural MRI volumetrics in a cohort of healthy older subjects to identify this relationship. We studied fifty-five relatively healthy, older participants (≥65 years) during two separate sessions: fNIRS to measure HbO2 changes between single-task (i.e., normal walking) and dual-task walking-while-talking, and high-resolution, structural MRI to measure frontal lobe grey matter volumes. Linear mixed effects modeling was utilized to determine the moderation effect of grey matter volume on the change in prefrontal oxygenated hemoglobin between the two walking tasks, while controlling for covariates including task performance. We found a highly significant interaction effect between frontal grey matter volume and task on HbO2 levels (p < 0.0001). Specifically, increased HbO2 levels during dual-task compared to single-task walking were associated with reduced frontal grey matter volume. Regional analysis identified bilateral superior and rostral middle gyri as the primary areas driving these results. The findings provide support for the concept of neural inefficiency: in the absence of behavioral gains, grey matter loss in relatively healthy, older individuals leads to over-activation of frontal lobe during a cognitively demanding walking task with established clinical and predictive utility.
Collapse
Affiliation(s)
- Mark E Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA; Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Melanie Lucas
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Kenny Ye
- Department of Epidemiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
52
|
Lord SR, Close JCT. New horizons in falls prevention. Age Ageing 2018; 47:492-498. [PMID: 29697780 DOI: 10.1093/ageing/afy059] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Falls pose a major threat to the well-being and quality of life of older people. Falls can result in fractures and other injuries, disability and fear and can trigger a decline in physical function and loss of autonomy. This article synthesises recent published findings on fall risk and mobility assessments and fall prevention interventions and considers how this field of research may evolve in the future. Fall risk topics include the utility of remote monitoring using wearable sensors and recent work investigating brain activation and gait adaptability. New approaches for exercise for fall prevention including dual-task training, cognitive-motor training with exergames and reactive step training are discussed. Additional fall prevention strategies considered include the prevention of falls in older people with dementia and Parkinson's disease, drugs for fall prevention and safe flooring for preventing fall-related injuries. The review discusses how these new initiatives and technologies have potential for effective fall prevention and improved quality of life. It concludes by emphasising the need for a continued focus on translation of evidence into practice including robust effectiveness evaluations of so that resources can be appropriately targeted into the future.
Collapse
Affiliation(s)
- Stephen R Lord
- Balance and Injury Research Centre, Neuroscience Research Australia, University of New South Wales, Randwick, NSW, Australia
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jacqueline C T Close
- Balance and Injury Research Centre, Neuroscience Research Australia, University of New South Wales, Randwick, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
53
|
Holtzer R, George CJ, Izzetoglu M, Wang C. The effect of diabetes on prefrontal cortex activation patterns during active walking in older adults. Brain Cogn 2018; 125:14-22. [PMID: 29807266 DOI: 10.1016/j.bandc.2018.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/05/2018] [Accepted: 03/06/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Gait alterations were documented in diabetic patients. However, the effect of diabetes on cortical control of gait has not been reported. We evaluated the effect of diabetes on prefrontal cortex (PFC) Oxygenated Hemoglobin (HbO2) levels during active walking in older adults. METHODS Of the total sample (n = 315; mean age = 76.84 ± 6.71ys; % female = 56.5) 43 participants (13.7%) had diabetes. The experimental paradigm consisted of two single tasks: Normal-Walk (NW); and Cognitive Interference (Alpha); and one dual-task condition consisting of the two single tasks, Walk-While-Talk (WWT). Functional Near-Infrared-Spectroscopy (fNIRS) was used to quantify PFC HbO2 levels. RESULTS Older adults without diabetes showed higher PFC HbO2 levels in WWT compared to both NW and Alpha. HbO2 levels during NW were not different between the two groups. Consistent with Neural Inefficiency, older adults with diabetes exhibited higher HbO2 levels during Alpha while performing significantly worse than those without diabetes. Moreover, the presence of diabetes was associated with attenuated HbO2 levels during WWT. This pattern is consistent with Capacity Limitations suggesting a failure to recruit brain resources vis-à-vis the more cognitively challenging WWT condition. CONCLUSIONS A distinct functional neural signature of diabetes was established during active and attention demanding walking among older adults without overt neurological disease.
