51
|
Saito S, Yamamoto Y, Ihara M. Development of a Multicomponent Intervention to Prevent Alzheimer's Disease. Front Neurol 2019; 10:490. [PMID: 31139139 PMCID: PMC6518668 DOI: 10.3389/fneur.2019.00490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in vascular risk management have successfully reduced the prevalence of Alzheimer's Disease (AD) in several epidemiologic investigations. It is now widely accepted that cerebrovascular disease is both directly and indirectly involved in AD pathogenesis. Herein, we review the non-pharmacological and pharmacological therapeutic approaches for AD treatment. MIND [Mediterranean and DASH (Dietary Approaches to Stop Hypertension) Intervention for Neurodegenerative Delay] diet is an important dietary treatment for prevention of AD. Multi domain intervention including diet, exercise, cognitive training, and intensive risk managements also prevented cognitive decline in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) study. To confirm these favorable effects of life-style intervention, replica studies are being planned worldwide. Promotion of β-amyloid (Aβ) clearance has emerged as a promising pharmacological approach because insufficient removal of Aβ is more important than excessive Aβ production in the pathogenesis of the majority of AD patients. Most AD brains exhibit accompanying cerebral amyloid angiopathy, and Aβ distribution in cerebral amyloid angiopathy closely corresponds with the intramural periarterial drainage (IPAD) route, emphasizing the importance of Aβ clearance. In view of these facts, promotion of the major vascular-mediated Aβ elimination systems, including capillary transcytosis, the glymphatic system, and IPAD, have emerged as new treatment strategies in AD. In particular, the beneficial effects of cilostazol were shown in several clinical observation studies, and cilostazol facilitated IPAD in a rodent AD model. The COMCID (Cilostazol for prevention of Conversion from MCI to Dementia) trial, evaluating the efficacy of cilostazol for patients with mild cognitive impairment is currently ongoing in Japan. Such therapeutic approaches involving maintenance of cerebrovascular integrity and promotion of vascular-mediated Aβ clearance have the potential to be mainstream treatments for sporadic AD.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.,Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yumi Yamamoto
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
52
|
Novel Therapeutic Potentials of Taxifolin for Amyloid-β-associated Neurodegenerative Diseases and Other Diseases: Recent Advances and Future Perspectives. Int J Mol Sci 2019; 20:ijms20092139. [PMID: 31052203 PMCID: PMC6539020 DOI: 10.3390/ijms20092139] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/17/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) has been closely implicated in the pathogenesis of cerebral amyloid angiopathy (CAA) and Alzheimer’s disease (AD), the major causes of dementia. Thus, Aβ could be a target for the treatment of these diseases, for which, currently, there are no established effective treatments. Taxifolin is a bioactive catechol-type flavonoid present in various plants, such as herbs, and it exhibits pleiotropic effects including anti-oxidant and anti-glycation activities. Recently, we have demonstrated that taxifolin inhibits Aβ fibril formation in vitro and have further shown that it improves cerebral blood flow, facilitating Aβ clearance in the brain and suppressing cognitive decline in a mouse model of CAA. These findings suggest the novel therapeutic potentials of taxifolin for CAA. Furthermore, recent extensive studies have reported several novel aspects of taxifolin supporting its potential as a therapeutic drug for AD and metabolic diseases with a high risk for dementia as well as for CAA. In this review, we have summarized the recent advances in taxifolin research based on in vitro, in vivo, and in silico approaches. Furthermore, we have discussed future research directions on the potential of taxifolin for use in novel therapeutic strategies for CAA, AD, and metabolic diseases with an increased risk for dementia.
Collapse
|
53
|
Catak C, Zedde M, Malik R, Janowitz D, Soric V, Seegerer A, Krebs A, Düring M, Opherk C, Linn J, Wollenweber FA. Decreased CSF Levels of ß-Amyloid in Patients With Cortical Superficial Siderosis. Front Neurol 2019; 10:439. [PMID: 31105644 PMCID: PMC6498501 DOI: 10.3389/fneur.2019.00439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Cortical superficial siderosis (cSS) represents a key neuroimaging marker of cerebral amyloid angiopathy (CAA) that is associated with intracranial hemorrhages and cognitive impairment. Nevertheless, the association between cSS and core cerebrospinal fluid (CSF) biomarkers for dementia remain unclear. Methods: One hundred and one patients with probable (79%, 80/101) or possible (21%, 21/101) CAA according to the modified Boston criteria and mild cognitive impairment according to Petersen criteria were prospectively included between 2011 and 2016. CSF analyses of ß-amyloid 42, ß-amyloid 40, total tau and phosphorylated tau were performed using sandwich-type enzyme-linked immunosorbent-assay. All patients received MRI and Mini-Mental-State Examination (MMSE). Logistic regression analysis was used to adjust for possible confounders. Results: cSS was present in 61% (62/101). Of those, 53% (33/62) had disseminated cSS and 47% (29/62) focal cSS. ß-amyloid 42 was lower in patients with cSS than in patients without cSS (OR 0.2; 95% CI 0.08–0.6; p = 0.0052) and lower in patients with disseminated cSS than in those with focal cSS (OR 0.02; 95% CI 0.003–0.2; p = 0.00057). Presence of cSS had no association with regard to ß-amyloid 40, total tau and phosphorylated tau. Conclusions: Our results demonstrate that the presence and extent of cSS are associated with reduced CSF ß-amyloid 42 levels. Further studies are needed to investigate the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Cihan Catak
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Rainer Malik
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Vivian Soric
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Anna Seegerer
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Krebs
- MVZ Labor PD Dr. Volkmann und Kollegen, Gesellschaft Bürgerlichen Rechts, Karlsruhe, Germany
| | - Marco Düring
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Christian Opherk
- Klinik für Neurologie, SLK-Kliniken Heilbronn GmbH, Heilbronn, Germany
| | - Jennifer Linn
- Institut und Poliklinik für Neuroradiologie, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Frank A Wollenweber
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW Cerebral amyloid angiopathy (CAA) is diagnosed primarily as a cause of lobar intracerebral hemorrhages (ICH) in elderly patients. With improving MRI techniques, however, the role of CAA in causing other symptoms has become clear. Recognizing the full clinical spectrum of CAA is important for diagnosis and treatment. In this review we summarize recent insights in clinical CAA features, MRI biomarkers, and management. RECENT FINDINGS The rate of ICH recurrence in CAA is among the highest of all stroke subtypes. Cortical superficial siderosis (cSS) and cortical subarachnoid hemorrhage (cSAH) are important imaging predictors for recurrent ICH. CAA also causes cognitive problems in multiple domains. In patients with nondemented CAA, the risk of developing dementia is high especially after ICH. CAA pathology probably starts years before the first clinical manifestations. The first signs in hereditary CAA are white matter lesions, cortical microinfarcts, and impaired occipital cerebral vasoreactivity. Visible centrum semiovale perivascular spaces, lobar located lacunes, and cortical atrophy are new nonhemorrhagic MRI markers. SUMMARY CAA should be in the differential diagnosis of elderly patients with lobar ICH but also in those with cognitive decline and episodic transient neurological symptoms. Physicians should be aware of the cognitive effects of CAA. In patients with a previous ICH, cSS, or cSAH, anticoagulation should be considered risky. The increasing number of MRI markers may help to discriminate CAA from other small vessel diseases and dementia subtypes.