Collapse
Affiliation(s)
- Roee Holtzer
- Albert Einstein College of Medicine Bronx, New York, USA; Yeshiva University Bronx, New York, USA.
| | | | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, PA, USA
| | - Cuiling Wang
- Albert Einstein College of Medicine Bronx, New York, USA
| |
Collapse
|
54
|
Stuart S, Vitorio R, Morris R, Martini DN, Fino PC, Mancini M. Cortical activity during walking and balance tasks in older adults and in people with Parkinson's disease: A structured review. Maturitas 2018; 113:53-72. [PMID: 29903649 DOI: 10.1016/j.maturitas.2018.04.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Abstract
An emerging body of literature has examined cortical activity during walking and balance tasks in older adults and in people with Parkinson's disease, specifically using functional near infrared spectroscopy (fNIRS) or electroencephalography (EEG). This review provides an overview of this developing area, and examines the disease-specific mechanisms underlying walking or balance deficits. Medline, PubMed, PsychInfo and Scopus databases were searched. Articles that described cortical activity during walking and balance tasks in older adults and in those with PD were screened by the reviewers. Thirty-seven full-text articles were included for review, following an initial yield of 566 studies. This review summarizes study findings, where increased cortical activity appears to be required for older adults and further for participants with PD to perform walking and balance tasks, but specific activation patterns vary with the demands of the particular task. Studies attributed cortical activation to compensatory mechanisms for underlying age- or PD-related deficits in automatic movement control. However, a lack of standardization within the reviewed studies was evident from the wide range of study protocols, instruments, regions of interest, outcomes and interpretation of outcomes that were reported. Unstandardized data collection, processing and reporting limited the clinical relevance and interpretation of study findings. Future work to standardize approaches to the measurement of cortical activity during walking and balance tasks in older adults and people with PD with fNIRS and EEG systems is needed, which will allow direct comparison of results and ensure robust data collection/reporting. Based on the reviewed articles we provide clinical and future research recommendations.
Collapse
Affiliation(s)
- Samuel Stuart
- Oregon Health & Science University, Department of Neurology, Portland, OR, USA
| | - Rodrigo Vitorio
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Rio Claro, Brazil
| | - Rosie Morris
- Oregon Health & Science University, Department of Neurology, Portland, OR, USA
| | - Douglas N Martini
- Oregon Health & Science University, Department of Neurology, Portland, OR, USA
| | - Peter C Fino
- Oregon Health & Science University, Department of Neurology, Portland, OR, USA
| | - Martina Mancini
- Oregon Health & Science University, Department of Neurology, Portland, OR, USA.
| |
Collapse
|
55
|
Maidan I, Nieuwhof F, Bernad-Elazari H, Bloem BR, Giladi N, Hausdorff JM, Claassen JAHR, Mirelman A. Evidence for Differential Effects of 2 Forms of Exercise on Prefrontal Plasticity During Walking in Parkinson's Disease. Neurorehabil Neural Repair 2018; 32:200-208. [PMID: 29546797 DOI: 10.1177/1545968318763750] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In a randomized control trial conducted in patients with Parkinson's disease, a treadmill training program combined with virtual reality that targeted motor and cognitive aspects of safe ambulation led to fewer falls, compared with treadmill training alone. OBJECTIVE To investigate if the 2 types of training differentially affected prefrontal activation and if this might explain differences in fall rates after the intervention. METHODS Sixty-four patients with Parkinson's disease were randomized into the treadmill training arm (n = 34, mean age 73.1 ± 1.1 years, 64% men, disease duration 9.7 ± 1.0 years) or treadmill training with virtual reality arm (n = 30, mean age 70.1 ± 1.3 years, 71% men, disease duration 8.9 ± 1.1 years). Prefrontal activation during usual, dual-task, and obstacle negotiation walking was assessed before and after 6 weeks of training, using a functional near-infrared spectroscopy system. RESULTS Treadmill training with and without virtual reality reduced prefrontal activation during walking ( P < .001), with specific interactions related to training arm ( P = .01), lateralization ( P = .05), and walking condition ( P = .001). For example, among the subjects who trained with treadmill training alone, prefrontal activation during dual-task walking and obstacle negotiation increased after training, while in the combined training arm, activation decreased. CONCLUSIONS Prefrontal activation during usual and during more challenging walking conditions can be altered in response to 2 different types of training. The addition of a cognitive training component to a treadmill exercise program apparently modifies the effects of the training on the magnitude and lateralization of prefrontal activation and on falls, extending the understanding of the plasticity of the brain in PD.