Collapse
|
55
|
Weber SA, Patel RK, Lutsep HL. Cerebral amyloid angiopathy: diagnosis and potential therapies. Expert Rev Neurother 2018; 18:503-513. [DOI: 10.1080/14737175.2018.1480938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Stewart A. Weber
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Ranish K. Patel
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Helmi L. Lutsep
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
56
|
Charidimou A, Friedrich JO, Greenberg SM, Viswanathan A. Core cerebrospinal fluid biomarker profile in cerebral amyloid angiopathy: A meta-analysis. Neurology 2018; 90:e754-e762. [PMID: 29386280 DOI: 10.1212/wnl.0000000000005030] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To perform a meta-analysis of 4 core CSF biomarkers (β-amyloid [Aβ]42, Aβ40, total tau [t-tau], and phosphorylated tau [p-tau]) to assess which of these are most altered in sporadic cerebral amyloid angiopathy (CAA). METHODS We systematically searched PubMed for eligible studies reporting data on CSF biomarkers reflecting amyloid precursor protein metabolism (Aβ42, Aβ40), neurodegeneration (t-tau), and tangle pathology (p-tau) in symptomatic sporadic CAA cohorts vs controls and patients with Alzheimer disease (AD). Biomarker performance was assessed in random-effects meta-analysis based on ratio of mean (RoM) biomarker concentrations: (1) in patients with CAA vs healthy controls and (2) in patients with CAA vs patients with AD. RoM >1 indicates higher biomarker concentration in patients with CAA vs comparison population and RoM <1 indicates higher concentration in comparison groups. RESULTS Three studies met inclusion criteria. These comprised 5 CAA patient cohorts (n = 59 patients) vs healthy controls (n = 94 cases) and AD cohorts (n = 158). Three core biomarkers differentiated CAA from controls: CSF Aβ42 (RoM 0.49, 95% confidence interval [CI] 0.38-0.64, p < 0.003), Aβ40 (RoM 0.70, 95% CI 0.63-0.78, p < 0.0001), and t-tau (RoM 1.54, 95% CI 1.15-2.07, p = 0.004); p-tau was marginal (RoM 1.24, 95% CI 0.99-1.54, p = 0.062). Differentiation between CAA and AD was strong for CSF Aβ40 (RoM 0.76, 95% CI 0.69-0.83, p < 0.0001), but not Aβ42 (RoM 1.00; 95% CI 0.81-1.23, p = 0.970). For t-tau and p-tau, average CSF ratios in patients with CAA vs patients with AD were 0.63 (95% CI 0.54-0.74, p < 0.0001) and 0.60 (95% CI 0.50-0.71, p < 0.0001), respectively. CONCLUSION Specific CSF patterns of Aβ42, Aβ40, t-tau, and p-tau might serve as molecular biomarkers of CAA, but analyses in larger CAA cohorts are needed.
Collapse
Affiliation(s)
- Andreas Charidimou
- From the Stroke Research Center (A.C., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Medicine (J.O.F.) and Interdepartmental Division of Critical Care (J.O.F.), University of Toronto; and Critical Care and Medicine Departments and Li Ka Shing Knowledge Institute (J.O.F.), St. Michael's Hospital, Toronto, Canada.
| | - Jan O Friedrich
- From the Stroke Research Center (A.C., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Medicine (J.O.F.) and Interdepartmental Division of Critical Care (J.O.F.), University of Toronto; and Critical Care and Medicine Departments and Li Ka Shing Knowledge Institute (J.O.F.), St. Michael's Hospital, Toronto, Canada
| | - Steven M Greenberg
- From the Stroke Research Center (A.C., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Medicine (J.O.F.) and Interdepartmental Division of Critical Care (J.O.F.), University of Toronto; and Critical Care and Medicine Departments and Li Ka Shing Knowledge Institute (J.O.F.), St. Michael's Hospital, Toronto, Canada
| | - Anand Viswanathan
- From the Stroke Research Center (A.C., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Medicine (J.O.F.) and Interdepartmental Division of Critical Care (J.O.F.), University of Toronto; and Critical Care and Medicine Departments and Li Ka Shing Knowledge Institute (J.O.F.), St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
57
|
Renard D, Collombier L, Demattei C, Wacongne A, Charif M, Ayrignac X, Azakri S, Gaillard N, Boudousq V, Lehmann S, Menjot de Champfleur N, Thouvenot E. Cerebrospinal Fluid, MRI, and Florbetaben-PET in Cerebral Amyloid Angiopathy-Related Inflammation. J Alzheimers Dis 2018; 61:1107-1117. [DOI: 10.3233/jad-170843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Dimitri Renard
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, France
| | | | | | - Anne Wacongne
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, France
| | - Mahmoud Charif
- Department of Neurology, CHU Montpellier, Hôpital Gui de Chauliac, France
| | - Xavier Ayrignac
- Department of Neurology, CHU Montpellier, Hôpital Gui de Chauliac, France
| | - Souhayla Azakri
- Department of Neurology, CHU Montpellier, Hôpital Gui de Chauliac, France
| | | | - Vincent Boudousq
- Department of Nuclear Medicine, CHU Nîmes, Hôpital Caremeau, France
| | - Sylvain Lehmann
- Laboratoire de Biochimie-Protéomique Clinique – IRMB – CRB – Inserm U11183, CHU Montpellier, Hôpital St-Eloi – Université Montpellier, France
| | | | - Eric Thouvenot
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, France
- Institut de Génomique Fonctionnelle, UMR5203, Université Montpellier, Montpellier, France
| |
Collapse
|
58
|
Abstract
Cerebral amyloid angiopathy (CAA) associated with inflammation is a rare form of a potentially reversible encephalopathy in a subgroup of patients with CAA. The cerebral amyloid deposition can in isolated cases induce an inflammation predominantly of the cerebral blood vessels and a multifocal edema of the cerebral white matter. The courses can occur as monophasic, relapsing remitting and primarily progressive forms. We present seven cases with different courses of the disease and give an overview of the pathophysiology, clinical aspects and treatment of the disease with reference to the current literature. The cases presented show a very different and often difficult differential diagnostic clinical picture and all showed a significant improvement under steroid medication without signs of recurrence of the disease during the course. The recognition and early consistent treatment of inflammatory forms of CAA with and without direct inflammatory involvement of vessels can be decisive for successful treatment.
Collapse
|
59
|
Chen DW, Wang J, Zhang LL, Wang YJ, Gao CY. Cerebrospinal Fluid Amyloid-β Levels are Increased in Patients with Insomnia. J Alzheimers Dis 2017; 61:645-651. [PMID: 29278891 DOI: 10.3233/jad-170032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dong-Wan Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Li-Li Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Chang-Yue Gao
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Institute of Field Surgery, Third Military Medical University, Chongqing, China
| |
Collapse
|
60
|
Elaskalani O, Khan I, Morici M, Matthysen C, Sabale M, Martins RN, Verdile G, Metharom P. Oligomeric and fibrillar amyloid beta 42 induce platelet aggregation partially through GPVI. Platelets 2017; 29:415-420. [PMID: 29206067 DOI: 10.1080/09537104.2017.1401057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effects of the Alzheimer's disease (AD)-associated Amyloid-β (Aβ) peptides on platelet aggregation have been previously assessed, but most of these studies focused on Aβ40 species. It also remains to be determined which distinct forms of Aβ peptides exert differential effects on platelets. In AD, oligomeric Aβ42 species is widely thought to be a major contributor to the disease pathogenesis. We, therefore, examine the ability of oligomeric and fibrillary Aβ42 to affect platelet aggregation. We show that both forms of Aβ42 induced significant platelet aggregation and that it is a novel ligand for the platelet receptor GPVI. Furthermore, a novel binding peptide that reduces the formation of soluble Aβ42 oligomers was effective at preventing Aβ42-dependent platelet aggregation. These results support a role for Aβ42 oligomers in platelet hyperactivity.