Collapse
Affiliation(s)
- Inbal Maidan
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,2 Tel Aviv University, Tel Aviv, Israel
| | - Freek Nieuwhof
- 3 Radboud University, Nijmegen, Netherlands.,4 Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Bastiaan R Bloem
- 3 Radboud University, Nijmegen, Netherlands.,4 Radboud University Medical Center, Nijmegen, Netherlands
| | - Nir Giladi
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,2 Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,2 Tel Aviv University, Tel Aviv, Israel.,5 Rush University Medical Center, Chicago, IL, USA
| | - Jurgen A H R Claassen
- 3 Radboud University, Nijmegen, Netherlands.,4 Radboud University Medical Center, Nijmegen, Netherlands
| | - Anat Mirelman
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,2 Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
56
|
Montero-Odasso M, Speechley M. Falls in Cognitively Impaired Older Adults: Implications for Risk Assessment And Prevention. J Am Geriatr Soc 2018; 66:367-375. [DOI: 10.1111/jgs.15219] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manuel Montero-Odasso
- Gait and Brain Laboratory; Parkwood Institute; Lawson Health Research Institute; London ON Canada
- Department of Medicine and Division of Geriatric Medicine; Schulich School of Medicine & Dentistry; University of Western Ontario; London ON Canada
- Department of Epidemiology and Biostatistics; Schulich Interfaculty Program in Public Health; University of Western Ontario; London ON Canada
| | - Mark Speechley
- Gait and Brain Laboratory; Parkwood Institute; Lawson Health Research Institute; London ON Canada
- Department of Epidemiology and Biostatistics; Schulich Interfaculty Program in Public Health; University of Western Ontario; London ON Canada
| |
Collapse
|
57
|
Vitorio R, Stuart S, Rochester L, Alcock L, Pantall A. fNIRS response during walking — Artefact or cortical activity? A systematic review. Neurosci Biobehav Rev 2017; 83:160-172. [DOI: 10.1016/j.neubiorev.2017.10.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022]
|
58
|
Herold F, Wiegel P, Scholkmann F, Thiers A, Hamacher D, Schega L. Functional near-infrared spectroscopy in movement science: a systematic review on cortical activity in postural and walking tasks. NEUROPHOTONICS 2017; 4:041403. [PMID: 28924563 PMCID: PMC5538329 DOI: 10.1117/1.nph.4.4.041403] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/23/2017] [Indexed: 05/07/2023]
Abstract
Safe locomotion is a crucial aspect of human daily living that requires well-functioning motor control processes. The human neuromotor control of daily activities such as walking relies on the complex interaction of subcortical and cortical areas. Technical developments in neuroimaging systems allow the quantification of cortical activation during the execution of motor tasks. Functional near-infrared spectroscopy (fNIRS) seems to be a promising tool to monitor motor control processes in cortical areas in freely moving subjects. However, so far, there is no established standardized protocol regarding the application and data processing of fNIRS signals that limits the comparability among studies. Hence, this systematic review aimed to summarize the current knowledge about application and data processing in fNIRS studies dealing with walking or postural tasks. Fifty-six articles of an initial yield of 1420 publications were reviewed and information about methodology, data processing, and findings were extracted. Based on our results, we outline the recommendations with respect to the design and data processing of fNIRS studies. Future perspectives of measuring fNIRS signals in movement science are discussed.
Collapse
Affiliation(s)
- Fabian Herold
- Otto von Guericke University Magdeburg, Institute III, Department of Sport Science, Magdeburg, Germany
- Address all correspondence to: Fabian Herold, E-mail:
| | - Patrick Wiegel
- University of Freiburg, Department of Sport Science, Freiburg, Germany
| | - Felix Scholkmann
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
| | - Angelina Thiers
- Otto von Guericke University Magdeburg, Institute III, Department of Sport Science, Magdeburg, Germany
| | - Dennis Hamacher
- Otto von Guericke University Magdeburg, Institute III, Department of Sport Science, Magdeburg, Germany
| | - Lutz Schega
- Otto von Guericke University Magdeburg, Institute III, Department of Sport Science, Magdeburg, Germany
| |
Collapse
|