Collapse
Affiliation(s)
- O Elaskalani
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - I Khan
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - M Morici
- b School of Medical Sciences , Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University , Joondalup , WA , Australia
| | - C Matthysen
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - M Sabale
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - R N Martins
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia.,c Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , NSW , Sydney , Australia
| | - G Verdile
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia.,b School of Medical Sciences , Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University , Joondalup , WA , Australia.,d School of Psychiatry and Clinical Neurosciences , University of WA , Perth , Australia
| | - P Metharom
- e Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| |
Collapse
|
61
|
Banerjee G, Carare R, Cordonnier C, Greenberg SM, Schneider JA, Smith EE, Buchem MV, Grond JVD, Verbeek MM, Werring DJ. The increasing impact of cerebral amyloid angiopathy: essential new insights for clinical practice. J Neurol Neurosurg Psychiatry 2017; 88:982-994. [PMID: 28844070 PMCID: PMC5740546 DOI: 10.1136/jnnp-2016-314697] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/26/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
Abstract
Cerebral amyloid angiopathy (CAA) has never been more relevant. The last 5 years have seen a rapid increase in publications and research in the field, with the development of new biomarkers for the disease, thanks to advances in MRI, amyloid positron emission tomography and cerebrospinal fluid biomarker analysis. The inadvertent development of CAA-like pathology in patients treated with amyloid-beta immunotherapy for Alzheimer's disease has highlighted the importance of establishing how and why CAA develops; without this information, the use of these treatments may be unnecessarily restricted. Our understanding of the clinical and radiological spectrum of CAA has continued to evolve, and there are new insights into the independent impact that CAA has on cognition in the context of ageing and intracerebral haemorrhage, as well as in Alzheimer's and other dementias. While the association between CAA and lobar intracerebral haemorrhage (with its high recurrence risk) is now well recognised, a number of management dilemmas remain, particularly when considering the use of antithrombotics, anticoagulants and statins. The Boston criteria for CAA, in use in one form or another for the last 20 years, are now being reviewed to reflect these new wide-ranging clinical and radiological findings. This review aims to provide a 5-year update on these recent advances, as well as a look towards future directions for CAA research and clinical practice.
Collapse
Affiliation(s)
- Gargi Banerjee
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Roxana Carare
- Division of Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Charlotte Cordonnier
- Department of Neurology, Université de Lille, Inserm U1171, Degenerative and Vascular Cognitive Disorders, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Steven M Greenberg
- J P Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie A Schneider
- Departments of Pathology and Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Eric E Smith
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mark van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel M Verbeek
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Center, Nijmegen, The Netherlands
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
62
|
Farid K, Charidimou A, Baron JC. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update. NEUROIMAGE-CLINICAL 2017; 15:247-263. [PMID: 28560150 PMCID: PMC5435601 DOI: 10.1016/j.nicl.2017.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/07/2023]
Abstract
Sporadic cerebral amyloid angiopathy (CAA) is a very common small vessel disease of the brain, showing preferential and progressive amyloid-βdeposition in the wall of small arterioles and capillaries of the leptomeninges and cerebral cortex. CAA now encompasses not only a specific cerebrovascular pathological trait, but also different clinical syndromes - including spontaneous lobar intracerebral haemorrhage (ICH), dementia and ‘amyloid spells’ - an expanding spectrum of brain parenchymal MRI lesions and a set of diagnostic criteria – the Boston criteria, which have resulted in increasingly detecting CAA during life. Although currently available validated diagnostic criteria perform well in multiple lobar ICH, a formal diagnosis is currently lacking unless a brain biopsy is performed. This is partly because in practice CAA MRI biomarkers provide only indirect evidence for the disease. An accurate diagnosis of CAA in different clinical settings would have substantial impact for ICH risk stratification and antithrombotic drug use in elderly people, but also for sample homogeneity in drug trials. It has recently been demonstrated that vascular (in addition to parenchymal) amyloid-βdeposition can be detected and quantified in vivo by positron emission tomography (PET) amyloid tracers. This non-invasive approach has the potential to provide a molecular signature of CAA, and could in turn have major clinical impact. However, several issues around amyloid-PET in CAA remain unsettled and hence its diagnostic utility is limited. In this article we systematically review and critically appraise the published literature on amyloid-PET (PiB and other tracers) in sporadic CAA. We focus on two key areas: (a) the diagnostic utility of amyloid-PET in CAA and (b) the use of amyloid-PET as a window to understand pathophysiological mechanism of the disease. Key issues around amyloid-PET imaging in CAA, including relevant technical aspects are also covered in depth. A total of six small-scale studies have addressed (or reported data useful to address) the diagnostic utility of late-phase amyloid PET imaging in CAA, and one additional study dealt with early PiB images as a proxy of brain perfusion. Across these studies, amyloid PET imaging has definite diagnostic utility (currently tested only in probable CAA): it helps rule out CAA if negative, whether compared to healthy controls or to hypertensive deep ICH controls. If positive, however, differentiation from underlying incipient Alzheimer's disease (AD) can be challenging and so far, no approach (regional values, ratios, visual assessment) seems sufficient and specific enough, although early PiB data seem to hold promise. Based on the available evidence reviewed, we suggest a tentative diagnostic flow algorithm for amyloid-PET use in the clinical setting of suspected CAA, combining early- and late-phase PiB-PET images. We also identified ten mechanistic amyloid-PET studies providing early but promising proof-of-concept data on CAA pathophysiology and its various manifestations including key MRI lesions, cognitive impairment and large scale brain alterations. Key open questions that should be addressed in future studies of amyloid-PET imaging in CAA are identified and highlighted. CAA is a major cause of brain haemorrhage and cognitive impairment in aged subjects. Without brain biopsy, its current diagnosis largely relies on indirect MRI markers. Amyloid PET may provide a non-invasive molecular signature to formally diagnose CAA. Based on our review, amyloid PET has excellent sensitivity but specificity is unclear. Amyloid PET is also useful to investigate mechanisms underlying CAA manifestations.
Collapse
Affiliation(s)
- Karim Farid
- Department of Nuclear Medicine, Martinique University Hospital, Fort-de-France, Martinique
| | - Andreas Charidimou
- Massachusetts General Hospital, Department of Neurology, Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Jean-Claude Baron
- U894, Centre Hospitalier Sainte Anne, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
63
|
Carmona-Iragui M, Balasa M, Benejam B, Alcolea D, Fernández S, Videla L, Sala I, Sánchez-Saudinós MB, Morenas-Rodriguez E, Ribosa-Nogué R, Illán-Gala I, Gonzalez-Ortiz S, Clarimón J, Schmitt F, Powell DK, Bosch B, Lladó A, Rafii MS, Head E, Molinuevo JL, Blesa R, Videla S, Lleó A, Sánchez-Valle R, Fortea J. Cerebral amyloid angiopathy in Down syndrome and sporadic and autosomal-dominant Alzheimer's disease. Alzheimers Dement 2017; 13:1251-1260. [PMID: 28463681 DOI: 10.1016/j.jalz.2017.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION We aimed to investigate if cerebral amyloid angiopathy (CAA) is more frequent in genetically determined than in sporadic early-onset forms of Alzheimer's disease (AD) (early-onset AD [EOAD]). METHODS Neuroimaging features of CAA, apolipoprotein (APOE), and cerebrospinal fluid amyloid β (Aβ) 40 levels were studied in subjects with Down syndrome (DS, n = 117), autosomal-dominant AD (ADAD, n = 29), sporadic EOAD (n = 42), and healthy controls (n = 68). RESULTS CAA was present in 31%, 38%, and 12% of cognitively impaired DS, symptomatic ADAD, and sporadic EOAD subjects and in 13% and 4% of cognitively unimpaired DS individuals and healthy controls, respectively. APOE ε4 genotype was borderline significantly associated with CAA in sporadic EOAD (P = .06) but not with DS or ADAD. There were no differences in Aβ040 levels between groups or between subjects with and without CAA. DISCUSSION CAA is more frequently found in genetically determined AD than in sporadic EOAD. Cerebrospinal fluid Aβ40 levels are not a useful biomarker for CAA in AD.
Collapse
Affiliation(s)
- María Carmona-Iragui
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain; Global Brain Health Institute, Trinity College Dublin, College Green, Dublin, Ireland
| | - Mircea Balasa
- Global Brain Health Institute, Trinity College Dublin, College Green, Dublin, Ireland; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bessy Benejam
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Susana Fernández
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Laura Videla
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Isabel Sala
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - María Belén Sánchez-Saudinós
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Estrella Morenas-Rodriguez
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Roser Ribosa-Nogué
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Ignacio Illán-Gala
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Sofía Gonzalez-Ortiz
- Department of Radiology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Clarimón
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Frederick Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - David K Powell
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michael S Rafii
- Adult Down Syndrome Clinic, Department of Neuroscience, University of California, San Diego, CA, USA; Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Elizabeth Head
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - José Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain; BarcelonaBeta Brain Research Center, Fundació Pasqual Maragall, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Blesa
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Sebastián Videla
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain; Faculty of Health and Life Sciences, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain.
| |
Collapse
|